
1

1
Adapted from UC Berkeley CS252 S01

Lecture 17: Reducing Cache Miss
Penalty and Reducing Cache Hit
Time

Hardware prefetching and stream
buffer, software prefetching,
virtually indexed cache,

2

Reducing Misses by Hardware Prefetching
of Instructions & Data

E.g., Instruction Prefetching
Alpha 21064 fetches 2 blocks on a miss
Extra block placed in “stream buffer”
On miss check stream buffer

Works with data blocks too:
Jouppi [1990] 1 data stream buffer got 25% misses from 4KB
cache; 4 streams got 43%
Palacharla & Kessler [1994] for scientific programs for 8
streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

Prefetching relies on having extra memory bandwidth
that can be used without penalty

3

Stream Buffer Diagram

DataTags

Direct
mapped
cache

one cache block of data
one cache block of data
one cache block of data
one cache block of data

Stream
buffer

tag and
comp
tag
tag
tag

head

+1

a
a
a
a

from processor to processor

tail

Shown with a single stream buffer
(way); multiple ways and filter may
be used

next level of cache

Source: Jouppi
ICS’90

4

Victim Buffer Diagram

DataTags
Direct
mapped
cache

one cache block of data
one cache block of data
one cache block of data
one cache block of data

tag and comp
tag and comp
tag and comp
tag and comp

from proc

to proc

Proposed in
the same
paper: Jouppi
ICS’90

next level of cache

Victim cache, fully
associative

5

Reducing Misses by Software Prefetching
Data

Data Prefetch
Load data into register (HP PA-RISC loads)
Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
Special prefetching instructions cannot cause faults; a form of
speculative execution

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.

Can be incorrect. Frees HW/SW to guess!
Issuing Prefetch Instructions takes time

Is cost of prefetch issues < savings in reduced misses?
Higher superscalar reduces difficulty of issue bandwidth

6

Improving Cache Performance
3. Reducing miss penalty or

miss rates via parallelism
Non-blocking caches
Hardware prefetching
Compiler prefetching

4. Reducing cache hit time
Small and simple
caches
Avoiding address
translation
Pipelined cache access
Trace caches

1. Reducing miss rates
Larger block size
larger cache size
higher associativity
victim caches
way prediction and
Pseudoassociativity
compiler optimization

2. Reducing miss penalty
Multilevel caches
critical word first
read miss first
merging write buffers

2

7

Fast hits by Avoiding Address
Translation

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap cache access
with VA translation:

requires cache index to
remain invariant

across translation

VA
Tags

L2 $

8

Fast hits by Avoiding Address Translation
Send virtual address to cache? Called Virtually Addressed
Cache or just Virtual Cache vs. Physical Cache

Every time process is switched logically must flush the cache;
otherwise get false hits

Cost is time to flush + “compulsory” misses from empty cache
Dealing with aliases (sometimes called synonyms);
Two different virtual addresses map to same physical address
I/O use physical addresses and must interact with cache, so need
virtual address

Antialiasing solutions
HW guarantees covers index field & direct mapped, they must be
unique; called page coloring

Solution to cache flush
Add process identifier tag that identifies process as well as address
within process: can’t get a hit if wrong process

9

Fast Cache Hits by Avoiding
Translation: Process ID impact
Black is uniprocess
Light Gray is multiprocess
when flush cache
Dark Gray is multiprocess
when use Process ID tag
Y axis: Miss Rates up to
20%
X axis: Cache size from 2
KB to 1024 KB

10

Fast Cache Hits by Avoiding Translation:
Index with Physical Portion of Address

If a direct mapped cache is no larger than a page, then
the index is physical part of address
can start tag access in parallel with translation so that
can compare to physical tag

Limits cache to page size: what if want bigger caches and
uses same trick?

Higher associativity moves barrier to right
Page coloring

Compared with virtual cache used with page coloring?

Page Address Page Offset

Address Tag Index Block Offset

0

0111231

11

Pipelined Cache Access
For multi-issue, cache bandwidth affects

effective cache hit time
Queueing delay adds up if cache does not
have enough read/write ports

Pipelined cache accesses: reduce cache
cycle time and improve bandwidth

Cache organization for high bandwidth
Duplicate cache
Banked cache
Double clocked cache

12

Pipelined Cache Access
Alpha 21264 Data cache design

The cache is 64KB, 2-way associative;
cannot be accessed within one-cycle
One-cycle used for address transfer and
data transfer, pipelined with data array
access
Cache clock frequency doubles processor
frequency; wave pipelined to achieve the
speed

3

13

Trace Cache
Trace: a dynamic sequence of
instructions including taken branches

Traces are dynamically constructed by
processor hardware and frequently
used traces are stored into trace
cache

Example: Intel P4 processor, storing
about 12K mops

14

Summary of Reducing Cache Hit Time
Small and simple caches: used for L1
inst/data cache

Most L1 caches today are small but set-
associative and pipelined (emphasizing
throughput?)
Used with large L2 cache or L2/L3 caches

Avoiding address translation during
indexing cache

Avoid additional delay for TLB access

15

What is the Impact of What
We’ve Learned About Caches?

1960-1985: Speed
= ƒ(no. operations)
1990

Pipelined
Execution &
Fast Clock Rate
Out-of-Order
execution
Superscalar
Instruction Issue

1998: Speed =
ƒ(non-cached memory accesses)
What does this mean for

Compilers? Operating Systems? Algorithms?
Data Structures?

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

16

Cache Optimization Summary
Technique MP MR HT Complexity
Multilevel cache + 2
Critical work first + 2
Read first + 1
Merging write buffer + 1
Victim caches + + 2
Larger block - + 0
Larger cache + - 1
Higher associativity + - 1
Way prediction + 2
Pseudoassociative + 2
Compiler techniques + 0

m
is

s
ra

te
m

is
s

pe
na

lty

17

Cache Optimization Summary

Technique MP MR HT Complexity
Nonblocking caches + 3
Hardware prefetching + 2/3
Software prefetching + + 3
Small and simple cache - + 0
Avoiding address translation + 2
Pipeline cache access + 1
Trace cache + 3hi

t t
im

e
m

is
s

pe
na

lty

