Shared Memory SMP and Cache Coherence (cont)

Review: Snoopy Cache Protocol

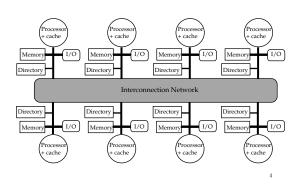
Write Invalidate Protocol:

- Multiple readers, single writer
- Write to shared data: an invalidate is sent to all caches which snoop and *invalidate* any copies
- Read Miss: • Write-through: memory is always up-to-date Write-back: snoop in caches to find most recent copy
- Write Broadcast Protocol (typically write through):
- Write serialization: bus serializes requests! Bus is single point of arbitration
- Good for a small number of processors; how about 16 or more?

Larger MPs

Separate Memory per Processor

from UCB CS252 S01. Copyright 2001 U

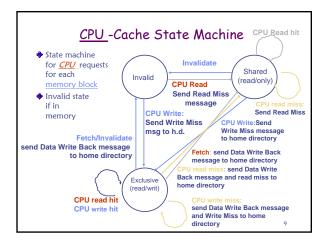

- ♦ Local or Remote access via memory controller
- 1 Cache Coherency solution: non-cached pages
- Alternative: directory per cache that tracks state of every block in every cache
 - Which caches have a copies of block, dirty vs. clean, ...
- Info per memory block vs. per cache block?
 - PLUS: In memory => simpler protocol (centralized/one location) MINUS: In memory => directory is f(memory size) vs. f(cache size)
- Prevent directory as bottleneck?
- distribute directory entries with memory, each keeping track of which Procs have copies of their blocks

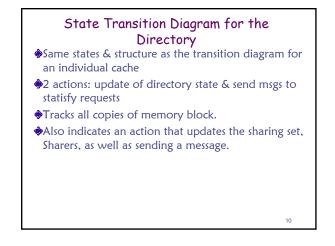
Directory Protocol

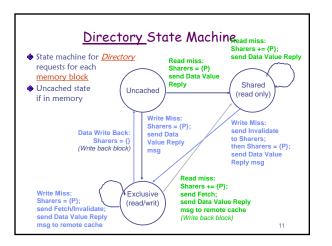
Similar to Snoopy Protocol: Three states

- Shared: ≥ 1 processors have data, memory up-to-date
- Uncached (no processor hasit; not valid in any cache)
- Exclusive: 1 processor (owner) has data; memory out-of-date
- In addition to cache state, must track which processors have
- data when in the shared state (usually bit vector, 1 if processor has copy)
- Keep it simple(r):
 - Writes to non-exclusive data => write miss
 - Processor blocks until access completes
 - Assume messages received
 - and acted upon in order sent

Distributed Directory MPs


No bus and don't want to broadcast:


- interconnect no longer single arbitration point
- all messages have explicit responses
- Terms: typically 3 processors involved
 - Local node where a request originates
 - Home node where the memory location of an address resides
 - Remote node has a copy of a cache block, whether exclusive or shared
- Example messages on next slide: P = processor number, A = address


Directory Protocol Messages			
Message type	Source	Destination	Msg Content
Read miss	Local cache	Home directory	P, A
 Processor P reads data at address A; make P a read sharer and arrange to send data back 			
Write miss	Local cache	Home directory	P, A
 Processor P writes data at address A; make P the exclusive owner and arrange to send data back 			
Invalidate	Home directory	Remote caches	A
Invalidate a shared copy at address A.			
Fetch	Home directory	Remote cache	A
Fetch the block at address A and send it to its home directory			
Fetch/Invalidate	Home directory	Remote cache	A
 Fetch the block at address A and send it to its home directory; invalidate the block in the cache 			
Data value reply	Home directory	Local cache	Data
 Return a data value from the home memory (read miss response) 			
Data write-back	Remote cache	Home directory	A, Data
 Write-back a data value for address A (invalidate response) 			
			7

State Transition Diagram for an Individual Cache Block in a Directory Based System States identical to snoopy case; transactions very similar. Transitions caused by read misses, write misses, invalidates, data fetch requests Generates read miss & write miss msg to home directory. Write misses that were broadcast on the bus for snooping => explicit invalidate & data fetch requests. Note: on a write, a cache block is bigger, so need to read the full cache block

0

