
A Time-Multiplexed FPGA
Steve Trimberger, Dean Carberry, Anders Johnson,

Jennifer Wong

Xilinx, Inc.
2 100 Logic Drive

San Jose, CA 95124
408-559-7778

steve.trimberger @ xilinx.com

Abstract

This paper describes the architecture of a time-multiplexed
FPGA. Eight configurations of the FPGA are stored in on-
chip memory. This inactive on-chip memory is distributed
around the chip, and accessible so that the entire configura-
tion of the FPGA can be changed in a single cycle of the
memory. The entire configuration of the FPGA can be loaded
from this on-chip memory in 3011s. Inactive memory is acces-
sible as block RAM for applications. The FPGA is based on
the Xilinx XC4000E FPGA, and includes extensions for
dealing with state saving and forwarding and for increased
routing demand due to time-multiplexing the hardware.

Background

This paper reports on architecture development project that
began in 1991. The architecture builds on the work of Ong
[1995], who proposed rapidly reconfiguring an FPGA to
increase logic capacity. Bhat [19931, DeHon [19951 and Tau
[19951 also described rapidly-reconfigured FPGAs. These
devices were deficient in at least one of the following critical
areas :

Device Capacity. Fundamentally, logic is shared to
increase capacity. A base FPGA of low capacity is imprac-
tical, since a larger non-time-multiplexed FPGA is faster
and easier to use.
State Storage. Although combinational logic can be shared,
state values cannot. They must be stored or forwarded until
they are used. Simplistic solutions to this problem result in
FPGA logic resources consumed with saving state. Very
little remains for implementing logic.

Memory. Time-multiplexed systems consume memory for
configuration data and for staged design data. Facilities
must be provided for this data.

0 Static Logic. All systems include some logic that must
always be active and cannot be multiplexed. A usable
time-multiplexed device must be able to also supply this
non-time-multiplexed logic.

This paper is divided into three sections. First is an introduc-
tion to the method of time multiplexing used in this architec-
ture. The second section discusses modes of operation of a
time-multiplexed device. The third section describes the
device itself and highlights the device features and how they
support the modes of operation.

The Basic Concept

The time-multiplexed P G A is an extension of the Xilinx
XC4000E product family. We gain logic capacity by dynam-
ically re-using hardware. We add SRAM bits rather than
CLBs.

The FPGA holds one active configuration and eight inactive
configurations. The configuration memory is distributed
throughout the die, with each configuration memory cell
backed by eight bits of inactive storage in the configuration
SRAM. This distributed inactive memory can be viewed as
eight configururion memory planes (figure 1). Each plane is
a very large word of memory (100,000 bits in a 20x20
device). When the device isflash reconjigured, all bits in the
logic and interconnect array are updated simultaneously
from one memory plane. This process takes about 5ns. After
flash reconfiguration, about 25ns is required for signals in
the design to settle.

Configuration memory planes can be loaded from off-chip
while the FPGA is operating. They can also be read and
written by on-chip logic, giving applications access to a sin-
gle large block of RAM.

0-8186-8159-4/97 $10.00 0 1997 IEEE
22

http://xilinx.com

Figure 1. Time-Multiplexed FPGA Configuration Model

Modes of Operation

A rapidly-reconfigurable FPGA is a mere curiosity without a
model of use that can be used as a design target and auto-
mated. We envision three modes of operation of the device:
logic engine mode, time-share mode and static mode.

Logic Engine Mode

In logic engine (LE) mode, the time-multiplexing capability
of the FPGA is used to emulate a single large design. Designs
are modelled as Mealy state machines (figure 2). Combina-
tional logic receives inputs from the device inputs and from
flip flop outputs; and device outputs come from combina-
tional logic and from flip flops. The combinational logic can
be split into pieces and LUTs in the FPGA can be time-multi-
plexed during the calculation of those results.

When operating in logic engine mode, the FPGA sequences
through multiple configurations called microcycles. The
sequencing of microcycles is synchronized with the user’s
clock. One pass through all microcycles is called a user
cyde. All combinational logic is evaluated and all flip-flop
values are updated in one user cycle.

Figure 2. Logic Mode1

In this mode, the FPGA is reconfigured several times per
user clock cycle -- the reconfiguration clock is faster than
the user clock. Partial results from one configuration of the
device must be saved and passed to subsequent configura-
tions. Storage must be provided for flip flops, which cannot
be time shared, since all values are required at future times.

Time Share Mode

In time share (TS) mode, the FPGA emulates several inde-
pendent, communicating FPGAs in a virtual hardware envi-
ronment. The FPGA remains in a single configuration for
multiple user clock cycles before switching to another con-
figuration -- the reconfiguration clock is slower than the user
clock rate. The FPGA may reconfigure at irregular intervals
or upon interrupt. To support virtual logic in time share
mode, values computed in one configuration must be stored
and shared with logic in other configurations. When a con-.
figuration is re-loaded into the FPGA, its state must be
restored so it can resume operation as if it had never been
removed.

Static Mode

In static mode, the FPGA, or part of it, does not appear to be
reconfiguring at all. Static mode is used to build logic that
must always be resident and active -- for example the logic
that controls the time share or logic engine sequencing, or
asynchronous logic. We implement static logic by program-
ming memory cells of multiple configuration bits to be iden-
tical. When the new configuration is loaded, it operates
identically. We ensure that reconfiguration does not glitch
control points if they are unchanged, so the emulated logic
operates without interruption.

Partial reconfiguration is not sufficient to support static
logic, since dynamic logic interconnect may pass through

23

Figure 3. Time Share Model

static logic regions on the chip. A design where a region of
the device is not reconfigured would allow static logic to
exist, but such a design is too restrictive because it prevents
device resources in the static region from being accessed by
dynamic logic.

Memory Access

In addition to these operation modes, a configuration mem-
ory plane can be used as a block RAM of approximately
100,000 bits. The RAM mode allows user designs to read and
write the memory directly, leading to the ability to create
self-modifying hardware. Although this mode of operation is
intriguing, we can see only one application: building a clever
loader (perhaps decrypting data as it configures the plane).

Mixed Modes

We expect that these operation modes will be mixed on the
chip, as shown in figure 4. A single application may have a
few memory planes used as memory, and the logic part of the
array split between static logic and time-shared logic or logic
engine logic. A common occurrence of mixed modes is on
the chip outputs in Logic Engine mode: the output side of the
10s must be static to properly emulate the outputs of the
design. However, inputs may be dynamic, cycling in logic
engine mode.

Figure 4. Mixed Modes

24

F4

F3

F2

I --7+ I t

K

Figure 5. Time Multiplexed FPGA Architecture

Configurable Logic Block

As stated previously, the reconfigurable FPGA is based on
the XC4OOOE device. Figure 5 shows a block diagram of the
CLB. All configuration points in the device are backed by
eight memory cells, as shown by the shadowed boxes. All
interconnect points are similarly backed by memory cells. A
significant difference between this CLB and the XC4OOOE is
the addition of the micro registers near the CLB outputs on
the right side.

Micro Registers

A micro register stores the CLB output (either the combina-
tional or sequential output) when the P G A changes configu-
ration. This state saving is automatic, though each micro
register can use the CLB’s clock signal as a clock enable,
which can be used to control state saving. The state-save-
enable feature is used to support multiple clocks in logic
engine mode.

Logic can access all values stored in micro registers from
any configuration. The micro registers are multiplexed with
the CLB’s combinational and sequential results onto the
CLB outputs. Like all other configurable features of the
chip, those multiplexers are controlled by multiple configu-
ration memory cells. Micro register signals are routed
through normal programmable interconnect to their destina-
tions.

In logic engine mode, micro registers store intermediate val-
ues and flip flop values. This is a critically important capa-
bility. Although combinational logic can be multiplexed
among several functions, state storage cannot. As a result,
although eight LUTs in a design may share a single physical
LUT, eight flip flops must all be provided for subsequent
logic to access the results. The storage for these flip flops is
in the micro registers.

In time share mode, the micro registers serve to pass data
from one configuration to another, and to save the state of a

25

swapped-out configuration for restoration when it is re-acti-
vated.

In figure 5 , access outside the CLB is limited to three of the
eight micro registers during any one micro cycle. This
restriction was derived empirically. We built an optimizing
scheduler to partition many designs onto a time-multiplexed
FPGA model. The results indicated that three outputs were
sufficient to allow required access to micro registers without
over-constraining placement.

Interconnect

Like CLB configuration cells, all configuration cells that con-
trol interconnect are backed by eight inactive memory cells.

Fundamentally, the signals routed from the micro registers to
their destinations represent additional nets that must be
routed, increasing wiring demand. Therefore, additional
interconnect is required on the device. The interconnect
capacity in the time-multiplexed FF’GA is shown in table 1.
This capacity chosen to provide a 97% probability of place
and route success for a full 20x20 array of CLBs with addi-
tional interconnect demand due to logic engine wiring. A
high success rate is required for a single configuration
because a single design may be composed of up to eight con-
figurations, all of which must route successfully for the
design to operate.

Quads

Octals

Vertical Horizontal

8 8

8 8

8 8

6

Table 1. Interconnect Summary.

User Memory

A single memory access port located in the center of the chip
uses the configuration address and data lines to access the
configuration memory without interfering with FPGA logic.
The address is decoded into a memory plane and a reference
within the plane. The memory access port allows 8-bit, 16-bit
or 32-bit access to the configuration memory.

Configuration Controller

Several options on reconfiguration are controlled by the
reconfiguration controller. The controller supports time
share and logic engine modes.

Time Share Mode

To support timeshare mode, flash reconfiguration can be ini-
tiated by an external or internal signal. The address of the
new configuration plane can come from an internal or exter-
nal source. Therefore, there is no restriction on which con-
figuration is the next to be run. The reconfiguration
operation proceeds as follows:

1. Save all CLB flip flop values in micro registers
2. Load the new configuration
3. Restore CLB flip flop values from micro registers

Flip flops are restored to allow a swapped-out configuration
to resume operation where it ended, allowing us to swap
“virtual logic” in and out of the device.

Logic Engine Mode

In logic engine mode, the sequence of reconfiguration is
known in advance. The speed of reconfiguration is critical,
since multiple configurations are required to complete a sin-
gle cycle in the emulated design. The controller includes a
next-address calculator. The controller reads the memory
plane at that address and holds it, awaiting the completion of
the current micro cycle.

The reconfiguration operation (microcycle) proceeds as fol-
lows:

1. Save all CLB outputs in micro registers.
2. Activate the new configuration.
3. Perform a user memory access (if any).
4. Pre-fetch the next configuration.

User memory access (#3) and pre-fetching the next configu-
ration (#4) can be pipelined with the operation of the logic
in the configuration (#2). Steps #3 and #4 are both memory
operations, and both used the configuration memory bus.
Therefore they must be serialized. However, since each
memory operation takes about 5ns, the delay for these oper-
ations can be completely hidden.

Notice the CLB flip flop values are not restored. The CLB
flip flop is not used in LE mode -- flip flop values are stored
in micro registers.

26

Conceptually, all micro cycles are of the same duration, but
in practice, the length of a micro cycle is the settling time --
the amount of time required for values to propagate from
micro registers through combinational logic and set up the
next-stage micro registers. This delay includes routing delay,
which is dependent on the placement and routing of the logic
plane. Therefore, each microcycle includes a duration
counter, which determines how long the FPGA remains in
the current micro cycle before proceeding to the next one.
The duration is set by software after placement and routing
is complete. The software timing verifier determines the
length of the longest path after routing and sets the microcy-
cle duration accordingly.

Static Mode

Since static mode is supported by programming some bits
identically, the controller has no special sequencing to sup-
port it. The control over restoring flip flops is actually stored
as bits in each CLB, so state restoration is permitted on a
per-CLB basis. This flexibility is required to allow static flip
flops to be distributed among time-shared logic. The CLBs
containing static flip flops are not overwritten during recon-
figuration, while those in time-shared logic are overwritten.

Configuration Memory Design

Figure 6 shows the circuitry for the configuration memory.
Eight SRAM cells are connected to a single bit line for the
cell. The current control value is held in the latch. To write a
memory cell, a word line (Wn) is brought high allowing the
data value on the bit line to overwrite the corresponding
memory cell (MCn). Typically, only one word line on the
chip is high during a memory write.

Configuration/User w2 w3 w4 , . ,
Memory Data I I

I I
I I

Figure 6. Memory Circuit

For flash reconfiguration, a single word line (Wn) is brought
high, enabling the corresponding memory cell onto the bit
line. When the bit line is stable, the latch is clocked to store
the new configuration value. Typically, the bit lines for the
same memory plane are read simultaneously for every con-
trol point.

The timing of pClock ensures that the bit line is stable
before the latch becomes transparent -- this allows glitch-
free transitions from one configuration to the next when the
two values are the same -- a requirement for static logic.

The storage latch lets memory operations on the inactive
memory proceed without affecting the active configuration.
These operations include loading a memory plane with con-
figuration data or design data from an outside source, and
accessing the memory through the user memory port on the
chip.

The latch also allows us to pipeline configuration fetch with
operation of the device. We can pre-fetch the next configura-
tion of the device, then instantly switch to the next configu-
ration by clocking the latch, This is most useful in logic
engine mode, where the configuration proceeds through a
pre-defined sequence of steps, and the next configuration
address is always known.

Power Consumption

Power consumption during reconfiguration can be very
high. Although each bit line has a very small capacitance,
there are 100,000 bit lines in a 20x20 array. Further, the sig-
nals on time-multiplexed interconnect on the FPGA is not
expected to auto-correlate from cycle to cycle, as is the case
from cycle to cycle in a traditional P G A . A logic engine
design operating at 40MHz can consume tens of watts. We

W8

b,it 1-1 +to CLB/lnterconnect
Latch Control

27

addressed power consumption two ways. First, we lowered
the voltage swing on the bit lines. Secondly, we reduced the
number of memory cells required to configure the device.
However, power consumption remains a concern, particu-
larly with larger devices.

Layout

As shown in figure 7, the design consists of columns of mem-
ory blocks, interleaved with logic. Each memory block con-
tains 16 bits of memory, eight of which control field
programmable logic on the left, eight on the right. The area
between the memory cell columns is used to build the field-
programmable logic: lookup tables, micro registers and pro-
grammable interconnect.

Memory columns

CLd
- -

CLE CL’ IOB

I I
Figure 7. Chip Layout Floorplan. Upper Right Corner

The FPGA area is dominated by the memory and memory
overhead circuitry. To reduce area, we reduced the memory
cell count wherever possible. For example, the control bits
for all multiplexers are fully encoded, reducing the memory
cell count, which reduced the area and power consumption.

The layout was done in 0.5pm CMOS. The chip has not yet
been fabricated.

Summary

This paper describes an architecture and modes of operation
of a time-multiplexed FPGA. Modes of operation include:

Logic engine mode, where the device emulates a single

Time share mode, where the device emulates several com-

Static mode, where the logic remains active and unchanged

large FPGA.

municating FPGAs.

during configuration.

Architectural and circuit innovations include:

0 Micro registers for state storage and forwarding partial
results. Micro registers also hold state for restoration of
logic in a virtual hardware environment.
A configuration controller that sequences configurations
intelligently for logic engine and timeshare mode.
Storage for the active configuration to allow pipelining of
configuration memory fetch with FPGA operation and for
allowing the configuration storage to be used as a block
memory efficiently.

References

N. Bhat, K. Chaudhary, E.S. Kuh, “Performance-Oriented
Fully Routable Dynamic Architecture for a Field Program-
mable Logic Device”, M93/42, U.C. Berkeley, 1993.

A. DeHon, “DPGA-Coupled Microprocessors: Commodity
ICs for the 21st Century”, IEEE Workshop on FPGAs for
Custom Computing Machines, 1995.

D. Gajski, N. Dutt, A. Wu, S. Lin, High Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic
Publishers, 1994.

R. Ong, “Programmable Logic Device Which Stores More
Than One Configuration and Means for Switching Configu-
rations”, U.S. Patent 5,426,378, 1995.

E. Tau, D. Chen, I. Eslick, J. Brown, A. DeHon, “A First
Generation DPGA Implementation’, FPD ‘94 - Third Cana-
dian Workshop on Field-Programmable Devices, 1995.

S . Trimberger, “Mapping Large Designs into a Time-Multi-
plexed FPGA”, private communication, 1997.

Xilinx, The Programmable Logic Data Book, 1996.

28

