
Design and Optimization of Large Size and
Low Overhead Off-Chip Caches

Zhao Zhang, Member, IEEE, Zhichun Zhu, Member, IEEE, and

Xiaodong Zhang, Senior Member, IEEE

Abstract—Large off-chip L3 caches can significantly improve the performance of memory-intensive applications. However,

conventional L3 SRAM caches are facing two issues as those applications require increasingly large caches. First, an SRAM cache

has a limited size due to the low density and high cost of SRAM and, thus, cannot hold the working sets of many memory-intensive

applications. Second, since the tag checking overhead of large caches is nontrivial, the existence of L3 caches increases the cache

miss penalty and may even harm the performance of some memory-intensive applications. To address these two issues, we present a

new memory hierarchy design that uses cached DRAM to construct a large size and low overhead off-chip cache. The high density

DRAM portion in the cached DRAM can hold large working sets, while the small SRAM portion exploits the spatial locality appearing in

L2 miss streams to reduce the access latency. The L3 tag array is placed off-chip with the data array, minimizing the area overhead on

the processor for L3 cache, while a small tag cache is placed on-chip, effectively removing the off-chip tag access overhead. A

prediction technique accurately predicts the hit/miss status of an access to the cached DRAM, further reducing the access latency.

Conducting execution-driven simulations for a 2GHz 4-way issue processor and with 11 memory-intensive programs from the

SPEC 2000 benchmark, we show that a system with a cached DRAM of 64MB DRAM and 128KB on-chip SRAM cache as the off-chip

cache outperforms the same system with an 8MB SRAM L3 off-chip cache by up to 78 percent measured by the total execution time.

The average speedup of the system with the cached-DRAM off-chip cache is 25 percent over the system with the L3 SRAM cache.

Index Terms—Cached DRAM, DRAM latency, memory hierarchy, memory-intensive applications, off-chip caches.

�

1 INTRODUCTION

ASthe processor-memory speed gap continues to widen,
application performance is increasingly dependent on

the performance of memory hierarchy. The design and
optimization of memory hierarchy involve trade offs among
a number of factors, such as the number of cache levels,
cache size, access latency, cost, and power consumption.
Modern processors have included two-level caches on-chip.
However, the sizes of on-chip caches are limited. For
example, the 2.4 GHz Pentium 4 processor has only 512KB
L2 cache. Many applications have large working sets that
cannot fit into such on-chip caches. Architects have
provided a large off-chip L3 cache to further reduce the
number of main memory accesses. For example, an early
study [9] shows that adding a 2MB off-chip L3 cache to
AlphaServer 4100 (with 96 KB on-chip L2 cache) can
improve the performance of memory-intensive workloads
by 20 percent.

Ideally, an off-chip L3 cache should be large enough to
hold the working sets for most applications and fast enough
to reduce the memory access latency. Off-chip L3 caches are
normally made by SRAM, the same technology used for

on-chip caches. SRAM is fast but has several limitations of

being off-chip caches. First, because of the low density and

high cost of SRAM, the size of an SRAM cache is usually

limited to less than 10 megabytes, which is not large enough

for of many memory-intensive applications. As Fig. 1

shows, the cache miss rates of the selected SPEC 2000

benchmarks drop significantly as the cache size increases

beyond a certain point. For example, the number of misses

per 100 instructions of 179.art drops from 1.22 to almost

zero as the L3 cache size increases from 2MB to 4MB and

that value of 189.lucas drops from 1.17 to 0.24 as the cache

size increases from 8MB to 32MB. A 2MB SRAM cache will

benefit none of these applications, while a 4MB cache will

benefit only one application (179.art).
Second, because the volume of L3 tags is large and the tags

are usually stored off-chip, the L3 tag checking overhead is

significant and increases L3 cache miss penalty. The

performance of some memory-intensive applications can be

harmed by the use of off-chip cache. For instance, a study on

AlphaServer [9] reports that, because of the increased

memory access latency, the off-chip cache can degrade the

performance byup to 10 percent for those applicationswhose

working sets cannot fit into the off-chip cache.
Since constructing the off-chip L3 cache with SRAM

cannot satisfy the capacity requirements for many memory-

intensive applications, we propose using DRAM to sub-

stitute for SRAM to address this issue. However, simply

applying a DRAM cache will significantly increase the

cache access latency. In this study, we present a new off-

chip cache design, named CDC (cached-DRAM cache), to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004 843

. Z. Zhang is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011. E-mail: zzhang@iastate.edu.

. Z. Zhu is with the Department of Electrical and Computer Engineering,
University of Illinois at Chicago, Chicago, IL 60607.
E-mail: zhu@ece.uic.edu.

. X. Zhang is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA 23187. E-mail: zhang@cs.wm.edu.

Manuscript received 1 Nov. 2002; revised 27 May 2003; accepted 16 Oct.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 117696.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

achieve both high capacity and low latency by using cached

DRAM to construct the off-chip L3 cache.
This design can improve the performance of memory-

intensive applications running on high-performance server

systems. Cached DRAM integrates a small SRAM cache into

DRAM to exploit the spatial locality that appears in miss

streams from the upper level cache [15], [16], [23], [50].

Thus, it has a much shorter average access latency than that

of conventional DRAMs. The off-chip cache constructed by

cached DRAM has the potential to achieve average access

latency close to that of SRAM cache. The unique advantages

of the CDC are its large capacity, equivalent to the DRAM size,

and its low average latency, close to that of an SRAM cache.
Our CDC design has three features that distinguish it

from a simple design of DRAM cache. First, it adopts the

structure of a sector cache [31] in order to achieve a high

degree of spatial locality without increasing the memory

bandwidth consumption. Normally, the increase of spatial

locality requires an increase on cache block size, which will

in turn increase the memory bandwidth usage for a cache

fill request. With the structure of a sector cache, it is only

necessary to fetch the missed subblock when a CDC miss

happens. In our CDC design, the block size equals the

DRAM page size and the subblock size equals the on-chip

L2 cache block size. Without increasing the memory

bandwidth consumption, the block size of CDC can be

very large (e.g., 32 times the L2 cache block size). This

allows the SRAM cache inside the CDC to exploit the spatial

locality in the CDC hit streams so as to reduce the average

CDC access time.
Second, our CDC design only requires a small amount of

logic inside the processor chip by placing the CDC tag off-

chip. In the design of the off-chip cache, the use of on-chip

tags allows fast tag checking. However, because the tags

occupy a large amount of on-chip space, this approach will

limit other resources that are allowed on-chip and may

harm the performance of those non-memory-intensive

applications. In our design, a very small on-chip tag cache

is used to facilitate fast tag checking. The details of the

on-chip tag cache will be presented in Section 2.

Finally, the CDC design removes most of the additional

miss penalty associated with off-chip caches by using a

small on-chip hit/miss predictor. For a predicted miss on

the off-chip CDC, the request to the main memory will be

sent out immediately after the L2 cache miss is detected.

Our experimental results show that a simple and small

predictor is highly accurate for this purpose.

We use SimpleScalar to simulate a system with a

4-way issue 2GHz processor, split 32KB/32KB L1 caches,

a unified 1-MByte on-chip L2 cache, and an off-chip CDC

of 128KB SRAM and 64MB DRAM. We compare the

performance of the CDC with an 8-MByte SRAM L3

cache under the same processor configuration, for 11

memory-intensive programs from the SPEC CPU2000

benchmark suite. Our results show that the CDC outper-

forms the L3 SRAM cache for most programs by up to 51

percent. Unlike the off-chip SRAM cache, the CDC does

not degrade the performance of any program. The

average performance improvement is 25 percent.

The rest of the paper is organized as follows: The next

section presents the CDC design in detail. Section 3

describes the experimental setup for our study. The

experimental results are presented in Section 4. After

discussing the related work in Section 5, we summarize

this study and briefly discuss future work in Section 6.

2 CDC DESIGN

2.1 Overview

Fig. 2 presents a memory hierarchy with two-level on-chip

caches and an off-chip CDC (Cached-DRAM cache). Cached

DRAM is a special DRAM structure that integrates a small

SRAM cache to exploit the spatial locality appearing in the

access streams [15], [16], [23], [50]. Inside the CDC, the

DRAM storage is called CDC-DRAM and the SRAM portion

is called CDC-cache. To solve the problem of long tag check

penalty of L3 cache, we use an on-chip predictor to predict

whether an access to the DRAM chip is a hit or a miss. The

predictor helps eliminate the miss penalty for correctly

predicted CDC misses.

844 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

Fig. 1. The number of misses per 100 instructions for selected
SPEC2000 programs, collected by SimpleScalar [5] 3.0 Alpha version
and using precompiled SPEC2000 programs [42]. The cache is 8-way
associative with block size of 128-byte. All programs are fast forwarded
by four billion instructions and are executed for the next one billion
instructions.

Fig. 2. A diagram of memory hierarchy using CDC.

We highlight the CDC design as follows:

. CDC-DRAM has the structure of sector cache, where
each CDC-DRAM page can hold dozens of on-chip
cache blocks.

. Recently accessed CDC-DRAM pages are cached in
the CDC-cache and their tags are stored in the on-
chip CDC tag cache.

. The CDC is connected to the processor by high-
bandwidth data paths. We assume that they are put
in the same module by using the multichip module
(MCM) technology.

Besides providing a much larger storage than an SRAM

off-chip cache, the proposed CDC has the following
additional advantages in constructing the L3 off-chip cache:

. Minimizing on-chip space overhead. The CDC tags are
stored with data pages in the CDC-DRAM. Only the
tags of pages cached in the CDC-cache are stored
on-chip. The storage requirement for the on-chip tag
cache is less than 1KB in thedefault configuration. The
on-chip predictor for predicting CDC-DRAM hit/
miss is very simple and occupies a very small space.

. Minimizing cache miss overhead. Since the on-chip CDC
tag cache is small and the CDC-DRAM hit/miss
prediction is simple, the CDC tag checking and the
prediction can be performed in parallel with the L2
cacheaccess foreveryL1cachemiss.WhenanL2cache
miss is detected, the results of the CDC tag checking
and the prediction will be available. There is no
additional miss overhead for correctly predicted
CDC-DRAM misses. The performance results show
that the prediction has high accuracy and the miss
overhead related to incorrect predictions is trivial.

In contrast, the tag directory of the SRAM
L3 cache is much larger than that of the L2 cache

and has longer latency and cycle time than those of
the L2 cache. Thus, there will be a significant
overhead for cache misses to the main memory.

. Exploiting the locality in the CDC-Cache. Many recent
studies have shown that the locality in the cache
miss streams is very high [23], [44], [8], [49], [27],
[51]. Because of the large block size, the CDC-cache
is able to effectively utilize this locality to speed up
accesses to the CDC.

Fig. 3 shows a detailed structure of CDC and the data
paths connecting the CDC-cache, the CDC-DRAM, the
L2 cache, and the tag cache. Each CDC-DRAM page
contains a page of data, address tags, and an array of the

selection and valid bits.1 For simplicity, the collection of the
address tags and the selection and valid bits of one
CDC-DRAM page is called the page tag of that page. Upon
a CDC-DRAM miss, the refilled L2 block is sent to both the
L2 cache and the CDC. Inside the CDC, the page tags are

stored and transferred, together with their associated data
blocks. Outside the CDC, the data blocks are selected and
transferred to and from the L2 cache and the tags are
transferred to and from the tag cache.

For the convenience of discussions, the following config-
urations and parameters are assumed if they are not
mentioned specifically. The CDC-DRAM is 64-MB and the
page size is 4KB. Each page is a sector holding 32 L2 cache
blocks of 128 bytes. The CDC-cache is 4-way set-associative
with 128KB. For the calculation of storage requirement, we
assume that the physical address in the system is 48-bit long.

2.2 On-Chip CDC Controller, Tag Cache, and
Predictor

The tag cache stores the tags of pages that are cached in the
CDC-cache. For each L1 cache miss, the address is
compared with the associated address tags in the tag cache
in parallel with the L2 cache access. Since the tag cache is
very small, the comparison can be done before the L2 cache
access finishes. When an L2 cache miss is detected, if a
match is found and the valid bit is set, the demanded data
block exists in the CDC-cache and its set index and block
index in the CDC-cache are known. Then, the CDC
controller sends a request to fetch the block from the
CDC-cache to the L2 cache (the CDC-DRAM is not
involved). Although the CDC-cache is set-associative, it is
accessed as a direct-mapped cache because the set index
and the block index are already known at the time of the
access. In other words, CDC-cache tag and data are
accessed sequentially, but its tag checking overlaps with
the L2 tag checking. For L2 cache hits, no data will be
fetched from the CDC-cache or CDC-DRAM.

If a match cannot be found, the data block may exist in
both the CDC-DRAM and main memory or only in the main
memory. The hit/miss predictor then makes a prediction,
directing an access to the CDC-DRAM or to the main
memory (wewill discuss the predictor design in Section 2.4).
In the case of a CDC-DRAM access, the CDC-DRAM page,

ZHANG ET AL.: DESIGN AND OPTIMIZATION OF LARGE SIZE AND LOW OVERHEAD OFF-CHIP CACHES 845

1. The CDC-DRAM uses decoupled sector cache organization, which
requires selection bits; see Section 2.3 for details.

Fig. 3. The CDC structure and the data paths between the CDC-cache,
the CDC-DRAM, the L2 cache, and the on-chip tag cache. CL
represents a block of the cache line size, T represents the address
tags of a page, S represents the selection bits of a page, and V
represents the valid bits of a page.

including both data and tag, is first transferred to the
CDC-cache. Then, the page tag is transferred to the on-chip
tag cache to match the missed address. Meanwhile, the
demanded data block is selected, transferred to the
processor chip, and may be buffered temporarily. If a
match if found, the data block is written into the L2 cache;
otherwise, it is discarded and the data block is fetched from
the main memory.

In the case of a main memory access, both the
CDC-DRAM and the main memory are accessed simulta-
neously. If the block is not found in the CDC, the data
fetched from the main memory is sent to the L2 cache and is
also written into the CDC-cache. If the block is found in the
CDC-DRAM, the data fetched from the main memory is
discarded.

The predictor enables exploiting the locality in the high-
bandwidth CDC-DRAM, even if the data are not found in
the CDC-cache. From another point of view, the predictor
filters out unnecessary traffic to the main memory, which
could cause congestion on the memory bus and stall the
follow-up accesses. Working together, the controller, the tag
cache, and the predictor ensure fast tag checking, fast CDC-
cache accesses, and low memory bus traffic.

2.3 CDC-DRAM Mapping and CDC-Cache Mapping

The CDC-DRAM has a sector cache structure [31], where
the data part of a page is a sector holding 32 L2 cache
blocks. We consider two mapping methods. The first one is
the direct mapping scheme of the sector cache in which
each cache block is mapped onto a single location (page and
block) in the CDC-DRAM. This method is simple and
requires only one tag for each page. However, a potential
drawback for this scheme is that the CDC-DRAM storage
may not be efficiently used. The selection bit array S is not
needed for this method.

The second one is to use two different mapping schemes
for the data and for the tag, as used in the decoupled sector
cache [35]. We still use direct mapping for the data part
because a set associative mapping would require accessing
more than one CDC-DRAM page simultaneously. How-
ever, the mapping for the tag part is set associative. Each
CDC-DRAM page is associated with K tags and blocks
from up to K pages in the physical memory can be cached
in the same page. For each block, logK selection bits
determine the tag that the block is associated with. In the
default configuration, K is set to 4. In this way, we reduce
the chance of page thrashing when two pages conflict in the
CDC. For the details of the decoupled sector cache,
interested readers may refer to [35]. This decoupled
mapping is used in the default configuration.

Although the decoupled cache structure is complex, the
major complexity lies in the on-chip tag cache. The only
changes in the off-chip CDC are the additional tags and the
selection bit array, which do not change the manufacturing
process of the underlying cached DRAM. Because the tag
cache is very small compared to the L2 cache, the tag cache
access is faster than an L2 cache access, and does not affect
the CDC access times. In the default configuration, the tag
cache consists of only 32 entries with 184 bits in each entry:
4� 22 for four page address tags, 32� 2 for selection bits,
and 32 valid bits. Each page address tag has 22 bits for

64MB CDC (48 bits in physical address minus 26 bits in
page index and offset). The total storage space needs
776 bytes. For each CDC-DRAM page, the whole page tag
occupies less than 1 percent of storage.

The CDC-cache mapping decides how the CDC-DRAM
pages are mapped to the cache blocks in the CDC-cache. It is
actually determined by the organization of the underlying
cached DRAM. Recent studies have shown that cached
DRAMs integrated with set-associative caches have signifi-
cant lower cachemiss rates than thosewith thedirectmapped
ones when used as main memories [44], [23], [50]. Thus, we
only consider set-associative CDC-cache in this study. It is
4-way set-associative in the default configuration.

2.4 Predictor Design

Cache hit/miss prediction has been used for a variety of
purposes. For example, it can improve load instruction
scheduling and prefetching [48], [32]. In order to reduce the
memory bandwidth requirement, the authors in [41] use
miss prediction to dynamically mark which load instruction
is cacheable/nonallocatable. We want to apply the predic-
tion technique to predict CDC-DRAM hit/miss for CDC-
cache misses so that accesses to the main memory will not
be delayed when the CDC-DRAM miss is correctly
predicted.

We adopt a two-level adaptive predictor using a global
history register and a global pattern history table (GAg)
[47]. The original predictor design is used for dynamic
branch predictions. It has a two-level structure. The first
level is a branch history register which records the current
branch pattern. The second level is a pattern history table
that uses saturating up-down counters to record the branch
history for that pattern. When a branch is encountered, the
saturating counter indexed by the current pattern is used to
predict whether the branch should be taken or not. The real
branch behavior will feed back to the history register and
the counter.

We adapted the prediction mechanism such that the miss
pattern instead of the branch pattern is used to train the
predictor. The predictor observes memory references that
have missed from the L2 cache and the CDC-cache and
records the CDC hit/miss history for the most recent
references in a global history register. The predictor is
simple with a low implementation cost. For example, a
predictor with an 8-bit history register, a 256-entry pattern
history table, and 2-bit saturating counters requires only
520-bit storage. The additional cost to implement the logic is
also small. The predictor is fast enough that the prediction
will finish sooner than the L2 cache access.

There may be other predictor design alternatives.
However, we have found that this simple scheme is very
effective at predicting the CDC-DRAM hit/miss, as will be
shown in Section 4. For this reason, we have not explored
other alternatives.

2.5 Write Policy

The CDC can be organized as a write-through cache or a
writeback cache. With the write-through policy, a replaced
dirty L2 block will be written into the CDC and main
memory at the same time. The write-through policy is
simple to implement for the CDC, but it increases the traffic

846 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

to the main memory. The writeback policy is more
complicated. When a CDC-cache miss is encountered, the
CDC-DRAM must be accessed for correctness no matter
whether the access is predicated to be a hit or not (the
predictor still works to filter out unnecessary accesses to the
main memory). Furthermore, replacing a CDC-DRAM page
with multiple dirty blocks will cause a burst of writebacks
to the main memory. Additional buffers may be needed to
hold those dirty blocks.

We believe that the write policy has little influence on the
CDC performance for the following reasons: Writeback
L2 cache has been extensively used to reduce the memory
traffic. Furthermore, a recent study shows that eager write-
back [26] canminimize the effect ofwrite traffic on the overall
system performance. This technique may also be applied to
writeback CDC to avoid the bursts of writebacks. For
simplicity,weonly considerwrite-throughCDCin this study.

The inclusion property [3] is enforced between the
CDC-cache and CDC-DRAM at the page level: Every
CDC-cache block is of the page size and may only cache
the content of a CDC-DRAM page. However, the inclusion
is not enforced between the CDC-DRAM and L2 cache.
Because the L2 cache is set associative but the CDC-DRAM
has a decoupled sector cache organization (it is similar to a
direct mapped cache when only one memory page is
mapped to each CDC-DRAM page), enforcing the inclusion
property may reduce the effective associativity of the
L2 cache and cause additional overhead. In general, not
enforcing inclusion complicates cache coherence implemen-
tation. We will discuss cache coherence next.

2.6 Cache Coherence in Multiprocessor
Environment

The CDC design can be used in multiprocessor systems
with large main memories as well, in which cache
coherence must be maintained. Because of the complexity,
we only discuss this issue for bus-based shared-memory
symmetric multiprocessors (SMPs) using write-back
L2 cache and the MESI write invalidation protocol [7]. We
assume each processor has one write-through CDC. In the
MESI protocol, every L2 block is in one of four states:
modified, exclusive, shared, and invalid. The local cache
controller may initialize and respond to three types of bus
transactions: bus read, bus read exclusive, and bus write-
back. For every read or read exclusive request put on the
bus by a remote processor, a local cache controller checks its
local cache and, if it finds a cached copy of the requested
block, the controller may generate response or transit the
state of the block or do both. The invalidation is performed
at the arrivals of read exclusive requests. The local
controller does not respond to a bus writeback unless the
writeback is a response to an earlier request sent by the
controller.

The CDC may cause complication when the local
controller receives a read request and there is no copy for
the requested data in L2 cache. The CDC may or may not
have a copy for that data and, thus, the CDC tag has to be
read and matched with the incoming address. The CDC
does not have to supply the data because the main memory
has a valid copy. However, if the CDC does have a copy, the
local controller must inform the requesting processor to put

the remote cache block in shared state (by asserting a
“shared” signal in the bus, for example) so that it will
receive an invalidation if the remote copy is changed.
Otherwise, the remote block can be put in exclusive state.
When a local controller receives a read exclusive request, it
must invalidate both copies in L2 cache and in CDC if they
are found there. If the data is in CDC-DRAM and is not
cached in CDC-cache, it is possible that the CDC checking is
not finished when the data is returned from the memory.
Because CDC-DRAM is at least as fast as the main memory,
such a case is rare. When it does happen, the local controller
may delay the completion of the transaction, for example,
by asserting an inhibit line in the bus (this may also happen
for L2 cache checking). Alternatively, the local controller
can assume the data is not cached in CDC. If, later, it turns
out the CDC does have a copy, the controller can invalidate
the CDC copy (in case the remote processor would change
the remote copy without notification). After all, there is no
change in cache coherence implementation related to the
L2 cache and the system bus.

CDC accesses may be interfered with by cache coherence
traffic. Because only CDC tags are needed for maintaining
cache coherence, a dedicated tag cache can be added to
reduce the interferences. When a CDC-DRAM page is read
for cache coherence, the tag portion is sent to this secondary
tag cache and may be reused there. There is no need to keep
the data part. Accesses from either the system bus or the
local CPU will be matched with both tag caches. The whole
page may be cached as the last entry in the CDC-cache
LRU list or in a single-entry dedicate buffer, so it will be
replaced quickly. The additional tag cache also speeds up
cache coherence processing and reduces potential delay in
responding to incoming requests.

3 SIMULATION AND EXPERIMENTAL SETUP

The simulation parameters are listed in Table 1. We use
SimpleScalar 3.0 [5] to simulate a 4-way issue, 2GHz
processor, and use SPEC CPU2000 benchmark [39] as the
workload. We add the simulations of the CDC, the MSHR
(miss information/status holding register), the writeback
buffer, and the DRAM main memory system to the original
simulator.

The latency of the L3 SRAM cache is estimated as
follows: We assume that the L3 SRAM cache is on a separate
die but in the same module with the CPU, using multichip
module technology. The cache is connected to the CPU
through a 1GHz, 32-byte wide internal bus (this is not as
aggressive as the IA-64 Itanium processor cartridge, which
has a 16-byte internal bus operating at the full CPU speed
[33]). The access latency is 9.12ns, calculated by the Cacti
model [37] (version 3.0, using 0:13�m technology). Syn-
chronizing to the bus cycle and adding two bus cycles for
bus delay, the total latency for transferring the first trunk is
24 CPU cycles. Adding three more bus cycles for transfer-
ring the following trunks, the total latency to fetch a 128-
byte L2 block from L3 cache is 30 CPU cycles. The L1 cache
latency calculated by the Cacti model is slightly higher than
1ns. We assume that an optimized cache implementation
can reduce the access time to 1ns.

ZHANG ET AL.: DESIGN AND OPTIMIZATION OF LARGE SIZE AND LOW OVERHEAD OFF-CHIP CACHES 847

The latency of the CDC-cache is estimated as follows:
Since the CDC-cache tag checking is decoupled from a
CDC-cache data access, the block index is known before
accessing the CDC-cache. Thus, the CDC-cache is accessed
like a direct mapped cache. The access time is estimated as
4.67ns by the Cacti model. However, the layout of the CDC-
cache may not be optimized as the Cacti model suggests.
Nevertheless, the Enhanced DRAM product has achieved
an on-chip SRAM access time of 10:6ns [11]. Thus, we set
the CDC-cache access time as 8ns (16 CPU cycles). The total
latency to fetch a 128-byte L2 block from the CDC-cache is
26 CPU cycles: 20 cycles for the first 32-byte data chunk
(after adding the bus delay) plus 6 cycles for three
additional trunks.

We simulate a DRAM main memory system that
supports split bus transactions and can schedule reads
prior to earlier writes. At the DRAM level, the close-page
mode and auto-precharge are used and the bank conflict is
negligible because of the large number of banks in today’s
DRAM. The memory parameters are based on an 800MHz
4-channel Direct Rambus DRAM system. Each channel has
1.6GB/s bandwidth and the total bandwidth is 6.4GB/s.

The initial DRAM latency is the delay from the time when
the processor sends the request to DRAM to the time when
it receives the first bit of data. The delay includes 20ns row
access time, 20ns column access time, and 10ns bus delay.
The total delay to fetch a 128-byte block from the main
memory is 70ns (140 processor cycles).

In the original SimpleScalar, virtualmemory addresses are
always used to access caches and memory, while, in most
systems, physical addresses are used to access L2/L3 caches
and themainmemorywith anOS support of virtual-physical
address translation. SimpleScalar locates text, data, and stack
segments to remote, disjoint virtual memory regions in the
virtual memory space. In its PISA architecture, for example,
text code starts at memory address 0x00400000, data starts at
memory address 0x10000000, and stack starts at 0x7ffc0000
(address decrementing with stack allocation). A real OS
would map those segments onto closer regions in physical
memory. Thus, cachemiss rates for a large, direct-mappedL2
or L3 cache (or even a cache of low associativity) may be
artificially higher in SimpleScalar. We added an OS-like
virtual-physical address translation that maps virtual mem-
orypages onto continuous “physical” memory pages by the

848 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

TABLE 1
Simulation Parameters

allocation order of those virtual memory pages. In our

simulation, only L1 instruction and data caches are

accessed by virtual addresses and L2 and L3 caches are

accessed by physical addresses. (SimpleScalar simulates

TLBs and can report TLB miss rates, but the TLBs do not

really translate virtual addresses.)
In our study, we use the precompiled SPEC CPU2000

binaries provided in [42]. We select 11 programs from the

benchmark suite that have significant memory stall times.

All programs are fast forwarded by four billion instructions

and are executed for the next one billion instructions.

4 PERFORMANCE RESULTS

In this section, we compare the performance of the

8MB SRAM L3 cache with the 32MB, 64MB, and

128MB CDCs in terms of cache hit rates and overall

performance (IPC) and measure the accuracy of the CDC

hit/miss predictor. To study the combination of CDC and

hardware prefetching, we also compare the performance of

CDC and SRAM L3 cache when a stream buffer exists.

4.1 Comparison of Cache Hit Rates

Table 2 gives the hit rates of the 8MB SRAM L3 cache

(SRAM-8M), the 32MB CDC (CDC-32M), the 64MB CDC

(CDC-64M), and the 128MB CDC (CDC-128M). The size of

the CDC-cache is 128KB (32 4-KB cache blocks). The overall

CDC hit rate is the ratio between CDC hits and L2 misses

and the CDC-cache hit rate is the ratio between CDC-cache

hits and L2 misses. Since a CDC-cache hit must be a CDC-

DRAM hit, the CDC-cache hit rate is always lower than or

equal to the CDC hit rate. The SRAM cache tends to have

either very high or very low hit rates. Its hit rates for two

programs, 300.twolf and 179.art, are close to 100 percent.

However, its hit rates for six other programs are less than

15 percent. The hit rate for 171.swim is close to zero. The

average hit rate is only 42 percent. This indicates that the

8MB SRAM cache is not large enough to hold the working
sets for many applications.

For most programs, the CDC-DRAM hit rates of the
CDCs are much higher than the hit rates of the SRAM
cache. This is not a surprise since the CDCs have much
larger capacities than the SRAM cache. The average CDC-
DRAM hit rates are 62.2 percent, 76.2 percent, and
85.1 percent for 32MB, 64MB, and 128MB CDC, respec-
tively. These values are higher than that of the SRAM
L3 cache. The CDC-cache hit rates of the 64MB CDC are
close to the respective CDC-DRAM hit rates for eight
programs, indicating that the CDC-cache can well exploit
the spatial locality in the CDC hit streams.

For six programs, the increase of the CDC size results in
dramatic increases of the CDC-DRAM and CDC-cache hit
rates. For example, the CDC-DRAM hit rate for program
171.swim jumps from 1.7 percent to 19.3 percent and then to
54.3 percent as the CDC size doubles from 32MB to 64MB
and then to 128MB.

4.2 Overall Performance Improvements

Fig. 4 compares the IPC (instructions per cycle) of the
SRAM L3 cache, the CDCs, as well as a base system with no
L3 cache (Base) for the 11 SPEC 2000 programs.

The CDC variants significantly outperform the SRAM
cache for nine programs. The speedup of the 64MB CDC
over the SRAM cache is up to 78 percent (183.equake) and
the average speedup is 25 percent. The average speedup of
the 32MB CDC and the 128MB CDC is 13 percent and
36 percent, respectively. As shown in Section 4.1, the CDCs
can hold a larger portion of the working sets of those
programs. The CDCs have positive speedups over the base
system for all programs.

The SRAM cache has slightly better performance than the
64MB CDC for only two programs, 300.twolf and 179.art. As
shown in Section 4.1, the working sets of these two programs
can fit into the 8MB SRAMcache. In general, the SRAMcache
is more suitable than CDCs for applications whose working

ZHANG ET AL.: DESIGN AND OPTIMIZATION OF LARGE SIZE AND LOW OVERHEAD OFF-CHIP CACHES 849

TABLE 2
L3 SRAM Cache Hit Rates and CDC Hit Rates for the 11 SPEC 2000 Programs

For CDCs, the “Overall” columns indicate the overall CDC hit rate, defined as the ratio between CDC hits and L2 misses. The “Cache” columns
indicate the CDC-cache hit rate, defined as the ratio between CDC-cache hits and L2 misses. The CDC-cache hit rate is always lower than or equal
to the CDC hit rate.

sets are larger than the on-chip cache sizes but smaller
than the off-chip SRAM cache size. However, as shown in
Fig. 4, many programs do not belong to this category.
Compared with the base system, the SRAM cache has
negative speedups for two programs, namely, 171.swim
and 172.mgrid, because of the additional miss penalty from
the L3 tag checking.

The overall performance of five programs (171.swim,
172.mgrid, 173.applu, 183.equake, and 189.lucas) is im-
proved significantly as the CDC size increases. For example,
the IPC of 171.swim increases by 13 percent and 40 percent
as the CDC size doubles from 32MB to 64MB and from
64MB to 128MB.

4.3 Performance of Other SPEC 2000 Programs and
SRAM L3 Variants

We present the IPC values of the SRAM L3 cache and the
64MB CDC for all the 26 SPEC2000 programs in Fig. 5.
Further analysis shows that the CDC achieves high CDC-
DRAM and CDC-cache hit rates for most of those
applications. Because the other 15 programs are not

memory-intensive, as indicated by the small performance
differences between SRAM and CDC, the performance
improvements for those programs are not significant. In
other words, those programs do not demand large caches
for high performance. Real-world applications are more
memory-intensive than SPEC2000 and we believe a higher
ratio of applications will demand large caches. Since the
CDC is much larger than the SRAM cache, it will fit a larger
range of applications and may achieve significant overall
performance improvement when compared with the SRAM
cache for real-world applications.

We also present the performance of set-associative
SRAM L3 caches in Fig. 6, with the direct-mapped one
and the 64MB CDC included for comparisons. The set-
associative ones have visible but only slight improvement
over the direct-mapped one on programs 176.gcc, 181.mcf,
and 168.wupwise. They also cause small but negative
impacts on programs 173.applu and 187.facerec. It is known
that set-associative caches may cause negative speedups
with imperfect replacement policies such as LRU [38], [45],
which is used in our experiment. The effect is the most

850 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

Fig. 4. IPC of the 8MB SRAM L3 cache (SRAM-8M), the 32MB CDC (CDC-32M), the 64MB CDC (CDC-64M), the 128MB CDC (CDC-128M), and a

base system with no L3 cache (Base) for the 11 SPEC 2000 programs.

Fig. 5. The IPC comparisons of the CDC and SRAM L3 cache for all 26 SPEC2000 programs.

visible on program 187.facerec. In general, set-associative
SRAM L3 caches achieve lower miss rates than the direct-
mapped one. However, they require longer access latency.

4.4 Predictor Performance

We use a GAg two-level adaptive predictor to predict CDC-
DRAM hits when the data cannot be found in the CDC-
cache. Table 3 gives the prediction accuracies (the number
of correct predictions divided by the total number of
predictions) of the CDC hit/miss predictor. The accuracies
range from 81.2 percent to 100 percent and the average
accuracies are 95.0 percent, 96.4 percent, and 97.2 percent
with the 32MB, 64MB, and 128MB CDCs, respectively. For
most programs, the prediction accuracies are consistent
with CDCs of different sizes.

To distinguish the effects of using the predictor to exploit
the CDC-DRAM locality, we compare the performance of
the CDC with two other CDC variants, basic-CDC and
perfect-CDC. With the basic-CDC, the data is always
fetched from the main memory when a CDC-cache miss
happens. With the perfect-CDC, it is magically known if the
data can be found in the CDC-DRAM and the data is

fetched from the main memory only when the data is not in
the CDC-DRAM. The difference between the CDC and the
perfect-CDC shows the effectiveness of the predictor. As
discussed in Section 2, if the data can be found in CDC-
DRAM but not in CDC-cache, it is still performance-
beneficial to access the CDC-DRAM instead of the main
memory. This is especially true for bandwidth-bound
applications. The difference between the perfect-CDC and
the basic-CDC shows this effect. In addition to providing a
larger capacity, the CDC-DRAM also allows the CDC-cache
to have a large block size for exploiting spatial locality.

Fig. 7 compares the overall performance of the CDC
variants with the same size of 64MB. The CDC outperforms
the basic-CDC significantly for programs that have high
CDC-DRAM hit rates but relatively low CDC-cache hit rates
(see Table 2). The two programs in which the SRAM cache
outperforms the CDC belong to this category because CDC-
DRAM can hold a working set if the SRAM L3 cache can
hold it. For example, 179.art is a program that the SRAM
cache achieves an almost 100 percent hit rate and the basic-
CDC achieves a 95.8 percent CDC-cache hit rate. Because it
is very memory-intensive and bandwidth-bound, the
program runs 26 percent slower on the basic-CDC than on
the SRAM-L3. With the CDC, those misses are directed to
CDC-DRAM, making the program run only 7 percent
slower than on the SRAM-L3. In addition, the CDC
performs as well as the perfect-CDC.

4.5 Evaluating CDC with Stream Buffer

To study the combination of CDC and hardware prefetching,
we have also investigated the performance of CDC with
stream buffer [20], a simple hardware prefetching scheme. A
streambuffer isusuallyputbetween theL1andL2cachesor is
used to replace the L2 cache. We incorporate a simple
implementation of stream buffer between the L1 and L2
caches in our simulation. The stream buffer activates
prefetching on sequential L1 miss addresses using FIFO
structure [20]. It has an allocation filter similar to the one
proposed in [29] in which a stream buffer is allocated only
when twomisses are found on two consecutive addresses. To

ZHANG ET AL.: DESIGN AND OPTIMIZATION OF LARGE SIZE AND LOW OVERHEAD OFF-CHIP CACHES 851

Fig. 6. The IPC comparison of direct-mapped, 2-way set-associative, 4-way set-associative, and 8-way set-associative SRAM L3 caches and the

CDC for selected SPEC2000 programs.

TABLE 3
The Accuracies of the CDC/Hit/Miss Predictor

with the 32MB, 64MB, and 128MB CDCs

prevent inaccurate prefetching requests from congesting the
L2, L3, ormemory bus, prefetching requests are sent out only
when the DRAM and L3 buses are idle (similar to the
configuration in [36]). To simplify our evaluation, we only
present results of the stream buffer with eight ways and a
depth of four, i.e., up to eight streams may be identified and
up to fourprefetching requestsmaybe issued for each stream.
The stream buffer uses LRU policy to reuse stream buffer
ways and uses a round-robin policy to determine the order in
sending out prefetching requests from multiple ways.

Fig. 8 shows the IPC of selected SPEC 2000 programs with
five configurations: a conventional memory system without
an L3 cache or a stream buffer (Base), a 64MB CDCwithout a
stream buffer (CDC-64M), a stream buffer without L3 cache
(Stream), the 8MB SRAM L3 cache with a stream buffer
(SRAM-8M stream), and theCDCwith a streambuffer (CDC-
64M stream), respectively. The first two results are given for
comparisons. The stream buffer improves the performance
for most programs (comparing Base with Stream), but
programs 181.mcf, 300.twolf, and 179.art need large caches
for significant performance improvement. The program
300.twolf has a negative speedup, which is caused by
inaccurate prefetchings. With the stream buffer present, the

CDC has significantly better performance than the SRAM L3
cache. Compared with the SRAM L3 cache, the average
speedup of using stream buffer with the SRAM L3 cache is
36 percent, while the average speedup of using the stream
buffer with CDC is 53 percent.

Fig. 8 also shows that a subset of the selected SPEC 2000
applications favors the use of a large cache, while another
subset favors the use of a stream buffer. Using Base (without
a stream buffer or an off-chip cache) as the reference point,
the stream buffer improves the performance of six programs
by more than 10 percent, while the CDC improves
performance on eight programs by more than 10 percent.
When the two approaches are compared, the stream buffer
loses to CDC for five applications (176.gcc, 181.mcf,
300.twolf, 179.art, and 187.facerec), beats CDC for two
programs (168.wupwise, 171.swim), and is comparable for
the other four programs (within 10 percent). Most im-
portantly, their performance improvements over Base can
add up, with the best evidence from the results of
173.applu, 183.equake, and 189.lucas.

We believe both approaches should be used, especially
for mixed applications. The above results show that the
stream buffer and the CDC are complementary to each

852 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

Fig. 7. The comparison of 64MB CDC variants.

Fig. 8. The comparison of stream buffer only, the 8MB SRAM L3 with stream buffer, and the CDC with stream buffer.

other. Both the CDC-cache and stream buffer exploit spatial
locality in memory references, but in different ways. Upon
an L2 cache miss, the CDC-cache in our configuration will
fetch 32 128-byte blocks surrounding the demanded block.
In other words, the CDC-cache exploits the spatial locality
existing in large regions (4KB in our configuration) and is
effective when data blocks in those regions have been
buffered into the CDC-DRAM. The stream buffer works
when cache misses happen on sequential or stride memory
addresses. It exploits spatial locality only in those particular
forms, but requires a small amount of data storage.

5 RELATED WORK

Cached DRAM is an existing technology that exploits the
locality in DRAM access streams, taking advantage of the
huge internal bandwidth inside the DRAM. Regarding the
cached DRAM design and evaluation, interested readers
may refer to [15], [14], [16], [23], [44], [50]. Enhanced DRAM
and Virtual Channel SDRAM are commercial products in
this category. Some recent studies show that the spatial
locality in cache miss streams can be well exploited on the
DRAM side [8], [49], [27]. In an early study of using cached
DRAM as secondary cache [19], the cache block contains
only 16 4-bit words. With such a small block size, the SRAM
cache in the cached DRAM cannot exploit the spatial
locality in the cache miss streams well.

Conventionally, cached DRAM is used as the main
memory and connected to the processor through a low
bandwidth memory bus. The long bus delay makes the
cached DRAM less effective in reducing the overall memory
access latency. In our study, the CDC is a special cached
DRAM used as another level of cache on the processor side.
Its performance potential is not limited by the memory bus.
In addition, it can reduce the memory bus traffic.

IRAM (Intelligent RAM) [30] combines processor and
DRAM onto the same chip. Although IRAM has the
advantages of low latency DRAM accesses and high energy
efficiency, it causes a slowdown of the processor speed due
to the change of fabrication. Saulsbury et al. [34] study a
processor/memory integration that uses a small size, large
block SRAM cache with an on-chip DRAM. The on-chip
DRAM is used as the main memory and the cache structure
is similar to that of cached DRAM. Wilson and Olukotun
find that the performance of an on-chip (embedded) DRAM
cache is comparable to that of an on-chip SRAM cache [43].
The on-chip DRAM has also been studied for chip multi-
processors [21], [46]. In recent years, studies on VIRAM
have shown that vector processing can be combined into
IRAM to achieve significant speedup for SIMD applications
whose performance is limited by memory system [24], [25],
[12]. The DIVA processor [10] incorporates data processing
ability into DRAM on a single chip. Micron Technology Inc.
has produced a prototype chip called Yukon [22] that
integrates DRAM and an array of small processing
elements. In general, processors with on-chip DRAM are
targeted for embedded applications that highlight the
considerations of power and cost rather than performance.
In our study, the CDC is used with high-performance
processors that have large on-chip caches.

The approach of using a conventional DRAM as an off-
chip L3 cache has been used in high-performance graphic
systems [13], [6] and in hardware compressed main memory
[1], [40]. In high-performance graphic systems, the bus
bandwidth is the major performance bottleneck. By using a
large DRAM cache, data can be kept in the local memory of
the graphics system. The performance is insensitive to the
DRAM speed. In the hardware compressed main memory,
the DRAM L3 cache buffers uncompressed data so that the
processor candirectly use thedata. For those applications, the
DRAM has the same access latency as the conventional
DRAM. In contrast, the CDChas a shorter access latency than
the conventional DRAM.

Latency tolerant techniques such as speculative execu-
tion and prefetching [2], [4], [28], [27] are different
approaches to reducing the memory stall time. The CDC
technique not only reduces the memory latency, but may
also decrease the memory traffic.

Recently, the IBM Power4 processor used DRAM as an
off-chip L3 cache. The Power4 [18] has dual processor cores
on a single chip, 128KB instruction cache, 64KB data cache,
about 1.5MB unified L2 cache, and a 32MB off-chip L3 cache
constructed by eDRAM (embedded DRAM). The L3 cache
is 8-way set-associative organized in 512-byte blocks, with
coherence maintained on 128-byte sectors for compatibility
with the L2 cache. (The L2 cache is 8-way set-associative
organized in 128-byte blocks.) Although the L3 data array is
stored off-chip, the L3 tag array and cache controller are on
the processor chip. Each L3 cache block requires 20 bits for
storing its address tag (for the standalone configuration of
the L3 cache) and each of the four sectors requires 3 bits for
maintaining cache coherence. Thus, each block requires
32 bits for address tag and coherence bits. The tag array for
the 32MB L3 cache (64K 512-byte blocks) requires 256KB
SRAM storage on the processor chip. In our design, the tag
array is stored off-chip with the data array in DRAM and a
tag cache is used to facilitate tag comparisons. The on-chip
tag cache is very small. In contrast, the on-chip tag array in
the Power4 design is large and must increase proportio-
nately with the L3 cache. In addition, a large L3 tag array
requires a relatively long tag comparison time, increasing
the miss penalty for misses to main memory.

The approach of attaching a fast, small device to a slow
device of a similar media has also appeared in operating
systems and I/O areas. For example, the DCD (Disk
Caching Disk [17]) uses a small disk region to buffer the
on-the-fly data. In general, there exists a high-bandwidth
connection between the fast device and slow device which
can be used for transferring large chunks of data from the
slow device to the fast device.

6 CONCLUSION

We have presented the design and performance evaluation
by constructing CDC (cached DRAM cache) as the L3 off-
chip cache, which is intended for high-end server systems.
We show that the CDC effectively addresses two major
concerns of the SRAM off-chip cache: the relatively small
size and the miss overhead. The CDC is close to a DRAM
cache in terms of capacity and close to an SRAM cache in
terms of speed. More applications can benefit from the CDC

ZHANG ET AL.: DESIGN AND OPTIMIZATION OF LARGE SIZE AND LOW OVERHEAD OFF-CHIP CACHES 853

than from the SRAM off-chip cache and no applications will
lose performance due to the existence of CDC.

Contemporary computers tend to have large on-chip
caches and gigabytes of main memories. An even larger off-
chip cache will help memory-intensive applications. How-
ever, both access speed and storage size gaps between the
on-chip caches and the main memory continue to widen.
We believe that the low density and the high cost of SRAM
will eventually limit its usage as off-chip caches. The CDC
plays a unique role in addressing the speed and size gaps.
Because the CDC can be much larger than the on-chip
caches, it balances the accesses between the on-chip caches
and the main memory. In contrast to off-chip caches
constructed by DRAM such as that used in the IBM Power4
processor, the CDC requires very little on-chip space, can
avoid overheads for main memory accesses, and can better
utilize the spatial locality in cache miss streams.

Additional research can be done based on the CDC
design framework presented in this paper to further
improve its performance. One approach is to put data with
spatial locality into the CDC instead of the on-chip caches,
improving the efficiency of the on-chip caches for data with
only temporal locality (such as pointer variables) when the
on-chip caches cannot hold data of both locality types.
Another approach is to use aggressive prefetching techni-
ques with CDC. Data can be prefetched from the CDC-
DRAM to the CDC-cache or to the on-chip caches, utilizing
the high bandwidth inside the CDC and the one between
the CDC and the processor. As future work, we will
investigate those approaches.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their insightful and constructive comments. They also
appreciate Bill Bynum for reading the paper and making
suggestions and corrections. The work has been supported
in part by the US National Science Foundation under grants
CCR-9812187, CCR-0098055, and ACI-0129883.

REFERENCES

[1] B. Abali, H. Franke, X. Shen, D.E. Poff, and T.B. Smith,
“Performance of Hardware Compressed Main Memory,” Proc.
Seventh Int’l Symp. High-Performance Computer Architecture, pp. 73-
81, 2001.

[2] M.M. Annavaram, J.M. Patel, and E.S. Davidson, “Data Prefetch-
ing by Dependence Graph Precomputation,” Proc. 28th Ann. Int’l
Symp. Computer Architecture, pp. 52-61, 2001.

[3] J.-L. Baer andW.-H. Wang, “On the Inclusion Properties for Multi-
Level Cache Hierarchies,” Proc. 15th Ann. Int’l Symp. Computer
Architecture, pp. 73-80, 1988.

[4] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Dyna-
mically Allocating Processor Resources between Nearby and
Distant ILP,” Proc. 28th Ann. Int’l Symp. Computer Architecture,
pp. 26-37, 2001.

[5] D. Burger, “System-Level Implications of Processor-Memory
Integration,” Technical Report CS-TR-1997-1349, Univ. of Wiscon-
sin, Madison, June 1997.

[6] M. Cox, N. Bhandari, and M. Shantz, “Multi-Level Texture
Caching for 3D Graphics Hardware,” Proc. 25th Ann. Int’l Symp.
Computer Architecture, pp. 86-97, 1998.

[7] D. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. San Mateo, Calif.: Morgan Kauf-
mann, 1999.

[8] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A Performance
Comparison of Contemporary DRAM Architectures,” Proc. 26th
Ann. Int’l Symp. Computer Architecture, pp. 222-233, 1999.

[9] Z. Cvetanovic and D.D. Donaldson, “AlphaServer 4100 Perfor-
mance Characterization,” Digital Technical J., vol. 8, no. 4, pp. 3-20,
1996.

[10] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J.
Granacki, J. Shin, C. Chen, C.W. Kang, I. Kim, and G. Daglikoca,
“The Architecture of the DIVA Processing-in-Memory Chip,”
Proc. 16th Int’l Conf. Supercomputing, pp. 14-25, 2002.

[11] Enhanced Memory Systems Inc., 64 Mit ESDRAM Components,
Product Brief r1.8, 2000.

[12] B. Gaeke, P. Husbands, X. Li, L. Oliker, K. Yelick, and R. Biswas,
“Memory-Intensive Benchmarks: IRAM vs. Cache-Based Ma-
chines,” Proc. 16th Int’l Parallel and Distributed Processing Symp.,
pp. 30-30, 2002.

[13] Z.S. Hakura and A. Gupta, “The Design and Analysis of a Cache
Architecture for Texture Mapping,” Proc. 24th Ann. Int’l Symp.
Computer Architecture, pp. 108-120, 1997.

[14] C.A. Hart, “CDRAM in a Unified Memory Architecture,” Proc.
CompCon ’94, pp. 261-266, 1994.

[15] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima, “The
Cache DRAM Architecture: A DRAM with an On-Chip Cache
Memory,” IEEE Micro, vol. 10, no. 2, pp. 14-25, Apr. 1990.

[16] W.-C. Hsu and J.E. Smith, “Performance of Cached DRAM
Organizations in Vector Supercomputers,” Proc. 20th Ann. Int’l
Symp. Computer Architecture, pp. 327-336, 1993.

[17] Y. Hu and Q. Yang, “DCD-Disk Caching Disk: A New Approach
for Boosting I/O Performance,” Proc. 23rd Ann. Int’l Symp.
Computer Architecture, pp. 169-178, 1996.

[18] “POWER4 System Architecture,”white paper, IBM, Oct. 2001.
[19] F. Jones et al., “A New Era of Fast Dynamic RAMs,” IEEE

Spectrum, pp. 43-49, Oct. 1992.
[20] N.P. Jouppi, “Improving Direct-Mapped Cache Performance by

the Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” Proc. 17th Ann. Int’l Symp. Computer Architecture, pp. 364-
373, 1990.

[21] P. Keltcher, S. Richardson, and S. Siu, “An Equal Area
Comparison of Embedded DRAM and SRAM Memory Architec-
tures for a Chip Multiprocessor,” Technical Report HPL-2000-53,
HP Laboratories, Palo Alto, Calif., Apr. 2000.

[22] G. Kirsch, “Active Memory: Micron’s Yukon,” Proc. Int’l Parallel
and Distributd Processing Symp., p. 89b, 2003.

[23] R.P. Koganti and G. Kedem, “WCDRAM: A Fully Associative
Integrated Cached-DRAM with Wide Cache Lines,” Proc. Fourth
IEEE Workshop Architecture and Implementation of High Performance
Comm. Systems, 1997.

[24] C. Kozyrakis, “A Media-Enhanced Vector Architecture for
Embedded Memory Systems,” Technical Report CSD-99-1059,
Univ. of California, Berkeley, 1999.

[25] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S.
Pope, D. Jones, and D. Patterson, “Vector IRAM: A Media-
Enhanced Vector Processor with Embedded DRAM,” Proc. Hot
Chips 12, 2000.

[26] H.-H. Lee, G. Tyson, and M. Farrens, “Eager Writeback—A
Technique for Improving Bandwidth Utilization,” Proc 33rd IEEE/
ACM Int’l Symp. Microarchitecture, pp. 11-21, 2000.

[27] W. Lin, S. Reinhardt, and D. Burger, “Reducing DRAM Latencies
with an Integrated Memory Hierarchy Design,” Proc. Seventh Int’l
Symp. High-Performance Computer Architecture, pp. 301-312, 2001.

[28] C.-K. Luk, “Tolerating Memory Latency through Software-Con-
trolled Pre-Execution in Simultaneous Multithreading Proces-
sors,” Proc. 28th Ann. Int’l Symp. Computer Architecture, pp. 40-51,
2001.

[29] S. Palacharla and R.E. Kessler, “Evaluating Stream Buffers as a
Secondary Cache Replacement,” Proc. 21st Ann. Int’l Symp.
Computer Architecture, pp. 24-33, 1994.

[30] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C.
Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent
RAM,” IEEE Micro, pp. 34-44, Mar./Apr. 1997.

[31] J.-K. Peir, W.W. Hsu, and A.J. Smith, “Functional Implementation
Techniques for CPU Cache Memories,” IEEE Trans. Computers,
vol. 48, no. 2, pp. 100-110, Feb. 1999.

[32] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai, “Bloom Filtering
Cache Misses for Accurate Data Speculation and Prefetching,”
Proc. 16th Int’l Conf. Supercomputing (ICS-02), pp. 189-198, 2002.

854 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 7, JULY 2004

[33] W.A. Samaras, N. Cherukuri, and S. Venkataraman, “The IA-64
Itanium Processor Cartridge,” IEEE Micro, vol. 21, no. 1, pp. 82-89,
Jan./Feb. 2001.

[34] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the Memory
Wall: The Case for Processor/Memory Integration,” Proc. 23rd
Ann. Int’l Symp. Computer Architecure, pp. 90-103, 1996.

[35] A. Seznec, “Decoupled Sectored Caches: Conciliating Low Tag
Implementation Cost and Low Miss Ratio,” Proc. 21st Ann. Int’l
Symp. Computer Architecture, pp. 384-393, 1994.

[36] T. Sherwood and B. Calder, “A Decoupled Predictor-Directed
Stream Prefetching Architecture,” IEEE Trans. Computers, vol. 52,
no. 5, Mar. 2003.

[37] P. Shivakumar and N.P. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model,” technical report, COMPAQ
Western Research Lab, Aug. 2001.

[38] J.E. Smith and J.R. Goodman, “A Study of Instruction Cache
Organization and Replacement Policies,” Proc. 10th Ann. Int’l
Symp. Computer Architecture, pp. 132-137, 1983.

[39] Standard Performance Evaluation Corp., http://www.spec.org,
2004.

[40] R.B. Tremaine, T.B. Smith, M. Wazlowski, D. Har, K.-K. Mak, and
S. Arramreddy, “Pinnacle: IBM MXT in a Memory Controller
Chip,” IEEE Micro, vol. 21, no. 2, pp. 56-68, Mar/Apr. 2001.

[41] G. Tyson, M. Farrens, J. Matthews, and A.R. Pleszkun, “A
Modified Approach to Data Cache Management,” Proc. 28th
Ann. Int’l Symp. Microarchitecture, pp. 93-103, 1995.

[42] C. Weaver http://www.simplescalar.org/spec2000.html,
SPEC2000 binaries, 2004.

[43] K.M. Wilson and K. Olukotun, “Designing High Bandwidth On-
Chip Caches,” Proc. 24th Ann. Int’l Symp. Computer Architecture,
pp. 121-132, 1997.

[44] W. Wong and J.-L. Baer, “DRAM On-Chip Caching,” Technical
Report UW CSE 97-03-04, Univ. of Washington, Feb. 1997.

[45] W.A. Wong and J.-L. Baer, “Modified LRU Policies for Improving
Second-Level Cache Behavior,” Proc. Sixth Int’l Symp. High-
Performance Computer Architecture, pp. 49-60, 2000.

[46] T. Yamauchi, L. Hammond, and K. Olukotun, “A Single Chip
Multiprocessor Integrated with High Density DRAM,” Technical
Report CSL-TR-97-731, Computer Systems Laboratory, Stanford
Univ., Aug. 1997.

[47] T.-Y. Yeh and Y.N. Patt, “Alternative Implementations of Two-
Level Adaptive Branch Prediction,” Proc. 19th Ann. Int’l Symp.
Computer Architecture, pp. 124-134, 1992.

[48] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation
Techniques for Improving Load Related Instruction Scheduling,”
Proc. 26th Ann. Int’l Symp. Computer Architecture, pp. 42-53, 1999.

[49] Z. Zhang, Z. Zhu, and X. Zhang, “A Permutation-Based Page
Interleaving Scheme to Reduce Row-Buffer Conflicts and Exploit
Data Locality,” Proc. 33rd IEEE/ACM Int’l Symp. Microarchitecture,
pp. 32-41, 2000.

[50] Z. Zhang, Z. Zhu, and X. Zhang, “Cached DRAM: A Simple and
Effective Technique for Memory Access Latency Reduction on ILP
Processors,” IEEE Micro, vol. 21, no. 4, pp. 22-32, July/Aug. 2001.

[51] Z. Zhu, Z. Zhang, and X. Zhang, “Fine-Grain Priority Scheduling
on Multi-Channel Memory Systems,” Proc. Eighth Int’l Symp. High-
Performance Computer Architecture, pp. 107-116, 2002.

Zhao Zhang received the BS degree and MS
degrees in computer science from Huazhong
University of Science of Technology, China, in
1991 and 1994, respectively, and the PhD
degree in computer science from the College
of William and Mary in 2002. He is an assistant
professor of computer engineering at Iowa State
University. His research interests include com-
puter architecture, and parallel and distributed
systems. He is a member of the IEEE and ACM.

Zhichun Zhu received the BS degree in
computer science from Huazhong University of
Science of Technology, China, in 1992, and the
PhD degree in computer science from the
College of William and Mary in 2003. She is an
assistant professor of electrical and computer
engineering at the University of Illinois at
Chicago. Her research interests include compu-
ter architecture, performance evaluation, and
low-power designs. She is a member of the
IEEE and ACM.

Xiaodong Zhang received the BS degree in
electrical engineering from Beijing Polytechnic
University in 1982 and the MS and PhD degrees
in computer science from the University of
Colorado at Boulder in 1985 and 1989, respec-
tively. He is the Lettie Pate Evans Professor of
Computer Science and the Department Chair at
the College of William and Mary. He was the
program director of Advanced Computational
Research at the US National Science Founda-

tion from 2001 to 2003. He is a past editorial board member of the IEEE
Transactions on Parallel and Distributed Systems and currently serves
as an associate editor of IEEE Micro. His research interests are in the
areas of parallel and distributed computing and systems and computer
architecture. He is a senior member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: DESIGN AND OPTIMIZATION OF LARGE SIZE AND LOW OVERHEAD OFF-CHIP CACHES 855

