
1

1

Shared Memory SMP and Cache
Coherence (cont)

Adapted from UCB CS252 S01, Copyright 2001 USB
2

Review: Snoopy Cache Protocol
Write Invalidate Protocol:

Multiple readers, single writer
Write to shared data: an invalidate is sent to all caches
which snoop and invalidate any copies
Read Miss:

Write-through: memory is always up-to-date
Write-back: snoop in caches to find most recent copy

Write Broadcast Protocol (typically write through):
Write serialization: bus serializes requests!

Bus is single point of arbitration

Good for a small number of processors; how about
16 or more?

3

Larger MPs
Separate Memory per Processor
Local or Remote access via memory controller
1 Cache Coherency solution: non-cached pages
Alternative: directory per cache that tracks state of every
block in every cache

Which caches have a copies of block, dirty vs. clean, ...

Info per memory block vs. per cache block?
PLUS: In memory => simpler protocol (centralized/one location)
MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

Prevent directory as bottleneck?
distribute directory entries with memory, each keeping track
of which Procs have copies of their blocks

4

Distributed Directory MPs

Interconnection Network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

5

Directory Protocol
Similar to Snoopy Protocol: Three states

Shared: ≥ 1 processors have data, memory up-to-date
Uncached (no processor hasit; not valid in any cache)
Exclusive: 1 processor (owner) has data;

memory out-of-date

In addition to cache state, must track which processors have
data when in the shared state (usually bit vector, 1 if
processor has copy)
Keep it simple(r):

Writes to non-exclusive data
=> write miss
Processor blocks until access completes
Assume messages received
and acted upon in order sent

6

Directory Protocol
No bus and don’t want to broadcast:

interconnect no longer single arbitration point
all messages have explicit responses

Terms: typically 3 processors involved
Local node where a request originates
Home node where the memory location
of an address resides
Remote node has a copy of a cache
block, whether exclusive or shared

Example messages on next slide:
P = processor number, A = address

2

7

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory; invalidate
the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

8

State Transition Diagram for an Individual
Cache Block in a Directory Based System

States identical to snoopy case; transactions very
similar.
Transitions caused by read misses, write misses,
invalidates, data fetch requests
Generates read miss & write miss msg to home
directory.
Write misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch
requests.
Note: on a write, a cache block is bigger, so need to
read the full cache block

9

CPU -Cache State Machine
State machine
for CPU requests
for each
memory block
Invalid state
if in
memory

Fetch/Invalidate
send Data Write Back message

to home directory

Invalidate

Invalid
Shared

(read/only)

Exclusive
(read/writ)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

CPU read miss: send Data Write
Back message and read miss to
home directory

10

State Transition Diagram for the
Directory

Same states & structure as the transition diagram for
an individual cache
2 actions: update of directory state & send msgs to
statisfy requests
Tracks all copies of memory block.
Also indicates an action that updates the sharing set,
Sharers, as well as sending a message.

11

Directory State Machine
State machine for Directory
requests for each
memory block
Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/writ)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

