
Superscalar and Superpipelined Microprocessor Design and

Simulation� A Senior Project

Victor Lee� Nghia Lam� Feng Xiao� and Arun K� Somani �

Department of Electrical Engineering

University of Washington� FT���

Seattle� WA �����

Tele	
���
 ��������

email	 somani�ee�washington�edu

Keywords� Processor Design� Systematic Design Methods� Work and Design Con�

cepts� Complex Instruction Set� Superscalar� Superpipeline� Simulation of systems� Class

Project�

Abstract An undergraduate senior project to design and simulate a modern Central

Processing Unit �CPU� with a mix of simple and complex instruction set using a systematic

design method is presented� The main objectives of the project are to accustom the students

with modern design methods as well as to help the students gain practical experience in

designing digital computers� Findings and suggestions on the use of modern work and design

concepts in a group project environment are discussed�

�Arun K� Somani is also a faculty member in Department of Computer Science and Engineering�

�

� Introduction

This paper presents a senior study project in the Department of Electrical Engineering at the

University of Washington� This project is the work of three senior undergraduate students

in the department� The goals of the project were twofold� First� it allowed the students to

exercise their knowledge in computer architecture and hardware design� Second� it provided

them with practical work experience involving team work and project management� One of

the two main objectives of this paper is to present the �ndings of how well these concepts

work in the group project environment� The second objective of this paper is to present the

modern design approach that was used in the project�

The scope of the project was to design and simulate a realistic and modern Central

Processing Unit �CPU� including both simple and complex instructions for a microcomputer

system in a ten�week quarter time frame� This setting provides several challenges� First� a

ten�week period is a very short time to design and simulate a complete processor� Therefore

decisions had to be made to simplify the design to keep the task achievable� Second� attempts

to provide realistic and modern architecture add extra burdens to the heavy work�load of

the project� Third� division of work among team members and following an agreed�upon

aggressive time table was a real struggle as well�

After consulting with the project advisor� Dr� Arun K� Somani� the design team decided

that the only way to complete the project successfully was to follow a modern design ap�

proach� After de�ning the architectural goals� the team developed a very aggressive and

tight project schedule �see Appendix A�� In addition� coding and documentation standards

were introduced to facilitate communication among team members� Moreover� many design

and work concepts taken from previous projects and�or work experience were applied in this

project� Some of these concepts worked well in this environment and some of them did not�

As the project progressed� the team encountered many additional problems� For example�

one team member had to leave for a job in the middle of the quarter� The team had to

be restructured and the project schedule had to be rede�ned� The restructured schedule

turned out to be even more aggressive� Fortunately� the 	exible nature of the modern design

approach helped the team recover from the drawbacks and enabled the team to �nish the

project successfully on time�

Our goal as the authors of this paper is to summarize our experiences in applying many

modern design and work concepts as well as to discuss the steps we took to resolve problems

in a team work environment�

We used several modern design and work concepts while doing this project� The main

design and work concepts used included the following�

�� Top�down architecture design and bottom�up implementation process�

� Modularized approach for complicated system design�

�� Coding and documentation standard�

�� Version control�

� Cooperative learning environment to exchange ideas and facilitate development�

The following hardware and software topics were covered in the project are of interest in

this paper�

�� Pipelined parallel computer architecture�

� Cache design�

�� Data hazard detection and forwarding concepts�

�� Verilog XL programming techniques�

We hope that this paper will provide useful suggestions to other students who are inter�

ested in attempting similar projects� Our overall design approach is described in Section

and project management techniques used are listed in section �� We outline the design and

work concepts applied during the project in Section � and main features of our architecture

are presented in Section
� Following that we explain the hardware partition we arrived

at in Section �� We did some measurements on the simulated systems and the results are

presented in Section � followed by our conclusions in Section ��

� Overall Design Approach

In this project� we followed the top�down architecture design and bottom�up implementation

process� The steps we took included�

�� De�ning our goals clearly�

� Speci�cation of the processor under design�

�� Lay down the overall architecture for the processor�

�� De�ne and development a schedule�

�

� Break down individual parts of the CPU to separate modules �modular design ap�

proach� and assignment of design works of modules to each member of the design

team�

�� Build individual modules�

�� Test the low level functionalities of each module�

�� Integrate the modules�

�� Test the overall CPU functionality� and

��� Document the design and the design process�

In the following subsections� we will brie	y describe each step in the design process�

��� De�ning goals

At the beginning of the project� we de�ned the architectural goals of the processor� The

starting point for the design team was the book we followed in a previous computer design

and organization course ���� To give us a better idea of what some of the realistic goals were�

we studied the architecture of several modern CPUs� Intel PentiumTM �
�� DEC AlphaTM

���� MIPS R����TM ���� Motorola �����TM �
�� HP�s PrecisionTM ���� and IBM�Motorola

PowerPC ���TM ���� We compared the design tradeo�s of the di�erent architectures and

narrowed down our goals to implement a CPU with mostly simple instructions and some

minor complicated instruction component� The motivation here was to understand the

di�culties presented by direct memory instructions present in some microprocessors such

as Intel x�� series and Motorola ���x� series� Subsequently� we have also learned of the

implementation of the P� architecture ����

��� Speci�cation of the Processor

Our CPU included a simple instruction set which can be easily implemented as a super�

scalar� superpipelined machine� We borrowed the instruction set from MIPS R
��� ���� We

enhanced the MIPS R
��� instruction set with direct memory operand instructions for all

R�type instructions� The processor was also to include separate data and instruction caches�

each of �KB� More speci�cation details are provided in Appendix B�

�

��� Lay out of architecture

Having de�ned the speci�cations� we began the top�down architecture design� First� we de�

�ned the instruction set as well as the addressing modes we wanted to support �see Appendix

B for details�� Next� we started to design the internal structure of the CPU using superscalar

and superpipeline concepts ���� Based on this� we divided the CPU pipeline operation into

the following stages� Instruction Fetch �IF�� Instruction Dispatch �ID�� Instruction Decode

�D�� Address Generation �AG�� Operand Fetch �OF�� Execution �EX� and Write Back �WB��

Each stage was studied further for the possibility of breaking it down more� Figure � shows

the structure of the CPU core�

(EX)

(WB)

(OF)(AG)

(D)

(AG) (OF) (EX)

Back

Address
Fetch
Operand Execute

Write

Unit

ExecuteOperandAddress
Fetch
Unit

Unit
Unit Unit

Unit

File
Reg

Control

Unit

Unit

Control

Dispatch

Figure �� Internal core of the superpipeline and superscalar processor

To improve the performance of the CPU� we included a Branch Prediction Unit and two

on�chip caches� one for instructions and one for data� A Bus Interface Unit �BIU� and a

memory system that supported byte addressing were also provided to complete the design�

Figure
 depicts the overall CPU functional block diagram�

Interested readers should turn to Section
 for a more detailed description of each unit�

��� Schedule Development

Next� we began to lay down the development schedule� As stated earlier� the whole project

was to be completed in a ten week term� so the schedule had to be aggressive but achievable�

Also� since all students were in their �nal quarter� we kept margins for one of them being

Unit

Instruction Fetch

Bus Unit
Data Cache
Controller

Prediction
and Branch

To Main Memory

Controller
Code Cache

Superscalar CPU Core

8KB Data Cache8KB Code Cache

Figure
� CPU functional block diagram�

not available for some time due to an interview call or other similar reasons� Our project

schedule is shown in Appendix A�

��� Breaking down individual parts of the CPU

Once we had the development schedule� work was assigned to each individual team member�

Each stage in a pipeline was a natural part to design� However� some of the units were further

broken down in multiple modules� For example� Instruction Fetch Unit �IFU� has many

parts� PC update by incrementing PC or from Branch Prediction Unit� instruction fetching

from Instruction Cache� Instruction Receive and Decode Unit� and instruction storage in

Instruction Bu�er and Management Unit were modules of IFU as shown in Figure �� Each

module in the pipeline design was assigned to an individual� The functional speci�cation

of each stage were clearly laid out� The interface between all pairs of interacting stages

�neighbors in the pipeline� were clearly de�ned including the signal names and naming

conventions� The meaning of each interface signal and the signal conventions �i�e� negative�

or positive�edge trigger or synchronous clock latch� were also de�ned� Then the design team

along with the project coordinator estimated the time it would take to design each module�

This along with the expertise of each member became the basis for work design Then� the

design we broke up to begin individual work�

�

M

Prediction
Branch

Unit CACHE

INSTPC
Update

U
X

PC
INST
Buffer

INST
Receive
and
Decode

 To
 Dispatch
 Unit

Figure �� Break down of IFU�

��� Building individual modules

Each member was given complete freedom in performing his design� The only obvious re�

striction was that all interface signals must communicate correctly with the peripheral stages

in accordance with the overall speci�cation and the design must adhere to the functional

and timing speci�cations� the whole CPU design team met together several times each week

to discuss the project progress as well as to �negotiate� the changes� if any� to be made to

the speci�cations� The team leader monitored the changes to make sure that these changes

did not adversely a�ect the overall design�

��	 Testing the low level functionality

To reduce the extent of overall testing� we used an incremental testing approach� Each

stage was built and tested thoroughly before it was integrated together with other stages�

Furthermore� interface test were designed and testing was also performed after combining

two neighboring stages together to ensure that all designs met the interface speci�cations�

This allowed us to isolate any potential design 	aws in individual modules and to �x the

problems quickly� It should be noted that there were many such 	aws detected and �xed

before testing the whole system together�

��
 Integrating individual modules together

Once all the modules design and testing were completed and the interface testing was com�

pleted between individual pairs� we began to put the whole processor unit together� At this

step� the master control unit� the forwarding unit� and the pipeline registers were tested

thoroughly� To our surprise� it did not take us long to get the whole processor going� We

�

can attribute this to design of complete speci�cation of individual modules� interface design�

module testing� and interface testing performed earlier�

��� Testing overall functionality

Once the CPU integration was completed� we began the overall testing of the CPU� This

step was to test the functionality of the CPU to determine how well it met our design

speci�cations� If bugs were found during this step� the individual who designed the faulty

stage was responsible for �xing the problem and retesting his stage from the lowest level up�

After �xing all the known bugs� we ran a test program on our machine as well as on some

other simulated processors to do a benchmark comparison� For the bugs found during the

benchmarking process� we repeated the same process of �xing them�

���� Documentation

The �nal stage of the design process was to organize and to generate the documentation for

the processor� The documentation include the following�

�� Overall functional speci�cations for the processor�

� Detailed design speci�cations for each stage and each unit�

�� All the software simulation codes�

�� Hardware implementation diagrams�

� Test programs and scripts that we used�

� Project Management

In this project� we used the concepts of version control to streamline the design process�

Version control is a concept that employs a systematic way to keep track of the project

development history� It allows easy reference to any level in the project development� and

provides a good way to isolate and debug the design�

Version control can be used or implemented in many di�erent ways� In this project� we

chose to implement version control using the time stamps method� The rules we used to

enforce version control with time stamp were�

�

�� Di�erent versions of a �le were distinguished by the time stamps attached to the

�lename�

� Time stamps included only month and day in �mm�dd format�

�� The most current version of a �le did not have a time stamp attached to its �lename�

�� Only one copy of the most current version of any module could be modi�ed at any

time by anyone�

� Tests were run by test scripts that utilized time stamp information�

�� Files were promoted to a new version when a particular goal was achieved� To promote

a �le� we would copy the most current �le to a �le with the present day attached to

the �lename as a time stamp� All the current test scripts were changed to re	ect these

changes� For example� if we were working on a �le called dispatch�v and we decided to

promote it to the next level on March
nd� we would copy the �le dispatch�v to dis�

patch�v������ and modify all the test script references of dispatch�v to dispatch�v�������

We found that version control provided much help to the design process� It was particu�

larly useful for isolating the design 	aws as well as facilitating repetitive testing� Combining

version control and incremental testing� we estimate there was a minimum of
�� reduction

in our debugging and development time�

� Application of design and work concepts

In addition to the structured design approach and the version control used in project man�

agement as described above� other design and work concepts were also employed including

enforcing coding and documentation standards� allowing 	exible work hours� and using �re�

lease date� notation as described below�

��� Coding and documentation standards

Adapting coding and documentation standards provided a means for e�ective communica�

tions among the team members� It facilitated the design� because the functions and features

of each module were clearly de�ned and gave the project a neat and well organized structure�

�

��� Flexible work hours

One of the valuable contributions to the project from our the Co�Op experience of the design

team members was adopting 	exible work hours in the design schedule� Flexible working

hours not only made project scheduling simpler� but also gave the team members a sense of

trust which motivated them to work harder� The down side to this approach was that the

team leader had to keep track of the progress of each member� a very time consuming task�

��� Release day

The other concept that we found very useful in a time constrained project was the use

of the �Release Days�� In our schedule� we de�ned target days for �Alpha� and �Beta�

releases� The team was only allowed to change the architectural speci�cations before the

�Alpha� release day� After the �Alpha� release day� only substantial changes could be made

to the design� The time between the �Alpha� and �Beta� releases was used to develop the

individual modules� All modules completed on or before the �Beta� release day were not

allowed to change unless major 	aws were found� This forced the uncompleted modules to

design around the �nished modules�

One problem we found in the design of a modern computer was that there are many ways

to do one thing� Thus constant changes can be made to improve the design� These changes

are good in general but they are de�nitely bad for a time constrained project� Changes

tend to throw the project o� schedule� The use of the �release day� concept allowed the

team to have better control of time� However� it also made the �nal design somewhat less

comprehensive due to time constraints�

� Architecture and Design Details

In this section� we discuss some special architecture and design aspects of our CPU� Our

CPU included the following speci�c architectural features�

�� Superscalar architecture which allowed two independent instructions to be executed

simultaneously�

� Superpipeline architecture which consisted of nine pipeline stages� three external and

six internal�

�� Separate Instruction and Data Caches�

��

�� Data Cache which supported multiple accesses�

� Modularized and scalable components which allowed easy upgradability�

Each one of these advanced architectural features required a great deal of e�ort in de�

signing and implementing �simulating� and gave students a much deeper insight and un�

derstanding of modern microprocessor architecture� The materials presented in this section

require the reader to have some background knowledge about computer architecture� Please

refer to the reference book for further readings ����

��� Instruction Set

In this section� we discuss the chosen instruction set for the processor� An instruction set

provides a complete description of the capabilities of the processor� It is the �rst thing a

design team has to de�ne� A good instruction set should provide programmers all operations

readily available in one or a combination of a few instructions which are critical for software

development� With that in mind� we have designed our enhanced instruction set� See Tables

� to � in Appendix B for the complete instruction set�

For our instruction set� we chose the instruction set of the MIPS R
��� as a model� The

MIPS R
��� instruction set contains three di�erent types of instructions� R�type �register��

I�type �immediate�� and J�type �jump�� To enhance the versatility of the instruction set� we

added an additional type� the E�type� for extended instructions� This type of instruction is

just an extension of the R�type with the additional capability of directly accessing memory

for one of the operands� The E�type instruction supports seven memory addressing modes

and these modes can be used with either the destination operand of an instruction or one

of the two source operands� The other source operand is always in a register in E�type

instruction� All instructions of this type are no longer restricted to the �
 bits scheme of

the typical RISC architecture� They are extended to �� bits� The only change is in the

opcode �eld of the corresponding R�Type instruction of the instruction� The second �
 bits

of the instructions contain the necessary information to access the memory for one of the two

source operands or the destination operand� Figure � depicts the instruction formats� The

enhanced instruction set provides ���� compatibility to existing MIPS R
��� programs�

while o�ering increased versatility�

After generating the instruction set� we were able to generate the appropriate datapath

and control for the CPU as described in the following section�

��

Op�code RS RT RD SHF FUNC

�� bits� �
 bits� �
 bits� �
 bits� �
 bits� �� bits�

Word�Byte Mod MOP Reg Base Immed

�� bit� �� bits� �
 bits� �
 bits� �
 bits� ��� bits�

Figure �� Instruction format� Basic MIPS instruction format and format for the second word

in the extended instruction set�

� Building Blocks �Internal Stages� of the CPU

We partitioned the entire hardware for pipeline implementation into several building blocks�

Each building block is roughly a stage in the pipeline or some sort of control unit� In this

section� we describe the internal stages and peripheral units for the processor�

Instruction Fetch Unit �IFU�� The instruction fetch unit consists of a program counter

�PC�� a ���bit two word bu�er to hold two instructions coming from the instruction cache

every clock cycle� a �
� word instruction queue which gets the accepted instructions from

the two�word bu�er� and a

��bit instruction bu�er which provides four instructions to the

dispatch unit every clock cycle� It is superpipelined into the following three stages�

�� A program counter generation unit to generate address for instruction fetch from mem�

ory� It sends the PC to the instruction cache to read instructions and to the Branch

Prediction Unit to check if a branch history�condition exists in branch prediction table�

� The second stage is for data decoding and storage� It latches the ���bit information

coming back from the instruction cache� It then decodes the instructions and extracts

the relevant information and separates �
 bits and �� bits instructions� This step

is necessary because our processors supports multi�word instructions� The decoded

instructions are stored on a �
�word instruction queue�

�� Instruction fetching and bu�er management is performed at the third stage� This

unit is called the instruction prefetch unit �IPF�� It feeds the dispatch unit with four

�

executable instructions in the extended format �

��bit� in every clock cycle�

The instruction fetch unit runs independently from the CPU core pipeline to provide

maximum performance�

Branch Prediction Unit �BPU�� The branch prediction unit which works in parallel

with the instruction fetch unit �IFU�� consists of a �
�entry look up table for the address

and the target address of the most recent branch taken at that address�

When an address is generated by the IFU for the instruction cache� this address is also

forwarded to the branch prediction unit� The branch prediction unit then performs a �

entry look up in its table� If the address is in the table� then it returns the target address

if the probability bit associated with the entry has been set by previous branch executions�

The IFU then fetches the instructions starting at the addressed location�

Branch prediction has proven to e�ectively decrease the number of 	ushes required by

the processor while executing any program� and thus improves the performance�

Dispatch Unit �DU�� The dispatch unit selects two independent instructions from the

four instructions fed to it by the IPF to be executed simultaneously in the two pipelines�

The dispatch unit is the key component to superscalar architecture� In selecting the two

independent instructions the dispatch unit must check data dependencies among the four

instructions� Two independent sub�units are responsible for doing this� The �rst unit com�

pares the second� third� and fourth instructions with the �rst instruction� The second unit

checks data dependencies among instruction two� three� and four to �nd whether they are

absolutely independent of one another or not� The dependency codes generated by these

two units allows the dispatch unit to choose the best two independent instructions to be exe�

cuted� In any case� the �rst instruction is always executed� If there is no second independent

instruction available� then the second pipeline is fed with a no�operation instruction�

Control Unit �CU�� The main purpose of the control unit is to generate the appropriate

control signals for all the pipeline stages� These signals are used to control the multiplexors

for selecting the correct data or function to be executed in each pipeline stage�

Register File �Reg�File�� The register �le contains the standard �
 registers of the MIPS

R
���� To prevent possible data con	icts� we implemented the Write�before�Read and the

priority write algorithms in the register �le� The Write�before�Read algorithm ensures that

most up�to�date information is read from the register �le every time� The priority write

��

algorithm handles data collisions which could result from multiple write requests� This

register �le allows for eight register reads and four register writes every clock cycle�

Address Generation Unit �AGU�� This stage of the pipeline is designed for the E�type

instruction� Here� the operand address used by the current E�type instruction is generated�

This stage contains two additional Adders in additions to ones located in the execution stage�

These two Adders compute the desired address and send it to the data cache�

Operand Fetch Unit �OFU�� The Operand Fetch stage interfaces with the Data Cache

to provide data to the instructions being executed� Once the data is ready� it is latched into

this unit and pipelined to the execution stage� However� if a data cache miss occurs� a CPU

stall signal is generated to the master control unit until the data are returned from the data

cache�

Execution Unit �EU�� The execution unit contains a �
�bit ALU and a �
�bit barrel

shifter� The �
�bit ALU provides the following logical operations to the two �
�bit inputs�

AND� OR� ADD� SUB� SLT� BEQ� There is only one �
�bit shifter between the two execution

units which can perform either a right shift or a left shift to one of the two �
�bit inputs�

Only one of the two ALU can be use the shifter at any time�

Write Back Unit �WB�� The function of the write back unit is to write the results of

the two execution units back to the appropriate memory or register locations�

Hazard Detection and Forwarding Unit �HDFU�� The Forwarding Unit provides

data hazard detection and forwarding functions for the CPU� Because of the pipeline nature

of the processor� data hazards can occur between di�erent stages of the pipeline� One of the

two functions of the forwarding unit is to detect the occurrence of these hazards� The second

function is to provide forwarding signals to correct the data hazards� In our CPU design�

there are sixty�six ���� forwarding signals to check eight ��� di�erent possible hazard spots�

Two stall signals are also generated to stall the pipeline operation in the event of a hazard

which can not be resolved without stalling�

Master Control Unit �MCU�� The Master Control Unit provides system level control

signals to the pipeline registers� instruction fetch unit and the branch prediction unit� It

also handles system level errors and initial�reset conditions�

��

Instruction and Data Cache� In our design� we have two separate caches for instruction

and data as described below�

Instruction Cache �IC�� The code cache is made up of � KB static memory� and it uses a

four way set�associative architecture� Each set is
 KB which consists of �� entries and each

entry is

��bit in length� A Tag� a Valid bit�
 LRU bits and a Modify bit are associated

with each entry� The data bus is ���bit wide� Normal read access time for the code cache is

� ns and the memory access is handled by the cache controller and the Bus Interface Unit�

Data Cache �DC�� The Data Cache is also a four way set�associative cache� but it allows

a total of four simultaneously accesses �two reads and two writes� to the cache� This is

achieved by allowing multiple decoding to happen at the same time� The read is always

done before the write� There is no hazard detection or forwarding done in the data cache�

All of these are handled by the cache controller� which also contains two write bu�ers� These

bu�ers are used for writing data back to memory in case of a write back operation when a

dirty cache line is replaced or some data is to be directly written to the main memory�

Bus Interface Unit �BIU�� The function of the Bus Interface Unit �BIU� is to provide

control for the bus access� It also arbitrates between di�erent caches if more than one need

to access main memory�

Main Memory� A memory module was developed to complete perform the testing of

the new CPU� This memory is assumed to have a two clock cycle access time� It also

supports normal burst mode access in which the �rst read takes two clock cycles to access

while subsequent reads in the same block take only one clock cycle� The memory is byte

addressable and supports transfers of ��bit �byte�� ���bit �half�word�� �
�bit �word� and ���

bit �double word�� Only the Bus Interface Unit is directly connected with this test memory

module�

	 Results

We have benchmarked our developmental CPU with a simple single �ve stage pipeline RISC

based CPU without Branch Prediction as described in ���� The benchmarking program was

a factorial computation program written in regular MIPS R
��� instructions� The program

consisted of a main loop and a subroutine to perform multiplication� We benchmarked three

�

CPUs � the basic pipeline of ��� implementing MIPS R
��� instruction set� the develop�

mental CPU with the Branch Prediction feature and the developmental CPU without the

Branch Prediction feature� See Appendix C for the details of the program and Appendix D

for detailed time calculation� From the test results� we concluded that the branch prediction

feature provides approximately �
� improvement in execution time� while the superscalar

architecture provides only a modest �� improvement in execution time� From the above

results� it can be seen that the advance features help in improving the performance a lot� In

particular the branch prediction is very e�ective for this program� In general any program

with a loop will bene�t from the branch prediction feature� Although the results demon�

strated that the branch prediction feature had a bigger performance improvement than the

superscalar architecture� we believe that the superscalar architecture would excel in a larger

test program�

In this project� we learned that both branch prediction and superscalar architecture

features are valuable in modern processor design� The e�ectiveness of E�type instructions

is yet to be judged but for architectures like Intel x�� series and Motorola ������ such

instructions are required for compatibility reasons�

 Conclusions

A senior project in designing a modern Central Processing Unit has been described� The

project used many modern design methods and concepts such as the systematic design pro�

cess and the version control� The project familiarized the students with a modern design

approach and e�ective project management methods� The project also provided a cooper�

ative learning environment and leadership training� The students involved in the project

strongly believe that it is a good model for other senior level design projects�

References

��� D� A� Patterson and J� L� Hennessy� �Computer Organization and Design � The Hard�

ware�Software Interface�� Morgan Kaufmann� �����

�
� D� Alpert and D� Avnon� �Architecture of the Pentium Microprocessor�� IEEE Micro�

vol� ��� no� �� pp� ���
�� June �����

��� E� McLellan� �The Alpha AXP Architecture and
���� Processor�� IEEE Micro� vol�

��� no� �� pp� ������ June �����

��

��� MIPS Computer Systems� Inc�� ��� Arques Avenue� Sunnyvale� CA ������ MIPS R�

Series Architecture� Sept� �����

�
� Motorola� MC����� �
�Bit Microprocessor User�s Manual� Motorola Inc�� �����

��� T� Asprey� G� S� Averill� E� DeLano� R� Mason� B� Weiner� and J� Yetter� �Performance

Features of the PA���� Microprocessor�� IEEE Micro� vol� ��� no� �� pp�

��
� June

�����

��� M� C� Becker� M� S� Allen� C� R� Moore� J� S� Muhich� and D� P� Tuttle� �The PowerPC

��� Microprocessor�� IEEE Micro� vol� ��� no�
� pp�
����� October �����

��� Intel P� Architecture Manual� Santa Clara� CA� Intel Corp� ���
�

��� N� P� Jouppi and D� W� Wall� �Available instruction�level parallelism for superscalar and

superpipelined machines�� ASPLOS�III Proceedings� Third International Conference on

Architectural Support for Programming Languages and Operating Systems� Boston�

MA� USA� pp�
�
��
� IEEE ACM� ��� April �����

Acknowledgements� The authors are thankful to the two reviewers who made extensive

comments and suggestions to improve the quality of presentation��

��

Appendix A�

Project Schedule�

The project schedule for the project was as follows�

�st week� De�ne the basic CPU function blocks and instruction set� Setup

the team� and talk about coding standard�

nd � �rd

weeks�

Each member starts working on his part� and starts to determine

the requirements for his part� Revise the overall architecture�

�th

week� �Al�

pha Release�

The purpose of the Alpha Release is to have each individual part

of the CPU working by this time� Each person should be testing

his part�

th � �th

weeks�

Start putting the whole CPU together and debug� Also start to

develop the testing program�

�th

week� �Beta

Release�

The Beta is to have most of the CPU working together� Final

adjustments and changes will be made at this time�

�th week� Work on the �nal testing and the �nal version of the CPU�

��th

week� �Final

Release�

At the end of the ��th week we should have the �nal version of

a working CPU� Testing is done during this week to determine

the performance�

Documentation is done along the way� and any time remaining after the �nal release will

be devoted to documentation�

��

Appendix B� The instruction set includes the following instructions�

Table �� R�type instructions for the processor�

Inst op��� rs�
� rt�
� rd�
� shf�
� func��� Example

Add ������ ����� ����� ����� ����� ������ Add ����
���

Addu ������ ����� ����� ����� ����� ������ Addu ����
���

Sub ������ ����� ����� ����� ����� ������ Sub ����
���

Subu ������ ����� ����� ����� ����� ������ Subu ����
���

And ������ ����� ����� ����� ����� ������ And ����
���

Or ������ ����� ����� ����� ����� ������ Or ����
���

Xor ������ ����� ����� ����� ����� ������ Xor ����
���

Slt ������ ����� ����� ����� ����� ������ Slt ����
���

Sltu ������ ����� ����� ����� ����� ������ Sltu ����
���

Sll ������ ����� ����� ����� ����� ������ Sll ����
���

Srl ������ ����� ����� ����� ����� ������ Srl ����
���

In addition to the above� our processor also includes a corresponding memory�reference

instruction �E�type� for all instructions of R�type� In an E�type instruction� the �rst word is

exactly the same as what it is in the corresponding R�type instruction except that the op���

�eld is ������ instead of ������� The E�type instruction carries a memory address for one

operand �either destination or one source operand�� The �eld� mop �
 bits� decides if the

memory operand is a destination or a source operand� The memory address is speci�ed by a

combination of the contents of a register �reg �eld�� a base register �regb �eld� and a constant

�I �led�� Any one or more of these �elds may not be used� Mode �eld �mode� includes �

bits to specify which one of these components in the address will be used� Depending on the

value of rcb bits� the register� base register� and constant parts are used� The egister can be

any one of the �
 registers�

��

Table
� I�type instructions for the processor�

Inst op��� rs�
� rt�
� I���� Example

Addi ������ ����� ����� �x���f Addi ����
���

Addiu ������ ����� ����� �x���f Addiu ����
���

Andi ������ ����� ����� �x���f Andi ����
���

Ori ������ ����� ����� �x���f Ori ����
���

Xori ������ ����� ����� �x���f Xori ����
���

Slti ������ ����� ����� �x���f Slti ����
���

Sltiu ������ ����� ����� �x���f Sltiu ����
���

Lw ������ ����� ����� �x���f Lw �������
�

Lwi ������ ����� ����� �x���f Lwi �����

Lb ������ ����� ����� �x���f Lb �������
�

Lbu ������ ����� ����� �x���f Lbu �������
�

Sw ������ ����� ����� �x���f Sw �������
�

Sb ������ ����� ����� �x���f Sb �������
�

Beq ������ ����� ����� �x���f Beq ����
���

Bne ������ ����� ����� �x���f Bne ����
���

Table �� J�type instructions for the processor�

Inst op��� I�
�� Example Note

j ������ �x������f j ��

jal ������ �x������f jal ��

jr ������ �x�e����� jr ��� This is really an R�Type

�

Table �� E�type instructions for the processor�

Inst w�b��� mode��� mop�
� reg�
� regb�
� I���� Example

Add � rbc �� ����� ����� vv Add ����
�vv�������

Addu � rbc �� ����� ����� vv Addu vv���������
���

Sub � rbc �� ����� ����� vv Sub ����
�vv�������

Subu � rbc �� ����� ����� vv Subu vv���������
���

And � rbc �� ����� ����� vv And ����
�vv�������

And � rbc �� ����� ����� vv And vv���������
���

Or � rbc �� ����� ����� vv Or ����
�vv�������

Xor � rbc �� ����� ����� vv Xor vv���������
���

Slt � rbc �� ����� ����� vv Slt ����
�vv�������

Sltu � rbc �� ����� ����� vv Sltu vv���������
���

Sll � rbc �� ����� ����� vv Sll ����
�vv�������

Srl � rbc �� ����� ����� vv Srl vv���������
���

Appendix C�

Benchmarking Program and Calculation�

The following program was written to benchmark our developmental CPU against other

modern CPUs running MIPS R
��� instructions� The program was intended to provide a

comparison between CPUs with di�erent features� In this test� we were particularly inter�

ested in see how well Branch Prediction works and how much performance improvement it

provides� Our secondary interest was to see how much the superscalar architecture improves

the CPU performance�

Three sets of results are presented here� The �rst is the execution time required by a

simple �ve stages single pipelined RISC based CPU� This CPU is modeled after the MIPS

R
��� in ���� The second set of results was taken from the simulation of the developmental

CPU with Branch Prediction feature turned on� The last set of results came from the

simulation of the developmental CPU with the Branch Prediction feature turned o��

�� Factorial Program�

�� addi ��� ���

������ ����� ����� ����� ����� ������

�� addi ��� ��� ����Find the factorial of ��

�

������ ����� ����� ����� ����� ������

�� add �
� ��� �����Set up the counter�

������ ����� ����� ����� ����� ������

�� addi ��� ��� ����Set ����� Useful for decrement�

������ ����� ����� ����� ����� ������

�� sub �
� �
� �����Decrement counter�

������ ����� ����� ����� ����� ������

�� jal
����Multiply function�

������ ����� ����� ����� ����� ������

�� bne �
� ��� ��
� or �
� ���Loop if �
 not equal to ��

������ ����� ����� ����� ����� ������

�� j

����� ����� ����� ����� ����� ������

�� add ��� ��� �
���Set up separate counter�

������ ����� ����� ����� ����� ������

�� add �
� ��� �����Set up common factor�

������ ����� ����� ����� ����� ������

�� add ��� ��� �
���Increment �� by common factor �here�
� nextloop�
��

������ ����� ����� ����� ����� ������

�� sub ��� ��� �����Decrement counter�

������ ����� ����� ����� ����� ������

�� bne ��� ��� ���� or �
� ���Loop until counter���

������ ����� ����� ����� ����� ������

�� jr ������Return from procedure�

������ ����� ����� ����� ����� ������

�� sw ����
�������Save the result into memory location �
�

������ ����� ����� ����� ����� ������

�� add ��� ��� �����Increment �� by common factor �here�
� nextloop�
��

������ ����� ����� ����� ����� ������

������ ����� ����� ����� ����� ������

������ ����� ����� ����� ����� ������

�� Jump back and loop forever�

����� ����� ����� ����� ����� ������

������ ����� ����� ����� ����� ������

�

Appendix D�

Timing Calculations�

Set �� Execution Time for a simple �ve stages single pipeline RISC based CPU�

CPU Time�

Setup time� � clock cycles�

The jump instructions assume a � clock cycles execution time�

The branch instructions assume a � clock cycles execution time�

Write back� �� � �� �
 clock cycles�

Subroutine� Called
 times� each time with a decreasing number of loops

to execute� Total of
� loops� Each loop consists of � regular

instructions and � branch instruction� Execution time is �� �

�� � � clock cycles per loop� Each subroutine call requires a

JR instruction for return which takes � clock cycles�

Total subroutine execution time �

� x � �
 x � � ��� clock cycles�

Cache Time�

Instructions load

time�

� instructions � � x � clock cycles �
� clock cycles�

Cache Miss penalty� � x � clock cycles � � clock cycles�

Total execution time To compute seven factorial from computation is

� clock

cycles�

Set �� Execution Time for the developmental CPU with Branch Prediction turned on�

Total Execution time To compute seven factorial from measurement is ��� clock

cycles�

Set �� Execution Time for the developmental CPU with Branch Prediction turned o��

Total execution time To compute seven factorial from measurement is

� clock

cycles�

�

Biographies of Authors�

Victor Lee completed his BSEE degree in electrical engineering in ���� from the Uni�

versity of Washington� Seattle� WA� His research interests are in the area of computer ar�

chitecture and parallel computer systems� He is currently pursuing his MSEE degree in

computer engineering�

Nghia Lam completed his BSEE degree in electrical engineering in ���� from the Uni�

versity of Washington� Seattle� WA� His research interests are in the area of computer engi�

neering and signal processing�

Feng Xiao completed his BSEE degree in electrical engineering in ���� from the Uni�

versity of Washington� Seattle� WA� His research interests are in the area of computer engi�

neering and signal processing�

Arun K� Somani is an Associate Professor of Electrical Engineering an Computer

Science and Engineering at the University of Washington� Seattle� WA� He earned his MSEE

and Ph�D degrees in electrical engineering from the McGill University� Montreal� Canada�

in ���� and ���
� respectively� Prior to that� he worked as Scienti�c O�cer for Govt� of

India� New Delhi from ���� to ���
� During this period he designed and developed an

anti�submarine warfare system for Indian Navy�

Professor Somani�s research interests are in the area of fault tolerant computing� intercon�

nection networks� computer architecture� parallel computer systems� and parallel algorithms�

Currently he is involved in three major projects� i� high integrity system design addressing

the issues related to cache memory design in redundant computer systems and evaluation

tools for such systems� ii� congestion control and fault tolerance in broadband networks� and

iii� development of �Proteus� architecture� a multiprocessor system for automated classi��

cation of objects based on generalized enhanced hypercube recon�gurable interconnection

network exploring coarse grain parallelism�

