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PREFACE 

An understanding of flight stability and control played an important role in the 
ultimate success of the earliest aircraft designs. In later years the design of auto- 
matic controls ushered in the rapid development of commercial and military air- 
craft. Today, both military and civilian aircraft rely heavily on automatic control 
systems to provide artificial stabilization and autopilots to aid pilots in navigating 
and landing their aircraft in adverse weather conditions. The goal of this book is 
to present an integrated treatment of the basic elements of aircraft stability, flight 
control, and autopilot design. 

NEW TO THIS EDITION 

In the second edition, I have attempted to improve the first six chapters from the 
first edition. These chapters cover the topics of static stability, flight control, 
aircraft dynamics and flying qualities. This is accomplished by including more 
worked-out example problems, additional problems at the end of each chapter. 
and new material to provide additional insight on the subject. The major change in 
the text is the addition of an expanded section on automatic control theory and 
its application to flight control system design. 

CONTENTS 

This book is intended as a textbook for a course in aircraft flight dynamics for 
senior undergraduate or first year graduate students. The material presented in- 
cludes static stability, aircraft equations of motion, dynamic stability, flying or 
handling qualities, automatic control theory, and application of control theory to 
the synthesis of automatic flight control systems. Chapter 1 reviews some basic 
concepts of aerodynamics, properties of the atmosphere, several of the primary 
flight instruments, and nomenclature. In Chapter 2 the concepts of airplane static 
stability and control are presented. The design features that can be incorporated 
into an aircraft design to provide static stability and sufficient control power are 
discussed. The rigid body aircraft equations of motion are developed along with 
techniques to model the aerodynamic forces and moments acting on the airplane in 
Chapter 3. The aerodynamic forces and moments are modeled using the concept 
of aerodynamic stability derivatives. Methods for estimating the derivatives are 
presented in Chapter 3 along with a detailed example calculation of the longitudinal 
derivatives of a STOL transport. The dynamic characteristics of an airplane for free 
and forced response are presented in Chapters 4 and 5. Chapter 4 discusses the 
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longitudinal dynamics while Chapter 5 presents the lateral dynamics. In both 
chapters the relationship between the rigid body motions and the pilot's opinion of 
the ease or difficulty of flying the airplane is explained. Handling or flying qualities 
are those control and dynamic characteristics that govern how well a pilot can fly 
a particular control task. Chapter 6 discusses the solution of the equations of 
motion for either arbitrary control input or atmospheric disturbances. Chapters 
7- 10 include the major changes incorporated into the second edition of this book. 
Chapter 7 provides a review of classical control concepts and discusses control 
system synthesis and design. The root locus method is used to design control 
systems to meet given time and frequency domain performance specifications. 
Classical control techniques are used to design automatic control systems for vari- 
ous flight applications in Chapter 8. Automatic control systems are presented that 
can be used to maintain an airplane's bank angle, pitch orientation, altitude, and 
speed. In addition a qualitative description of a fully automated landing system is 
presented. In Chapter 9, the concepts of modern control theory and design tech- 
niques are reviewed. By using state feedback design, it is theoretically possible for 
the designer to locate the roots of the closed loop system so that any desired 
performance can be achieved. The practical constraints of arbitrary root placement 
are discussed along with the necessary requirements to successfully implement 
state feedback control. Finally in Chapter 10 modern control design methods are 
applied to the design of aircraft automatic flight control systems. 

LEARNING TOOLS 

To help in understanding the concepts presented in the text I have included a 
number of worked-out example problems throughout the book, and at the end of 
each chapter one will find a problem set. Some of the example problems and 
selected problems at the end of later chapters require computer solutions. Commer- 
cially available computer aided design software is used for selected example prob- 
lems and assigned problems. Problems that require the use of a computer are 
clearly identified in the problem sets. A major feature of the textbook is that the 
material is introduced by way of simple exercises. For example, dynamic stability 
is presented first by restricted single degree of freedom motions. This approach 
permits the reader to gain some experience in the mathematical representation and 
physical understanding of aircraft response before the more complicated multiple 
degree of freedom motions are analyzed. A similar approach is used in developing 
the control system designs. For example, a roll autopilot to maintain a wings level 
attitude is modeled using the simplest mathematical formulation to represent the 
aircraft and control system elements. Following this approach the students can be 
introduced to the design process without undue mathematical complexity. Several 
appendices have also been included to provide additional data on airplane aerody- 
namic, mass, and geometric characteristics as well as review material of some of 
the mathematical and analysis techniques used in the text. 
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CHAPTER 1 

Introduction 

"For some years I have been afflicted with the belief that flight is possible 
to man." 

Wilbur Wright, May 13, 1900 

1.1 
ATMOSPHERIC FLIGHT MECHANICS 

Atmospheric flight mechanics is a broad heading that encompasses three major 
disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past 
each of these subjects was treated independently of the others. However, because 
of the structural flexibility of modern airplanes, the interplay among the disciplines 
no longer can be ignored. For example, if the flight loads cause significant structural 
deformation of the aircraft, one can expect changes in the airplane's aerodynamic 
and stability characteristics that will influence its performance and dynamic 
behavior. 

Airplane performance deals with the determination of performance character- 
istics such as range, endurance, rate of climb, and takeoff and landing distance as 
well as flight path optimization. To evaluate these performance characteristics, one 
normally treats the airplane as a point mass acted on by gravity, lift, drag, and 
thrust. The accuracy of the performance calculations depends on how accurately 
the lift, drag, and thrust can be determined. 

Flight dynamics is concerned with the motion of an airplane due to internally 
or externally generated disturbances. We particularly are interested in the vehicle's 
stability and control capabilities. To describe adequately the rigid-body motion of 
an airplane one needs to consider the complete equations of motion with six 
degrees of freedom. Again, this will require accurate estimates of the aerodynamic 
forces and moments acting on the airplane. 

The final subject included under the heading of atmospheric flight mechanics 
is aeroelasticity. Aeroelasticity deals with both static and dynamic aeroelastic 
phenomena. Basically, aeroelasticity is concerned with phenomena associated with 
interactions between inertial, elastic, and aerodynamic forces. Problems that arise 
for a flexible aircraft include control reversal, wing divergence, and control surface 
flutter, to name just a few. 
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FIGURE 1.1 
Advanced technologies incorporated in the X-29A aircraft. 

This book is divided into three parts: The first part deals with the properties of 
the atmosphere, static stability and control concepts, development of aircraft equa- 
tions of motion, and aerodynamic modeling of the airplane; the second part exam- 
ines aircraft motions due to control inputs or atmospheric disturbances; the third 
part is devoted to aircraft autopilots. Although no specific chapters are devoted 
entirely to performance or aeroelasticity, an effort is made to show the reader, at 
least in a qualitative way, how performance specifications and aeroelastic phenom- 
ena influence aircraft stability and control characteristics. 

The interplay among the three disciplines that make up atmospheric flight 
mechanics is best illustrated by the experimental high-performance airplane shown 
in Figure 1.1. The X-29A aircraft incorporates the latest advanced technologies in 
controls, structures, and aerodynamics. These technologies will provide substantial 
performance improvements over more conventional fighter designs. Such a design 
could not be developed without paying close attention to the interplay among 
performance, aeroelasticity, stability, and control. In fact, the evolution of this 
radical design was developed using trade-off studies between the various disciplines 
to justify the expected performance improvements. 

The forces and moments acting on an airplane depend on the properties of the 
atmosphere through which it is flying. In the following sections we will review some 
basic concepts of fluid mechanics that will help us appreciate the atmospheric 
properties essential to our understanding of airplane flight mechanics. In addition 
we will discuss some of the important aircraft instruments that provide flight 
information to the pilot. 



1.2 Basic Definitions 3 

1.2 
BASIC DEFINITIONS 

The aerodynamic forces and moments generated on an airplane are due to its 
geometric shape, attitude to the flow, airspeed, and the properties of the ambient 
air mass through which it is flying. Air is a fluid and as such possesses certain fluid 
properties. The properties we are interested in are the pressure, temperature, 
density, viscosity, and speed of sound of air at the flight altitude. 

1.2.1 Fluid 

A fluid can be thought of as any substance that flows. To have such a property, the 
fluid must deform continuously when acted on by a shearing force. A shear force 
is a force tangent to the surface of the fluid element. No shear stresses are present 
in the fluid when it is at rest. A fluid can transmit forces normal to any chosen 
direction. The normal force and the normal stress are the pressure force and 
pressure, respectively. 

Both liquids and gases can be considered fluids. Liquids under most conditions 
do not change their weight per unit of volume appreciably and can be considered 
incompressible for most engineering applications. Gases, on the other hand, change 
their weight or mass per unit of volume appreciably under the influences of pressure 
or temperature and therefore must be considered compressible. 

1.2.2 Pressure 

Pressure is the normal force per unit area acting on the fluid. The average pressure 
is calculated by dividing the normal force to the surface by the surface area: 

The static pressure in the atmosphere is nothing more than the weight per unit 
of area of the air above the elevation being considered. The ratio of the pressure P 
at altitude to sea-level standard pressure Po is given the symbol 6: 

The relationship between pressure, density p, and temperature Tis given by the 
equation of state 

where R is a constant, the magnitude depending on the gas being considered. 
For air, R has a value 287 J/(kg•‹K) or 1718 ft2/(s2"R). Atmospheric air follows the 
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equation of state provided that the temperature is not too high and that air can be 
treated as a continuum. 

1.2.3 Temperature 

In aeronautics the temperature of air is an extremely important parameter in that 
it affects the properties of air such as density and viscosity. Temperature is an 
abstract concept but can be thought of as a measure of the motion of molecular 
particles within a substance. The concept of temperature also serves as a means of 
determining the direction in which heat energy will flow when two objects of 
different temperatures come into contact. Heat energy will flow from the higher 
temperature object to that at lower temperature. 

As we will show later the temperature of the atmosphere varies significantly 
with altitude. The ratio of the ambient temperature at altitude, T, to a sea-level 
standard value, T,, is denoted by the symbol 8: 

where the temperatures are measured using the absolute Kelvin or Rankine scales. 

1.2.4 Density 

The density of a substance is defined as the mass per unit of volume: 

Mass 
= Unit of volume 

From the equation of state, it can be seen that the density of a gas is directly 
proportional to the pressure and inversely proportional to the absolute tempera- 
ture. The ratio of ambient air density p to standard sea-level air density p, occurs 
in many aeronautical formulas and is given the designation u: 

1.2.5 Viscosity 

Viscosity can be thought of as the internal friction of a fluid. Both liquids and gases 
possess viscosity, with liquids being much more viscous than gases. As an aid in 
visualizing the concept of viscosity, consider the following simple experiment. 
Consider the motion of the fluid between two parallel plates separated by the 
distance h. If one plate is held fixed while the other plate is being pulled with a 
constant velocity u, then the velocity distribution of the fluid between the plates will 
be linear as shown in Figure 1.2. 

To produce the constant velocity motion of the upper plate, a tangential force 
must be applied to the plate. The magnitude of the force must be equal to the 
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Movina date E 

Fixed plate 

FIGURE 1.2 
Shear stress between two plates. 

friction forces in the fluid. It has been established from experiments that the force 
per unit of area of the plate is proportional to the velocity of the moving plate and 
inversely proportional to the distance between the plates. Expressed mathemati- 
cally we have 

where 7 is the force per unit area, which is called the shear stress. 
A more general form of Equation (1.7) can be written by replacing u/h with 

the derivative duldy. The proportionality factor is denoted by p, the coefficient of 
absolute viscosity, which is obtained experimentally. 

Equation (1.8) is known as Newton's law of friction. 
For gases, the absolute viscosity depends only on the temperature, with in- 

creasing temperature causing an increase in viscosity. To estimate the change in 
viscosity with the temperature, several empirical formulations commonly are used. 
The simplest formula is Rayleigh's, which is 

where the temperatures are on the absolute scale and the subscript 0 denotes the 
reference condition. 

An alternate expression for calculating the variation of absolute viscosity with 
temperature was developed by Sutherland. The empirical formula developed by 
Sutherland is valid provided the pressure is greater than 0.1 atmosphere and is 

where S, is a constant, When the temperatures are expressed in the Rankine scale, 
S, = 198"R; when the temperatures are expressed in the Kelvin scale, S, = 110•‹K. 

The ratio of the absolute viscosity to the density of the fluid is a parameter that 
appears frequently and has been identified with the symbol v; it is called the 
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kinematic viscosity: 

An important dimensionless quantity, known as the Reynolds number, is defined as 

where 1 is a characteristic length and V is the fluid velocity. 
The Reynolds number can be thought of as the ratio of the inertial to viscous 

forces of the fluid. 

1.2.6 The Mach Number and the Speed of Sound 

The ratio of an airplane's speed V to the local speed of sound a is an extremely 
important parameter, called the Mach number after the Austrian physicist Ernst 
Mach. The mathematical definition of Mach number is 

As an airplane moves through the air, it creates pressure disturbances that propa- 
gate away from the airplane in all directions with the speed of sound. If the airplane 
is flying at a Mach number less than 1, the pressure disturbances travel faster 
than the airplane and influence the air ahead of the airplane. An example of this 
phenomenon is the upwash field created in front of a wing. However, for flight at 
Mach numbers greater than 1 the pressure disturbances move more slowly than 
the airplane and, therefore, the flow ahead of the airplane has no warning of the 
oncoming aircraft. 

The aerodynamic characteristics of an airplane depend on the flow regime 
around the airplane. As the flight Mach number is increased, the flow around the 
airplane can be completely subsonic, a mixture of subsonic and supersonic flow, or 
completely supersonic. The flight Mach number is used to classify the various flow 
regimes. An approximate classification of the flow regimes follows: 

Incompressible subsonic flow 0 < M < 0.5 
Compressible subsonic flow 0.5 < M < 0.8 
Transonic flow 0.8 < M < 1.2 
Supersonic flow 1.2 < M < 5 
Hypersonic flow 5 < M  

To have accurate aerodynamic predictions at M > 0.5 compressibility effects must 
be included. 

The local speed of sound must be known to determine the Mach number. The 
speed of sound can be shown to be related to the absolute ambient temperature by 
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the following expression: 

where y is the ratio of specific heats and R is the gas constant. The ambient 
temperature will be shown in a later section to be a function of altitude. 

1.3 
AEROSTATICS 

Aerostatics deals with the state of a gas at rest. It follows from the definition given 
for a fluid that all forces acting on the fluid must be normal to any cross-section 
within the fluid. Unlike a solid, a fluid at rest cannot support a shearing force. A 
consequence of this is that the pressure in a fluid at rest is independent of direction. 
That is to say that at any point the pressure is the same in all directions. This 
fundamental concept owes its origin to Pascal, a French scientist (1623-1662). 

1.3.1 Variation of Pressure in a Static Fluid 

Consider the small vertical column of fluid shown in Figure 1.3. Because the fluid 
is at rest, the forces in both the vertical and horizontal directions must sum to 0. 
The forces in the vertical direction are due to the pressure forces and the weight of 
the fluid column. The force balance in the vertical direction is given by 

PA = (P + dP)A + pgA dh (1.15) 

or dP = -pg dh (1.16) 

FIGURE 1.3 
Element of fluid at rest. 
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Equation (1.16) tells us how the pressure varies with elevation above some refer- 
ence level in a fluid. As the elevation is increased, the pressure will decrease. 
Therefore, the pressure in a static fluid is equal to the weight of the column of fluid 
above the point of interest. 

One of the simplest means of measuring pressure is by a fluid manometer. 
Figure 1.4 shows two types of manometers. The first manometer consists of a 
U-shaped tube containing a liquid. When pressures of different magnitudes are 
applied across the manometer the fluid will rise on the side of the lower pressure 
and fall on the side of the higher pressure. By writing a force balance for each side, 
one can show that 

which yields a relationship for the pressure difference in terms of the change in 
height of the liquid column: 

P,  - P, = pgh (1.18) 

The second sketch shows a simple mercury barometer. The barometer can be 
thought of as a modified U-tube manometer. One leg of the tube is closed off and 
evacuated. The pressure at the top of this leg is 0 and atmospheric pressure acts on 
the open leg. The atmospheric pressure therefore is equal to the height of the 
mercury column; that is, 

In practice the atmospheric pressure is commonly expressed as so many inches or 
millimeters of mercury. Remember, however, that neither inches nor millimeters of 
mercury are units of pressure. 

FIGURE 1.4 
Sketch of U-tube manometer 
and barometer. 

U-tube manometer Barometer 
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1.4 
DEVELOPMENT OF BERNOULLI'S EQUATION 

Bernoulli's equation establishes the relationship between pressure, elevation, and 
velocity of the flow along a stream tube. For this analysis, the fluid is assumed to 
be a perfect fluid; that is, we will ignore viscous effects. Consider the element of 
fluid in the stream tube shown in Figure 1.5. The forces acting on the differential 
element of fluid are due to pressure and gravitational forces. The pressure force 
acting in the direction of the motion is given by 

The gravitational force can be expressed as 

dz 
= - g  dm- 

ds 

Applying Newton's second law yields 

The differential mass dm can be expressed in terms of the mass density of the fluid 
element times its respective volume; that is, 

Inserting the expression for the differential mass, the acceleration of the fluid can 

\ 

\-Stream tube 

FIGURE 1.5 
Forces acting on an element of flow 
in a stream tube. 
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be expressed as 

dV - 1 dP dz - -  

dt p d s  'ds 

The acceleration can be expressed as 

The first term on the right-hand side, dV/dt, denotes the change in velocity as a 
function of time for the entire flow field. The second term denotes the acceleration 
due to a change in location. If the flow field is steady, the term aV/& = 0 and 
Equation ( 1.27) reduce to 

The changes of pressure as a function of time cannot accelerate a fluid particle. This 
is because the same pressure would be acting at every instant on all sides of the fluid 
particles. Therefore, the partial differential can be replaced by the total derivative 
in Equation ( 1.28): 

Integrating Equation (1.29) along a streamline yields 

which is known as Bernoulli's equation. Bernoulli's equation establishes the rela- 
tionship between pressure, elevation, and velocity along a stream tube. 

1.4.1 Incompressible Bernoulli Equation 

If the fluid is considered to be incompressible. Equation (1.29) readily can be 
integrated to yield the incompressible Bernoulli equation: 

The differences in elevation usually can be ignored when dealing with the flow of 
gases such as air. An important application of Bernoulli's equation is the determi- 
nation of the so-called stagnation pressure of a moving body or a body exposed to 
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a flow. The stagnation point is defined as that point on the body at which the flow 
comes to rest. At that point the pressure is 

where P, and V, are the static pressure and velocity far away from the body; that 
is, the pressures and velocities that would exist if the body were not present. In the 
case of a moving body, V, is equal to the velocity of the body itself and P, is the 
static pressure of the medium through which the body is moving. 

1.4.2 Bernoulli's Equation for a Compressible Fluid 

At higher speeds (on the order of 100 mls), the assumption that the fluid density of 
gases is constant becomes invalid. As speed is increased, the air undergoes a 
compression and, therefore, the density cannot be treated as a constant. If the flow 
can be assumed to be isentropic, the relationship between pressure and density can 
be expressed as 

where y is the ratio of specific heats for the gas. For air, y is approximately 1.4. 
Substituting Equation (1.33) into Equation (1.30) and performing the indi- 

cated integrations yields the compressible form of Bernoulli's equation: 

-- 1 + - V 2  + gz = constant 
Y - l P  2 

As noted earlier, the elevation term usually is quite small for most aeronautical 
applications and therefore can be ignored. The stagnation pressure can be found by 
letting V = 0, in Equation (1.34): 

If we rearrange Equation (1.35), we obtain 

y - 1  1 
1 +-- POP v2 = - 

2 YPIP POP 

Equation (1.36) can be solved for the velocity by substituting the following expres- 
sions, 

and 
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into Equation ( 1.36) and rearranging to yield a relationship for the velocity and the 
Mach number as follows. 

Equations ( 1.39) and (1.40) can be used to find the velocity and Mach number 
provided the flow regime is below M = 1. 

1.5 
THE ATMOSPHERE 

The performance characteristics of an airplane depend on the properties of the 
atmosphere through which it flies. Because the atmosphere is continuously chang- 
ing with time, it is impossible to determine airplane performance parameters pre- 
cisely without first defining the state of the atmosphere. 

The earth's atmosphere is a gaseous envelope surrounding the planet. The gas 
that we call air actually is a composition of numerous gases. The composition of 
dry air at sea level is shown in Table 1.1. The relative percentages of the con- 
stituents remains essentially the same up to an altitude of 90 km or 300,000 ft 
owing primarily to atmospheric mixing caused by winds and turbulence. At alti- 
tudes above 90 km the gases begin to settle or separate. The variability of water 
vapor in the atmosphere must be taken into account by the performance analyst. 
Water vapor can constitute up to 4 percent by volume of atmospheric air. When the 
relative humidity is high, the air density is lower than that for dry air for the same 
conditions of pressure and temperature. Under these conditions the density may be 
reduced by as much as 3 percent. A change in air density will cause a change in the 
aerodynamic forces acting on the airplane and therefore influence its performance 
capabilities. Furthermore, changes in air density created by water vapor will affect 
engine performance, which again influences the performance of the airplane. 

TABLE 1.1 

Composition of atmospheric air 

Density Percentage by Percentage by 
kg/m3 slugslft' volume weight 

Air 1.2250 2.3769 X IW7 100 100 
Nitrogen 78.03 75.48 
Oxygen 20.99 23.18 
Argon 0.94 1 .29 

The remaining small portion of the composition of air is made up of neon, helium, 
krypton, xenon, CO, and water vapor. 
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The atmosphere can be thought of as composed of various layers, with each 
layer of the atmosphere having its own distinct characteristics. For this discussion 
we will divide the atmosphere into four regions. In ascending order the layers are 
the troposphere, stratosphere, ionosphere, and exosphere. The four layers are illus- 
trated in Figure 1.6. The troposphere and stratosphere are extremely important 
to aerospace engineers since most aircraft fly in these regions. The troposphere 
extends from the Earth's surface to an altitude of approximately 6-13 miles or 
10-20 km. The air masses in the troposphere are in constant motion and the region 
is characterized by unsteady or gusting winds and turbulence. The influence of 
turbulence and wind shear on aircraft structural integrity and flight behavior con- 
tinues to be an important area of research for the aeronautical community. The 
structural loads imposed on an aircraft during an encounter with turbulent air can 
reduce the structural life of the airframe or in an encounter with severe turbulence 
can cause structural damage to the airframe. 

Wind shear is an important atmospheric phenomenon that can be hazardous to 
aircraft during takeoff or landing. Wind shear is the variation of the wind vector in 
both magnitude and direction. In vertical wind shear, the wind speed and direction 
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Ozone layer 
steady winds 
jet stream 

FIGURE 1.6 
Layers of earth's atmosphere. 
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change with altitude. An airplane landing in such a wind shear may be difficult to 
control; this can cause deviations from the intended touchdown point. Wind shears 
are created by the movement of air masses relative to one another or to the earth's 
surface. Thunderstorms, frontal systems, and the earth's boundary layer all pro- 
duce wind shear profiles that at times are severe enough to be hazardous to aircraft 
flying at a low altitude. 

The next layer above the troposhere is called the stratosphere. The stratosphere 
extends up to over 30 miles, or 50 km, above the Earth's surface. Unlike the tropo- 
sphere, the stratosphere is a relatively tranquil region, free of gusts and turbulence, 
but it is characterized by high, steady winds. Wind speeds of the order of 37 mls or 
120 ftls have been measured in the stratosphere. 

The ionosphere extends from the upper edge of the stratosphere to an altitude of 
up to 300 miles or 500 km. (The name is derived from the word ion, which describes 
a particle that has either a positive or negative electric charge.) This is the region 
where the air molecules undergo dissociation and many electrical phenomena occur. 
The aurora borealis is a visible electrical display that occurs in the ionosphere. 

The last layer of the atmsophere is called the exosphere. The exosphere is the 
outermost region of the atmosphere and is made up of rarefied gas. In effect this is 

Standard atmosphereic profile \ 
is made up of gradient ar 
isothermal regions 

Gradient region ,, / 
Isothermal region 

, L 
Absolute temperature 

FIGURE 1.7 
Temperature profile i n  the standard atmosphere 
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TABLE 1.2 

Properties of air at sea level in the standard atmosphere 

Gas constant, R 1718 ft.lb/(slug . OR) 
Pressure, P 2 1 16.2 lb/ft2 

29.92 in Hg 
Density, p 2.377 X slug/ft3 
Temperature 5 18.69"R 
Absolute viscosity, p 3.737 X lo-' Ib . s/ft2 
Kinematic viscosity, v 1.572 X ft2/s 
Speed of sound, a 11 16.4 ftls 

a transition zone between the earth's atmosphere and interplanetary space. For 
many applications we can consider air resistance to cease in the exosphere. 

As stated previously, the properties of the atmosphere change with time and 
location on the Earth. To compare the flight performance characteristics of air- 
planes and flight instruments, a standard atmosphere was needed. The modern 
standard atmosphere was first developed in the 1920s, independently in the United 
States and Europe. The National Advisory Committee for Aeronautics (NACA) 
generated the American Standard Atmosphere. The European standard was devel- 
oped by the International Commission for Aerial Navigation (ICAN). The two 
standard atmospheres were essentially the same except for some slight differences. 
These differences were resolved by an international committee and an interna- 
tional standard atmosphere was adopted by the International Civil Aviation Orga- 
nization (ICAO) in 1952. 

The standard atmosphere assumes a unique temperature profile that was deter- 
mined by an extensive observation program. The temperature profile consists of 
regions of linear variations of temperature with altitude and regions of constant 
temperature (isothermal regions). Figure 1.7 shows the temperature profile 
through the standard atmosphere. The standard sea-level properties of air are listed 
in Table 1.2. 

The properties of the atmosphere can be expressed analytically as a function 
of altitude. However, before proceeding with the development of the analytical 
model of the atmosphere, we must define what we mean by altitude. For the present 
we will be concerned with three different definitions of altitude: absolute, geomet- 
ric, and geopotential. Figure 1.8 shows the relationship between absolute and 
geometric altitude. Absolute altitude is the distance from the center of the Earth to 

\ Ro- Radius of the earth FIGURE 1.8 
Definition of geometric and - 
absolute altitudes. 
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the point in question, whereas the geometric altitude is the height of the point above 
sea level. The absolute and geometric altitudes are related to each other in the 
following manner: 

where h,, h,, and R, are the absolute altitude, geometric altitude, and radius of the 
earth, respectively. 

Historically, measurements of atmospheric properties have been based on the 
assumption that the acceleration due to gravity is constant. This assumption leads 
to a fictitious altitude called the geopotential altitude. The relationship between the 
geometric and geopotential altitudes can be determined from an examination of the 
hydrostatic equation (Equation (1.16)). Rewriting the hydrostatic equation, 

we see that the change in pressure is a function of the fluid density, and if we 
employ the acceleration due to gravity at sea level, then h is the geopotential 
altitude. Therefore, we have 

when h is the geopotential height and 

d P  = -pg dh, ( 1.44) 

when h, is the geometric height. 
Equations ( 1.43) and ( 1.44) can be used to establish the relationship between 

the geometric and geopotential altitude. On comparing these equations we see that 

g dh = - dh, 
go 

Further it can be shown that 

which when substituted into Equation (1.45) yields 

Equation ( 1.47) can be integrated to give an expression relating the two altitudes: 
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In practice, the difference between the geometric and geopotential altitudes is quite 
small for altitudes below 15.2 km or 50,000 ft. However, for the higher altitudes 
the difference must be taken into account for accurate performance calculations. 

Starting with the relationship for the change in pressure with altitude and the 
equations of state 

and 

we can obtain the following expression by dividing (1.50) by (1.51): 

If the temperature varies with altitude in a linear manner, Equation (1.52) yields 

which on integration gives 

where P I ,  T I ,  and h ,  are the pressure, temperature, and altitude at the start of the 
linear region and A is the rate of temperature change with altitude, which is called 
the lapse rate. Equation (1.54) can be rewritten in a more convenient form as 

Equation (1 .55) can be used to calculate the pressure at various altitudes in any one 
of the linear temperature profile regions, provided the appropriate constants P I ,  T I ,  
h , ,  and A are used. 

The density variation can be easily determined as follows: 

and therefore 

In the isothermal regions the temperature remains constant as the altitude 
varies. Starting again with Equation (1.52) we obtain 
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TABLE 1.3 

Properties of the atmosphere at the isothermal gradient boundaries 

Geopotential Geometric 
altitude, altitude, 
H, km Z, km T ,  O K  P, Nlm2 p, kglm3 dTldH, "Klkm 

where P I ,  T, , and h ,  are the values of pressure, temperature, and altitude at the start 
of the isothermal region. The density variation in the isothermal regions can be 
obtained as 

Equations (I.%), (1.57), ( 1.59), and (I  .60) can be used to predict accurately the 
pressure and density variation in the standard atmosphere up to approximately 
57 miles, or 9 1 km. Table 1.3 gives the values of temperature, pressure, and density 
at the boundaries between the various temperature segments. The properties of the 
standard atmosphere as a function of altitude are presented in tabular form in 
Appendix A. 

EXAMPLE PROBLEM 1.1. The temperature from sea level to 30,000 ft is found to 
decrease in a linear manner. The temperature and pressure at sea level are measured 
to be 40•‹F and 2050 lb/ft2, respectively. If the temperature at 30,000 ft is -60•‹F. find 
the pressure and density at 20,000 ft. 

Solution. The temperature can be represented by the linear equation 

where T, = 499.6"R 

T - T, 
and A = -  = -0,00333" R/ft 

h 

The temperature at 20,000 ft can be obtained as 

When h = 20,000 ft, T = 432.Y0R. The pressure can be calculated from Equa- 
tion ( 1 S4); that is, 
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The density can be found from either Equation (1.3) or (1.56). Using the equation of 
state. 

1.6 
AERODYNAMIC NOMENCLATURE 

To describe the motion of an airplane it is necessary to define a suitable coordinate 
system for the formulation of the equations of motion. For most problems dealing 
with aircraft motion, two coordinate systems are used. One coordinate system is 
fixed to the Earth and may be considered for the purpose of aircraft motion analysis 
to be an inertial coordinate system. The other coordinate system is fixed to the 
airplane and is referred to as a body coordinate system. Figure 1.9 shows the two 
right-handed coordinate systems. 

The forces acting on an airplane in flight consist of aerodynamic, thrust, and 
gravitational forces. These forces can be resolved along an axis system fixed to the 
airplane's center of gravity, as illustrated in Figure 1.10. The force components are 
denoted X, Y,  and 2; T,, T,, and T,; and W,, W,, and W, for the aerodynamic, thrust, 
and gravitational force components along the x ,  y, and z axes, respectively. The 

Body fixed frame 
translates and rotates 
with the aircraft. 

1 Fixed frame 
Zf 

FIGURE 1.9 
Body axis coordinate system. 
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Moment of inertia 

Roll 
Axis 

FIGURE 1.10 
Definition of forces, moments, and velocity components in a 
body fixed coordinate 

aerodynamic forces are defined in terms of dimensionless coefficients, the flight 
dynamic pressure Q, and a reference area S as follows: 

X = CxQS Axial force (1.61) 

Pitch 
Axis 

Y = C, QS Side force ( 1.62) 

Yaw 
Axis 

Z = C, QS Normal force ( 1.63) 

In a similar manner, the moments on the airplane can be divided into moments 
created by the aerodynamic load distribution and the thrust force not acting 
through the center of gravity. The components of the aerodynamic moment also 
are expressed in terms of dimensionless coefficients, flight dynamic pressure, refer- 
ence area, and a characteristic length as follows: 

L = C,QSl Rolling moment ( 1.64) 

M = C,n QSl Pitching moment ( 1.65) 

N = C, QSI Yawing moment ( 1.66) 
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For airplanes, the reference area S is taken as the wing platform area and the 
characteristic length 1 is taken as the wing span for the rolling and yawing moment 
and the mean chord for the pitching moment. For rockets and missiles, the refer- 
ence area is usually taken as the maximum cross-sectional area, and the character- 
istic length is taken as the maximum diameter. 

The aerodynamic coefficients C,, C,, C,, C,, C,,,, and C,, primarily are a func- 
tion of the Mach number, Reynolds number, angle of attack, and sideslip angle; 
they are secondary functions of the time rate of change of angle of attack and 
sideslip, and the angular velocity of the airplane. 

The aerodynamic force and moment acting on the airplane and its angular and 
translational velocity are illustrated in Figure 1.10. The x and z axes are in the 
plane of symmetry, with the x axis pointing along the fuselage and the positive y 
axis along the right wing. The resultant force and moment, as well as the airplane's 
velocity, can be resolved along these axes. 

The angle of attack and sideslip can be defined in terms of the velocity compo- 
nents as illustrated in Figure 1.1 1. The equations for (Y and P follow: 

o 
and p =  sin ' - 1 -  v ( 1.68) 

where V = ( u 2  + o2 + w ~ ) ' ' ~  ( 1.69) 

If the angle of attack and sideslip are small, that is, < 15", then Equations (1.67) 

FIGURE 1.11 
Definition of angle of attack 
and sideslip. 

-------------- V, is the project of V 
Zb 1 -  into the xb zb plane. 



22 CHAPTER 1 :  Introduction 

and ( 1.68) can be approximated by 

and 

where a and p are in radians. 

AIRCRAFT INSTRUMENTS 

The earliest successful airplanes were generally flown without the aid of aircraft 
instruments.* The pilots of these early vehicles were preoccupied primarily with 
maneuvering and controlling their sometimes temperamental aircraft. However, as 
new designs were developed, the performance, stability, and control steadily im- 
proved to the point where the pilot needed more information about the airplane's 
flight conditions to fly the airplane safely. One major change in aircraft design that 
led to improved performance was the evolution of the open-air cockpit. Prior to 
this development, pilots flew their airplanes in either a crouched or inclined posi- 
tion, exposed to the oncoming airstream. In addition to providing the pilot shelter 
from the airstream, the cockpit also provided a convenient place to locate aircraft 
instruments. The early open-cockpit pilots were hesitant to fly from a closed 
cockpit because this eliminated their ability to judge sideslip (or skid) by the wind 
blowing on one side of their face. They also used the sound of the slipstream to 
provide an indication of the airspeed. 

A chronological development of aircraft instruments is not readily available; 
however, one can safely guess that some of the earliest instruments to appear on the 
cockpit instrument panel were a magnetic compass for navigation, airspeed and 
altitude indicators for flight information, and engine instruments such as rpm and 
fuel gauges. The flight decks of modern airplanes are equipped with a multitude of 
instruments that provide the flight crew with information they need to fly their 
aircraft. The instruments can be categorized according to their primary use as 
flight, navigation, power plant, environmental, and electrical systems instruments. 

Several of the instruments that compose the flight instrument group will be 
discussed in the following sections. The instruments include the airspeed indicator, 
altimeter, rate of climb indicator, and the Mach meter. These four instruments, 
along with angle of attack and sideslip indicators, are extremely important for flight 
test measurement of performance and stability data. 

*The Wright brothers used several instruments on their historic flight. They had a tachometer to 
measure engine rpm, an anemometer to measure airspeed, and a stopwatch. 
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1.7.1 Air Data Systems 

The Pitot static system of an airplane is used to measure the total pressure created 
by the forward motion of the airplane and the static pressure of the ambient 
atmosphere. The difference between total and static pressures is used to measure 
airspeed and the Mach number, and the static pressure is used to measure altitude 
and rate of climb. The Pilot static system is illustrated in Figure 1.12. The Pilot 
static probe normally consists of two concentric tubes. The inner tube is used to 
determine the total pressure, and the outer tube is used to determine the static 
pressure of the surrounding air. 

1.7.2 Airspeed Indicator 

The pressures measured by the Pitot static probe can be used to determine 
the airspeed of the airplane. For low flight speeds, when compressibility effects 
can be safely ignored, we can use the incompressible form of Bernoulli's equa- 
tion to show that the difference between the total and the static pressure is 

tatic pressure (outer tube) FIGURE 1.12 
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the dynamic pressure: 

1 -pv ;  = P,, - p ( 1.73) 
2 

The airspeed indicator in the cockpit consists of a differential pressure gauge that 
measures the dynamic pressure and deflects an indicator hand proportionally to the 
pressure difference. As indicated by Equation (1.74), the airspeed is a function of 
both the measured pressure difference and the air density p. As was shown earlier, 
the air density is a function of altitude and atmospheric conditions. To obtain the 
true airspeed, the airspeed indicator would be required to measure the change in 
both pressure and air density. This is not feasible for a simple instrument and 
therefore the scale on the airspeed indicator is calibrated using standard sea-level 
air. The speed measured by the indicator is called the indicated airspeed (IAS). 

The speed measured by an airspeed indicator can be used to determine the true 
flight speed, provided that the indicated airspeed is corrected for instrument error, 
position error, compressibility effects, and density corrections for altitude varia- 
tions. Instrument error includes those errors inherent to the instrument itself; for 
example, pressure losses or mechanical inaccuracies in the system. Position error 
has to do with the location of the Pitot static probe on the airplane. Ideally, the 
probe should be located so that it is in the undisturbed freestream; in general this 
is not possible and so the probe is affected by flow distortion due to the fuselage or 
wing. The total pressure measured by a Pitot static probe is relatively insensitive to 
flow inclination. Unfortunately, this is not the case for the static measurement and 
care must be used to position the probe to minimize the error in the static measure- 
ment. If one knows the instrument and position errors, one can correct the indi- 
cated airspeed to give what is referred to as the calibrated airspeed (CAS). 

At high speeds, the Pitot static probe must be corrected for compressibility 
effects. This can be demonstrated by examining the compressible form of the 
Bernoulli equation: 

Equation ( 1.75) can be expressed in terms of the Mach number as follows: 

Recall that the airspeed indicator measures the difference between the total and 
static pressure. Equation (1.76) can be rewritten as 
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where Q, is the compressible equivalent to the dynamic pressure. Figure 1.13 
shows the percentage error in dynamic pressure if compressibility is ignored. 

The equivalent airspeed (EAS) can be thought of as the flight speed in the 
standard sea-level air mass that produces the same dynamic pressure as the actual 
flight speed. To obtain the actual, or true, airspeed (TAS), the equivalent airspeed 
must be corrected for density variations. Using the fact that the dynamic pressures 
are the same, one can develop a relationship between the true and equivalent 
airspeeds as follows: 

where a = PIP,. 
The definitions for the various airspeed designations are summarized in 

Table 1.4. 

TABLE 1.4 

Airspeed designations 

Airspeed* Definition 

&AS Airspeed indicated by the airspeed instrument. The indicated airspeed 
Indicated airspeed is affected by altitude, compressibility, instrument, and position error. 

VCAS Indicated airspeed corrected for instrument and position errors. 
Calibrated airspeed 

VEAS Calibrated airspeed corrected for compressibility. 
Equivalent airspeed 

VTAS Equivalent airspeed corrected for density altitude. 
True airspeed 

*When the prefix K is used in the subscript, the airspeed is in knots. 
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1.7.3 Altimeter 

An altimeter is a device to measure the altitude of an airplane. The control of an 
airplane's altitude is very important for safe operation. Pilots use an altimeter to 
maintain adequate vertical spacing between their aircraft and other airplanes oper- 
ating in the same area and to establish sufficient distance between the airplane and 
the ground. 

Earlier in this chapter we briefly discussed the mercury barometer. A barome- 
ter can be used to measure the atmospheric pressure. As we have shown, the static 
pressure in the atmosphere varies with altitude, so that if we use a device similar 
to a barometer we can measure the static pressure outside the airplane, and then 
relate that pressure to a corresponding altitude in the standard atmosphere. This is 
the basic idea behind a pressure altimeter. 

The mercury barometer of course would be impractical for application in 
aircraft, because it is both fragile and sensitive to the airplane's motion. To avoid 
this difficulty, the pressure altimeter uses the same principle as an aneroid* barom- 
eter. This type of barometer measures the pressure by magnifying small deflections 
of an elastic element that deforms as pressure acts on it. 

The altimeter is a sensitive pressure transducer that measures the ambient 
static pressure and displays an altitude value on the instrument dial. The alti- 
meter is calibrated using the standard atmosphere and the altitude indicated by 
the instrument is referred to as the pressure altitude. The pressure altitude is 
the altitude in the standard atmosphere corresponding to the measured pressure. 
The pressure altitude and actual or geometric altitude will be the same only when 
the atmosphere through which the airplane is flying is identical to the standard 
atmosphere. 

In addition to pressure altitude two other altitudes are important for perfor- 
mance analysis: the density and temperature altitudes. The density altitude is 
the altitude in the standard atmosphere corresponding to the ambient density. 
In general, the ambient density is not measured but rather calculated from the 
pressure altitude given by the altimeter and the ambient temperature measured 
by a temperature probe. The temperature altitude, as you might guess, is the 
altitude in the standard atmosphere corresponding to the measured ambient 
temperature. 

As noted earlier the atmosphere is continuously changing; therefore, to com- 
pare performance data for an airplane from one test to another or to compare 
different airplanes the data must be referred to a common atmospheric reference. 
The density altitude is used for airplane performance data comparisons. 

An altimeter is an extremely sophisticated instrument, as illustrated by the 
drawing in Figure 1.14. This particular altimeter uses two aneroid capsules to 
increase the sensitivity of the instrument. The deflections of the capsules are 
magnified and represented by the movement of the pointer with respect to a scale 
on the surface plate of the meter and a counter. This altimeter is equipped with a 

*Aneroid is derived from the Greek word aneros. which means "not wet." 
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Aneroid capsules 

ltitude counter 

counter 

Barometric adjustment knob 

FIGURE 1.14 
Cutaway drawing of an altimeter. 

barometric pressure-setting mechanism. The adjusting mechanism allows the pilot 
manually to correct the altimeter for variations in sea-level barometric pressure. 
With such adjustments, the altimeter will indicate an altitude that closely ap- 
proaches the true altitude above sea level. 

1.7.4 Rate of Climb Indicator 

One of the earliest instruments used to measure rate of climb was called a stato- 
scope. This instrument was used by balloonists to detect variation from a desired 
altitude. The instrument consisted of a closed atmospheric chamber connected by 
a tube containing a small quantity of liquid to an outer chamber vented to the 
atmosphere. As the altitude changed, air would flow from one chamber to the other 
to equalize the pressure. Air passing through the liquid would create bubbles and 
the direction of the flow of bubbles indicated whether the balloon was ascending or 
descending. A crude indication of the rate of climb was obtained by observing the 
frequency of the bubbles passing through the liquid. 

Although the statoscope provided the balloonist a means of detecting departure 
from a constant altitude, it was difficult to use as a rate of climb indicator. A new 
instrument, called the balloon variometer, was developed for rate of climb mea- 
surements. The variometer was similar to the statoscope; however, the flow into the 
chamber took place through a capillary leak. The pressure difference across the 
leak was measured with a sensitive liquid manometer that was calibrated to indi- 
cate the rate of climb. 
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FIGURE 1.15 
Sketch of the basic components of a rate of climb indicator. 

Present-day rate of climb indicators are similar to the variometer. An example 
of a leak type rate of climb indicator is shown in Figure 1.15. This instrument 
consists of an insulated chamber, a diaphragm, a calibrated leak, and an appropri- 
ate mechanical linkage to measure the deflection of the diaphragm. The static 
pressure is applied to the interior of the diaphragm and also allowed to leak into the 
chamber by way of a capillary or orifice opening. The diaphragm measures the 
differential pressure across the leak and the deflection of the diaphragm is transmit- 
ted to the indicator dial by a mechanical linkage, as illustrated in the sketch in 
Figure 1.15. 

1.7.5 Machmeter 

The Pitot static tube can be used to determine the Mach number of an airplane from 
the measured stagnation and static pressure. If the Mach number is less than 1, 
Equation (1.40) can be used to find the Mach number of the airplane: 

However, when the Mach number is greater than unity, a bow wave forms ahead 
of the Pitot probe, as illustrated in Figure 1.16. The bow wave is a curved detached 
shock wave. In the immediate vicinity of the Pitot orifice, the shock wave can be 
approximated as a normal shock wave. Using the normal shock relationships, the 
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FIGURE 1.16 
Detached shock wave ahead of a Pitot static probe. 

pressure ratio across the shock can be written as 

where MI is the Mach number ahead of the shock wave. The relationship between 
the Mach number MI ahead of the normal shock and the Mach number M2 behind 
the shock is given by Equation ( 1.82): 

After passing through the shock wave, the air is slowed adiabatically to zero 
velocity at the total pressure orifice of the Pitot probe. The pressure ratio behind 
the shock can be expressed as 

On combining the previous equations, the ratio of stagnation pressure to static 
pressure in terms of the flight Mach number can be written: 

This expression is known as the Rayleigh Pitot tube formula, named after Lord 
Rayleigh, who first developed this equation in 1910. If we assume that the ratio y 
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of specific heats for air is 1.4, the expression can be rewritten as 

The preceding equations can be used to design a Mach meter. 
The use of Rayleigh's formula is invalid for every high Mach numbers or 

altitudes. When the Mach number is high, appreciable heat will be exchanged, 
which violates the assumption of adiabatic flow used in the development of the 
equation. At very high altitude, air cannot be considered as a continuous medium 
and again the analysis breaks down. 

1.7.6 Angle of Attack Indicators 

The measurement of angle of attack is important for cruise control and stall 
warning. Several devices can be used to measure the angle of attack of an airplane, 
two of which are the vane and pressure-sensor type indicator. The pivot vane sensor 
is a mass-balanced wind vane that is free to align itself with the oncoming flow. The 
vane type angle of attack sensor has been used extensively in airplane flight test 
programs. For flight test applications the sensor usually is mounted on a nose boom 
or a boom mounted to the wing tips along with a Pitot static probe, as illustrated 
in Figure 1.17. Note that a second vane system is mounted on the boom to measure 
the sideslip angle. 

The angle measured by the vane is influenced by the distortion of the flow field 
created by the airplane. Actually, the sensor measures only the local angle of 
attack. The difference between the measured and actual angles of attack is called 
the position error. Position error can be minimized by mounting the sensor on the 
fuselage, where the flow distortion is small. The deflection of the vane is recorded 
by means of a potentiometer. 

A null-seeking pressure sensor also can be used to measure the angle of attack. 
Figure 1.18 is a schematic of a null-seeking pressure sensor. The sensor consists of 
the following components: a rotatable tube containing two orifices spaced at equal 
angles to the tube axis, a pressure transducer to detect the difference in pressure 
between the two orifices, a mechanism for rotating the probe until the pressure 
differential is 0, and a device for measuring the rotation or angle of attack. The 
device shown in Figure 1.18 consists of a rotable probe that protrudes through the 

Five-hole probe for flow FIGURE 1.17 
Flight test instrumentation, 
Pitot static probe, angle of 
attack and sideslip vanes, 

. five-hole probe mounted on 
a nose or wing boom. 

Mounting boom 

-deslip vane 
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Detector tube I iirs'Ots 

FIGURE 1.18 
Null-sensing pressure probe for measuring angle of attack. 

fuselage and an air chamber mounted inside the fuselage. The pressures from the 
two slits are vented to air chambers by a swivel paddle. If a pressure difference 
exists at the two slots, the swivel paddle will rotate. The paddle is connected by way 
of linkages so that, as the paddle moves, the pressure tube is rotated until the 
pressures are equalized. The angular position of the probe is recorded by a poten- 
tiometer. 

EXAMPLE P R O B L E M  1.2. An aircraft altimeter calibrated to the standard atmo- 
sphere reads 10,000 ft. The airspeed indicator has been calibrated for both instrument 
and position errors and reads a velocity of 120 knots. If the outside air temperature is 
20•‹F, determine the true airspeed. 

Solution. The altimeter is a pressure gauge calibrated to the standard atmosphere. If 
the altimeter reads 10,000 ft, the static pressure it senses must correspond to the static 
pressure at 10,000 ft in the standard atmosphere. Using the standard atmospheric table 
in the Appendix, the static pressure at 10,000 ft is given as 

The ambient density can be calculated using the equation of state: 
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A low-speed airspeed indicator corrected for instrument and position error reads the 
equivalent airspeed. The true speed and equivalent airspeed are related by 

where a i s  the ratio of the density at altitude to the standard sea-level value of density: 

Now, solving for the true airspeed, 

VKEAs - 120 knots 
VKTAS = - - G %'imz 

= 139 knots 

1.8 
SUMMARY 

In this chapter we examined the properties of air and how those properties vary 
with altitude. For the comparison of flight test data and calibrating aircraft instru- 
ments, a standard atmosphere is a necessity: The 1962 U.S. Standard Atmosphere 
provides the needed reference for the aerospace community. The standard atmo- 
sphere was shown to be made up of gradient and isothermal regions. 

Finally, we discussed the basic concepts behind several basic flight instruments 
that play an important role in flight test measurements of aircraft performance, 
stability and control. In principle these instruments seem to be quite simple; they 
in fact, are, extremely complicated mechanical devices. Although we have dis- 
cussed several mechanical instruments, most of the information presented to the 
flight crew on the newest aircraft designs comes from multifunctional electronic 
displays. Color cathode ray tubes are used to display air data such as attitude, speed, 
and altitude. Additional displays include navigation, weather, and engine perfor- 
mance information, to name just a few items. The improvements offered by this 
new technology can be used to reduce the workload of the flight crew and improve 
the flight safety of the next generation of airplane designs. 

PROBLEMS 

1.1. An altimeter set for sea-level standard pressure indicates an altitude of 20,000 ft. If the 
outside ambient temperature is -YF, find the air density and the density altitude. 

1.2. An airplane is flying at an altitude of 5000 m as indicated by the altimeter and the 
outside air temperature is -20•‹C. If the airplane is flying at a true airspeed of 300 mls, 
determine the indicated airspeed. 
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1.3. A high-altitude, remotely piloted communications platform is flying at a pressure 
altitude of 60,000 ft and an indicated airspeed of 160 ftls. The outside ambient 
temperature is -75•‹F. Estimate the Reynolds number of the wing based on a mean 
chord of 3.5 ft. 

1.4. An airplane is flying at a pressure altitude of 10,000 ft and the airspeed indicator 
reads 100 knots. If there is no instrument error and the position error is given by 
Figure P1.4, find the true airspeed of the airplane. 

1.5. Under what conditions are following relationships valid? 
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1.6. A small right circular cylinder is used to measure the angle of attack of an airplane by 
measuring the difference in pressure at two port locations that are located at 
0 = 2 20". Assuming that the flow on the forward face of the cylinder can be 
accurately modeled as an inviscid flow, the velocity along the cylinder surface can be 
expressed as 

FIGURE P1.4 
VCAS = VIA, + *V Position error versus 

indicated airspeed. 

I m I p 1 7  1 3 1 m I  

50 100 150 2 0 7  250 300 350 

VIA, Knots 

V, = 2V, sin 0 

If ,  while flying at 200 ft/s under sea-level standard conditions, the pressure difference 
is 32.5 Ib/ft2, what is the angle of the airplane? 
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CHAPTER 2 

Static Stability and Control 

"lsn 't it astonishing that all these secrets have been preserved for so many 
years just so that we could discover them!" 

Orville Wright, June 7, 1903 

2.1 
HISTORICAL PERSPECTIVE 

By the start of the 20th century, the aeronautical community had solved many of 
the technical problems necessary for achieving powered flight of a heavier-than-air 
aircraft. One problem still beyond the grasp of these early investigators was a lack 
of understanding of the relationship between stability and control as well as the 
influence of the pilot on the pilot-machine system. Most of the ideas regarding 
stability and control came from experiments with uncontrolled hand-launched 
gliders. Through such experiments, it was quickly discovered that for a successful 
flight the glider had to be inherently stable. Earlier aviation pioneers such as Albert 
Zahm in the United States, Alphonse Penaud in France, and Frederick Lanchester 
in England contributed to the notion of stability. Zahm, however, was the first to 
correctly outline the requirements for static stability in a paper he presented in 
1893. In his paper, he analyzed the conditions necessary for obtaining a stable 
equilibrium for an airplane descending at a constant speed. Figure 2.1 shows a 
sketch of a glider from Zahm's paper. Zahm concluded that the center of gravity 
had to be in front of the aerodynamic force and the vehicle would require what he 
referred to as "longitudinal dihedral" to have a stable equilibrium point. In the 
terminology of today, he showed that, if the center of gravity was ahead of the wing 
aerodynamic center, then one would need a reflexed airfoil to be stable at a positive 
angle of attack. 

In the 20 years prior to the Wright brothers' successful flight, many individuals 
in the United States and Europe were working with gliders and unpiloted powered 
models. These investigators were constantly trying to improve their vehicles, with 
the ultimate goal of achieving powered flight of a airplane under human control. 
Three men who would leave lasting impressions on the Wright brothers were Otto 
Lilienthal of Germany and Octave Chanute and Samuel Pierpont Langley of the 
United States. 
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1 Aerodynamic Force r Flight Path 
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V Force due to what Zahm 
Weight refered to as longitudinal dihedral 

(reflexed trailing edge) 

FIGURE 2.1 
Zahm's description of longitudinal stability. 

Lilienthal made a significant contribution to aeronautics by his work with 
model and human-carrying gliders. His experiments included the determination of 
the properties of curved or cambered wings. He carefully recorded the details of 
over 2000 glider flights. The information in his journal includes data on materials, 
construction techniques, handling characteristics of his gliders, and aerodynamics. 
His successful flights and recorded data inspired and aided many other aviation 
pioneers. Lilienthal's glider designs were statically stable but had very little control 
capability. For control, Lilienthal would shift his weight to maintain equilibrium 
flight, much as hang-glider pilots do today. The lack of suitable control proved to 
be a fatal flaw for Lilienthal. In 1896, he lost control of his glider; the glider stalled 
and plunged to earth from an altitude of 50 ft. Lilienthal died a day later from the 
injuries incurred in the accident. 

In the United States, Octave Chanute became interested in gliding flight in 
the mid 1890s. Initially, he built gliders patterned after Lilienthal's designs. After 
experimenting with modified versions of Lilienthal's gliders, he developed his own 
designs. His gliders incorporated biplane and multiplane wings, controls to adjust 
the wings to maintain equilibrium, and a vertical tail for steering. These design 
changes represented substantial improvements over Lilienthal's monoplane glid- 
ers. Many of Chanute's innovations would be incorporated in the Wright brothers' 
designs. In addition to corresponding with the Wright brothers, Chanute visited 
their camp at Kitty Hawk to lend his experience and advice to their efforts. 

Another individual who helped the Wright brothers was Samuel Pierpont 
Langley, secretary of the Smithsonian Institution. The Wright brothers knew of 
Langley's work and wrote to the Smithsonian asking for the available aeronautical 
literature. The Smithsonian informed the Wright brothers of the activities of many 
of the leading aviation pioneers and this information, no doubt, was very helpful 
to them. 

Around 1890 Langley became interested in problems of flight. Initially his 
work consisted of collecting and examining all the available aerodynamic data. 
From the study of these data and his own experiments he concluded that heavier- 
than-air powered flight was possible. Langley then turned his attention to designing 
and perfecting unpiloted powered models. On May 6, 1896, his powered model 
flew for 1 f minutes and covered a distance of three-quarters of a mile. Langley's 
success with powered models pioneered the practicality of mechanical flight. 
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After his successful model flights, Langley was engaged by the War Depart- 
ment to develop a human-carrying airplane. Congress appropriated $50,000 for 
the project. Langley and his engineering assistant, Charles Manley, started work 
on their own design in 1899. For the next four years, they were busy designing, 
fabricating, and testing the full-size airplane that was to be launched by a catapult 
fixed to the top of a houseboat. The first trial was conducted on September 7, 1903, 
in the middle of the Potomac River near Tidewater, Virginia. The first attempt 
ended in failure as the airplane pitched down into the river at the end of the launch 
rails. A second attempt was made on December 8, 1903; this time, the airplane 
pitched up and fell back into the river. In both trials, the launching system pre- 
vented the possibility of a successful flight. For Langley, it was a bitter disappoint- 
ment and the criticism he received from the press deeply troubled him. He was one 
of the pioneering geniuses of early aviation, however, and it is a shame that he went 
to his grave still smarting from the ridicule. Some 20 years later his airplane was 
modified, a new engine was installed, and the airplane flew successfully. 

The time had come for someone to design a powered airplane capable of 
carrying someone aloft. As we all know, the Wright brothers made their historic 
first flight on a powered airplane at Kitty Hawk, North Carolina, on December 17, 
1903. Orville Wright made the initial flight, which lasted only 12 seconds and 
covered approximately 125 feet. Taking turns operating the aircraft, Orville and 
Wilbur made three more flights that day. The final flight lasted 59 seconds and 
covered a distance of 852 feet while flying into a 20 mph headwind. The airplane 
tended to fly in a porpoising fashion, with each flight ending abruptly as the 
vehicle's landing skids struck tile ground. The Wright brothers found their powered 
airplane to be much more responsive than their earlier gliders and, as a result, had 
difficulty controlling their airplane. 

Figure 2.2 shows two photographs of the Kitty Hawk Flyer. The first pho- 
tograph shows Orville Wright making the historical initial flight and the second 
shows the airplane after the fourth and last flight of the day. Notice the damaged 
horizontal rudder (the term used by the Wright brothers). Today we use the term 
canard to describe a forward control surface. The world canard comes to us from 
the French word that means "duck." The French used the term canard to describe 
an early French airplane that had its horizontal tail located far forward of the wing. 
They thought this airplane looked like a duck with its neck stretched out in flight. 

From this very primitive beginning, we have witnessed a remarkable revolution 
in aircraft development. In less than a century, airplanes have evolved into an 
essential part of our national defense and commercial transportation system. The 
success of the Wright brothers can be attributed to their step-by-step experimental 
approach. After reviewing the experimental data of their contemporaries, the 
Wright brothers were convinced that additional information was necessary before 
a successful airplane could be designed. They embarked on an experimental pro- 
gram that included wind-tunnel and flight-test experiments. The Wright brothers 
designed and constructed a small wind tunnel and made thousands of model tests 
to determine the aerodynamic characteristics of curved airfoils. They also con- 
ducted thousands of glider experiments in developing their airplane. Through their 
study of the works of others and their own experimental investigations, the Wright 
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FIGURE 2.2 
Photographs of the Wright brothers' airplane, December 17, 1903, Kitty Hawk, North 
Carolina. 



2.2 Introduction 39 

brothers were convinced that the major obstacle to achieving powered flight was 
the lack of sufficient control. Therefore, much of their work was directed toward 
improving the control capabilities of their gliders. They felt strongly that powerful 
controls were essential for the pilot to maintain equilibrium and prevent accidents 
such as the ones that caused the deaths of Lilienthal and other glider enthusiasts. 

This approach represented a radical break with the design philosophy of the 
day. The gliders and airplanes designed by Lilenthal, Chanute, Langley, and other 
aviation pioneers were designed to be inherently stable. In these designs, the pilot's 
only function was to steer the vehicle. Although such vehicles were statically stable, 
they lacked maneuverability and were susceptible to upset by atmospheric distur- 
bances. The Wright brothers' airplane was statically unstable but quite maneuver- 
able. The lack of stability made their work as pilots very difficult. However, 
through their glider experiments they were able to teach themselves to fly their 
unstable airplane. 

The Wright brothers succeeded where others failed because of their dedicated 
scientific and engineering efforts. Their accomplishments were the foundation on 
which others could build. Some of the major accomplishments follow: 

1. They designed and built a wind-tunnel and balance system to conduct aerody- 
namic tests. With their tunnel they developed a systematic airfoil aerodynamic 
database. 

2. They developed a complete flight control system with adequate control capa- 
bility. 

3. They designed a lightweight engine and an efficient propeller. 
4. Finally, they designed an airplane with a sufficient strength-to-weight ratio, 

capable of sustaining powered flight. 

These early pioneers provided much of the understanding we have today regarding 
static stability, maneuverability, and control. However, it is not clear whether any 
of these men truly comprehended the relationship among these topics. 

2.2 
INTRODUCTION 

How well an airplane flies and how easily it can be controlled are subjects studied 
in aircraft stability and control. By stability we mean the tendency of the airplane 
to return to its equilibrium position after it has been disturbed. The disturbance may 
be generated by the pilot's actions or atmospheric phenomena. The atmospheric 
disturbances can be wind gusts, wind gradients, or turbulent air. An airplane must 
have sufficient stability that the pilot does not become fatigued by constantly 
having to control the airplane owing to external disturbances. Although airplanes 
with little or no inherent aerodynamic stability can be flown, they are unsafe to fly 
unless they are provided artificial stability by an electromechanical device called 
a stability augmentation system. 

Two conditions are necessary for an airplane to fly its mission successfully. The 
airplane must be able to achieve equilibrium flight and it must have the capability 
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to maneuver for a wide range of flight velocities and altitudes. To achieve equi- 
librium or perform maneuvers, the airplane must be equipped with aerodynamic 
and propulsive controls. The design and performance of control systems is an 
integral part of airplane stability and control. 

The stability and control characteristics of an airplane are referred to as the 
vehicle's handling or flying qualities. It is important to the pilot that the airplane 
possesses satisfactory handling qualities. Airplanes with poor handling qualities 
will be difficult to fly and could be dangerous. Pilots form their opinions of an 
airplane on the basis of its handling characteristics. An airplane will be considered 
of poor design if it is difficult to handle regardless of how outstanding the airplane's 
performance might be. In the study of airplane stability and control, we are 
interested in what makes an airplane stable, how to design the control systems, and 
what conditions are necessary for good handling. In the following sections we will 
discuss each of these topics from the point of view of how they influence the design 
of the airplane. 

2.2.1 Static Stability 

Stability is a property of an equilibrium state. To discuss stability we must first 
define what is meant by equilibrium. If an airplane is to remain in steady uniform 
flight, the resultant force as well as the resultant moment about the center of gravity 
must both be equal to 0. An airplane satisfying this requirement is said to be in a 
state of equilibrium or flying at a trim condition. On the other hand, if the forces 

FIGURE 2.3 
Sketches illustrating various conditions of static 
stability. 

(a) Statically stable 

(b) Statically unstable 

(c) Neutral stability 
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and moments do not sum to 0, the airplane will be subjected to translational and 
rotational accelerations. 

The subject of airplane stability is generally divided into static and dynamic 
stability. Static stability is the initial tendency of the vehicle to return to its equi- 
librium state after a disturbance. An example of the various types of static stability 
is illustrated in Figure 2.3. If the ball were to be displaced from the bottom of the 
curved surface (Figure 2.3(a)), by virtue of the gravitational attraction, the ball 
would roll back to the bottom (i.e., the force and moment would tend to restore the 
ball to its equilibrium point). Such a situation would be referred to as a stable 
equilibrium point. On the other hand, if we were able to balance a ball on the 
curved surface shown in Figure 2.3(b), then any displacement from the equilibrium 
point would cause the ball to roll off the surface. In this case, the equilibrium point 
would be classified as unstable. In the last example, shown in Figure 2.3(c), the ball 
is placed on a flat surface. Now, if the wall were to be displaced from its initial 
equilibrium point to another position, the ball would remain at the new position. 
This would be classified as a neutrally stable equilibrium point and represents the 
limiting (or boundary) between static stability and static instability. The important 
point in this simple example is that, if we are to have a stable equilibrium point, the 
vehicle must develop a restoring force or moment to bring it back to the equilibrium 
condition. 

2.2.2 Dynamic Stability 

In the study of dynamic stability we are concerned with the time history of the 
motion of the vehicle after it is disturbed from its equilibrium point. Figure 2.4 
shows several airplane motions that could occur if the airplane were disturbed from 
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FIGURE 2.4 
Examples of stable and unstable dynamic motions. 
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its equilibrium conditions. Note that the vehicle can be statically stable but dynam- 
ically unstable. Static stability, therefore, does not guarantee dynamic stability. 
However, for the vehicle to be dynamically stable it must be statically stable. 

The reduction of the disturbance with time indicates that there is resistance 
to the motion and, therefore, energy is being dissipated. The dissipation of energy 
is called positive damping. If energy is being added to the system, then we have 
a negative damping. Positive damping for an airplane is provided by forces and 
moments that arise owing to the airplane's motion. In positive damping, these 
forces and moments will oppose the motion of the airplane and cause the distur- 
bance to damp out with time. An airplane that has negative aerodynamic damping 
will be dynamically unstable. To fly such an airplane, artificial damping must be 
designed into the vehicle. The artificial damping is provided by a stability augmen- 
tation system (SAS). Basically, a stability augmentation system is an electrome- 
chanical device that senses the undesirable motion and moves the appropriate 
controls to damp out the motion. This usually is accomplished with small control 
movements and, therefore, the pilot's control actions are not influenced by the 
system. 

Of particular interest to the pilot and designer is the degree of dynamic stabil- 
ity. Dynamic stability usually is specified by the time it takes a disturbance to 
be damped to half of its initial amplitude or, in the case of an unstable motion, the 
time it takes for the initial amplitude of the disturbance to double. In the case of 
an oscillatory motion, the frequency and period of the motion are extremely im- 
portant. 

So far, we have been discussing the response of an airplane to external distur- 
bances while the controls are held fixed. When we add the pilot to the system, 
additional complications can arise. For example, an airplane that is dynamically 
stable to external disturbances with the controls fixed can become unstable by the 
pilot's control actions. If the pilot attempts to correct for a disturbance and that 
control input is out of phase with the oscillatory motion of the airplane, the control 
actions would increase the motion rather than correct it. This type of pilot-vehicle 
response is called pilot-induced oscillation (PIO). Many factors contribute to the 
P I 0  tendency of an airplane. A few of the major contributions are insufficient aero- 
dynamic damping, insufficient control system damping, and pilot reaction time. 

2.3 
STATIC STABILITY AND CONTROL 

2.3.1 Definition of Longitudinal Static Stability 

In the first example we showed that to have static stability we need to develop a 
restoring moment on the ball when it is displaced from its equilibrium point. The 
same requirement exists for an airplane. Let us consider the two airplanes and their 
respective pitching moment curves shown in Figure 2.5. The pitching moment 
curves have been assumed to be linear until the wing is close to stalling. 
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(+) 

Nose up 

(-) 

Nose down 

I Equilibrium point Airplane 1 

FIGURE 2.5 
Pitching moment coefficient versus angle of attack. 

In Figure 2.5, both airplanes are flying at the trim point denoted by B; that is, 
CmCK = 0. Suppose the airplanes suddenly encounter an upward gust such that the 
angle of attack is increased to point C. At the angle of attack denoted by C, airplane 
1 would develop a negative (nose-down) pitching moment that would tend to rotate 
the airplane back toward its equilibrium point. However, for the same disturbance, 
airplane 2 would develop a positive (nose-up) pitching moment that would tend to 
rotate the aircraft away from the equilibrium point. If we were to encounter a 
disturbance that reduced the angle of attack, say, to point A, we would find that 
airplane 1 would develop a nose-up moment that would rotate the aircraft 
back toward the equilibrium point. On the other hand, airplane 2 would develop a 
nose-down moment that would rotate the aircraft away from the equilibrium point. 
On the basis of this simple analysis, we can conclude that to have static longitudinal 
stability the aircraft pitching moment curve must have a negative slope. That is, 

through the equilibrium point. 
Another point that we must make is illustrated in Figure 2.6. Here we see two 

pitching moment curves, both of which satisfy the condition for static stability. 
However, only curve 1 can be trimmed at a positive angle of attack. Therefore, in 
addition to having static stability, we also must have a positive intercept, that is, 
Cmo > 0 to trim at positive angles of attack. Although we developed the criterion 
for static stability from the C,,, versus a curve, we just as easily could have accom- 
plished the result by working with a C,,, versus C, curve. In this case, the require- 
ment for static stability would be as follows: 
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FIGURE 2.6 
Flow field around an airplane 
created by the wing. 

The two conditions are related by the following expression: 

which shows that the derivatives differ only by the slope of the lift curve. 

2.3.2 Contribution of Aircraft Components 

In discussing the requirements for static stability, we so far have considered only 
the total airplane pitching moment curve. However, it is of interest (particularly to 
airplane designers) to know the contribution of the wing, fuselage, tail, propulsion 
system, and the like, to the pitching moment and static stability characteristics of 
the airplane. In the following sections, each of the components will be considered 
separately. We will start by breaking down the airplane into its basic components, 
such as the wing, fuselage, horizontal tail, and propulsion unit. Detailed methods 
for estimating the aerodynamic stability coefficients can be found in the United 
States Air Force Stability and Control Datcom [2.7]. The Datcom, short for data 
compendium, is a collection of methods for estimating the basic stability and 
control coefficients for flight regimes of subsonic, transonic, supersonic, and hy- 
personic speeds. Methods are presented in a systematic body build-up fashion, for 
example, wing alone, body alone, winglbody and winglbodyltail techniques. The 
methods range from techniques based on simple expressions developed from theory 
to correlations obtained from experimental data. In the following sections, as well 
as in later chapters, we shall develop simple methods for computing the aerody- 
namic stability and control coefficients. Our emphasis will be for the most part on 
methods that can be derived from simple theoretical considerations. These meth- 
ods in general are accurate for preliminary design purposes and show the relation- 
ship between the stability coefficients and the geometric and aerodynamic charac- 
teristics of the airplane. Furthermore, the methods generally are valid only for the 
subsonic flight regime. A complete discussion of how to extend these methods to 
higher-speed flight regimes is beyond the scope of this book and the reader is 
referred to [2.7] for the high-speed methods. 
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FIGURE 2.7 
Wing contribution to the pitching moment. 

2.3.3 Wing Contribution 

The contribution of the wing to an airplane's static stability can be examined with 
the aid of Figure 2.7. In this sketch we have replaced the wing by its mean aero- 
dynamic chord F. The distances from the wing leading edge to the aerodynamic 
center and the center of gravity are denoted x,, and x,, respectively. The vertical 
displacement of the center of gravity is denoted by z,,. The angle the wing chord 
line makes with the fuselage reference line is denoted as i,. This is the angle at 
which the wing is mounted onto the fuselage. 

If we sum the moments about the center of gravity, the following equation is 
obtained: 

Moments = Mcgw 

M~,% = L, COS(~,  - i,)[xCg - xacl + Dw sin(aw - iw)[xCg - xaC1 
(2.4) 

+L, sin(a, - i,)[z,] - Dw cos(a, - iw)[zcgl + Kc,, 

Dividing by ipv2si? yields 

Equation (2.5) can be simplified by assuming that the angle of attack is small. With 
this assumption the following approximations can be made: 

cos(a, - i,) = 1, s i n (  - i )  = a - i CL + CD 

If we further assume that the vertical contribution is negligible, then Equation (2.5) 
reduces to 
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where CLk = CL + CL a,. Applying the condition for static stability yields 
(I* OW 

For a wing-alone design to be statically stable, Equation (2.9) tells us that the 
aerodynamic center must lie aft of the center of gravity to make Cma < 0. Since we 
also want to be able to trim the aircraft at a positive angle of attack, the pitching 
moment coefficient at zero angle of attack, Cmi,,  must be greater than 0. A positive 
pitching moment about the aerodynamic center can be achieved by using a nega- 
tive-cambered airfoil section or an airfoil section that has a reflexed trailing 
edge. For many airplanes, the center of gravity position is located slightly aft of 
the aerodynamic center (see data in Appendix B). Also, the wing is normally 
constructed of airfoil profiles having a positive camber. Therefore, the wing contri- 
bution to static longitudinal stability is destabilizing for most conventional air- 
planes. 

Bound 

Trailing Vortex 
7 

Upwash ll I Downwash 

Downwash 
\\ I 

Trailing Vortex 

Region 

FIGURE 2.8 
Flow field around an airplane created by the wing. 
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2.3.4 Tail Contribution-Aft Tail 

The horizontal tail surface can be located either forward or aft of the wing. When 
the surface is located forward of the wing, the surface is called a canard. Both 
surfaces are influenced by the flow field created by the wing. The canard surface is 
affected by the upwash flow from the wing, whereas the aft tail is subjected to the 
downwash flow. Figure 2.8 is a sketch of the flow field surrounding a lifting wing. 
The wing flow field is due primarily to the bound and trailing vortices. The magni- 
tude of the upwash or downwash depends on the location of the tail surface with 
respect to the wing. 

The contribution that a tail surface located aft of the wing makes to the 
airplane's lift and pitching moment can be developed with the aid of Figure 2.9. In 
this sketch, the tail surface has been replaced by its mean aerodynamic chord. The 
angle of attack at the tail can be expressed as 

where E and i, are the downwash and tail incidence angles, respectively. If we 
assume small angles and neglect the drag contribution of the tail, the total lift of 
the wing and tail can be expressed as 

L = L,  + L, (2.11) 

where 

The ratio of the dynamic pressures, called the tail efficiency, can have values in the 
range 0.8- 1.2. The magnitude of 7 depends on the location of the tail surface. If 

--- LDt 
F.R.L. 

FIGURE 2.9 
Aft tail contribution to the pitching moment. 
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the tail is located in the wake region of the wing or fuselage, q will be less than unity 
because Q, < Q, due to the momentum loss in the wake. On the other hand, if the 
tail is located in a region where Q, > Q,, then q will be greater than unity. Such 
a situation could exist if the tail were located in either the slip stream of the 
propeller or in the exhaust wake of a jet engine. 

The pitching moment due to the tail can be obtained by summing the moments 
about the center of gravity: 

Usually only the first term of this equation is retained; the other terms generally are 
small in comparison to the first term. If we again use the small-angle assumption 
and that CL, P C,,, then Equation (2.14) reduces to 

where VH = l,S,/(SF) is called the horizontal tail volume ratio. 
From Figure 2.9, the angle of attack of the tail is seen to be 

The coefficient C,, can be written as 

CL, = CL a, = CLcr (a,. - i, - E + i,) (2.19) 
I , 

where C ,  is the slope of the tail lift curve. The downwash angle s can be expres- 
sed as 

where so is the downwash at zero angle of attack. 
The downwash behind a wing with an elliptic lift distribution can be derived 

from finite-wing theory and shown to be related to the wing lift coefficient and 
aspect ratio: 

where the downwash angle is in radians. The rate of change of downwash angle 
with angle of attack is determined by taking the derivative of Equation (2.21): 

where CL is per radian. The preceding expressions do not take into account the 
% 
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position of the tailplane relative to the wing; that is, its vertical and longitudinal 
spacing. More accurate methods for estimating the downwash at the tailplane can 
be found in [2.7]. An experimental technique for determining the downwash using 
wind-tunnel force and moment measurements will be presented by way of a prob- 
lem assignment at the end of this chapter. 

Rewriting the tail contribution to the pitching moment yields 

Comparing Equation (2.24) with the linear expression for the pitching moment 
given as 

c, = cm, + cm,a 
% 

(2.25) 

yields expressions for the intercept and slope: 

Recall that earlier we showed that the wing contribution to C,,, was negative for an 
airfoil having positive camber. The tail contribution to Cmo can be used to ensure 
that CmI1 for the complete airplane is positive. This can be accomplished by adjust- 
ing the tail incidence angle i,. Note that we would want to mount the tail plane at 
a negative angle of incidence to the fuselage reference line to increase Cmo due to 
the tail. 

The tail contribution to the static stability of the airplane (Cmm, < 0) can be 
controlled by proper selection of V, and CLa,. The contribution of Cmm, will become 
more negative by increasing the tail moment arm 1, or tail surface area S, and by 
increasing CLm. The tail lift curve slope C,,, can be increased most easily by 
increasing the kpect ratio of the tail planform. The designer can adjust any one of 
these parameters to achieve the desired slope. As noted here, a tail surface located 
aft of the wing can be used to ensure that the airplane has a positive Cmo and a 
negative Cma. 

EXAMPLE PROBLEM 2.1. The wing-fuselage pitching moment characteristics of a 
high-wing, single-engine, general aviation airplane follow, along with pertinent geo- 
metric data: 

where (Y is the fuselage reference line angle of attack in degrees and wf means wing- 
fuselage 

S,  = 178 ft2 x,/c = 0.1 

b, = 35.9 ft A R ,  = 7.3 
- 
c, = 5.0 ft C ,mwr =0.07/deg i, .=2.0•‹ CL0=,=0 .26  
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Estimate the horizontal tail area and tail incidence angle, i,, so that the complete 
airplane has the following pitching moment characteristics (illustrated in Figure 2.10): 

c m  ,,,, = 0.15 - 0 . 0 2 5 ~  

where u is in degrees and wft is the wing-fuselage-horizontal tail contribution. 
Assume the following with regard to the horizontal tail: 

I ,  = 14.75 ft 7 = 1 

AR, = 4.85 C,,, = 0.073ldeg 

Solution. The contribution of the horizontal tail to Cm,, and C,,= can be calculated by 
subtracting the wing-fuselage contribution from the wing-fuselage-horizontal tail con- 
tribution, respectively: 

Cm, = CmoW, - Cmo,, 

= 0.15 - (-0.05) = 0.20 
- - 

" - . ~ , ,  C"trnWf 

= -0.025 - (-0.0035) = - 0.0215ldeg 

The horizontal tail area is found by determining the horizontal tail volume ratio 
required to satisfy the required static stability that needs to be created by the tail. 
Recall the Cmm, was developed earlier and is rewritten here: 

0 10 

Alpha deg 

FIGURE 2.10 
Pitching moment characteristic for airplane in Example Problem 2.1. 
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Solving this equation for the volume ratio yields 

The only quantity we do not know in this equation is the rate of change of the 
downwash angle with respect to the angle of attack, d&/da. However, this can be 
estimated from the wing characteristics as follows: 

Using the wing-fuselage CLaYf as an approximation to CLmw we can obtain an estimate 
of de/da: 

de 2(0.07/deg)(57.3 deglrad) - = 
da  747.3) 

Substituting de/da and the other quantities into the expression for VH yields 

The horizontal tail volume ratio is expressed as 

and solving for the horizontal tail area yields 

st = 
(0.453)(178 ft2)(5 ft) 

(14.75 ft) 

= 27.3 ft2 

This is the tail area needed to provide the required tail contribution to Cmm. Next we can 
determine the tail incidence angle, i,, from the requirement for Cw,. The equation for 
C,, due to the horizontal tail was shown to be 

The tail incidence angle, i,, can be obtained by rearranging the preceding equation: 

The only quantity that we do not know in this equation is E,; that is, the downwash 
angle at the tail when the wing is at zero angle of attack. This can be estimated using 
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the following expression: 

- 2'0'261 - 0.0226 rad 
rr[7.3] 

Substituting E,, and the other quantities into the expression for i, yields 

= -2.7 deg. 

The horizontal tail is mounted to the fuselage at a negative 2.7'. 
In summary we have shown that the level of static stability can be controlled by 

the designer by proper selection of the horizontal tail volume ratio. In practice the only 
parameter making up the volume ratio that can be varied by the stability and control 
designer is the horizontal tail surface area. The other parameters, such as the tail 
moment arm, wing area, and mean wing chord, are determined by the fuselage and 
wing requirements, which are related to the internal volume and performance speci- 
fications of the airplane, respectively. 

The horizontal tail incidence angle, i,, is determined by trim angle of attack or lift 
coefficient. For a given level of static stability, that is, slope of the pitching moment 
curve, the trim angle depends on the moment coefficient at zero angle of attack, C,,,,. 
The tail incidence angle, i,, can be adjusted to yield whatever C,,, is needed to achieve 
the desired trim condition. 

2.3.5 Canard-Forward Tail Surface 

A canard is a tail surface located ahead of the wing. The canard surface has several 
attractive features. The canard, if properly positioned, can be relatively free from 
wing or propulsive flow interference. Canard control is more attractive for trim- 
ming the large nose-down moment produced by high-lift devices. To counteract the 
nose-down pitching moment, the canard must produce lift that will add to the lift 
being produced by the wing. An aft tail must produce a down load to counteract the 
pitching moment and thus reduce the airplane's overall lift force. The major 
disadvantage of the canard is that it produces a destabilizing contribution to the 
aircraft's static stability. However, this is not a severe limitation. By proper loca- 
tion of the center of gravity, one can ensure the airplane is statically stable. 

2.3.6 Fuselage Contribution 

The primary function of the fuselage is to provide room for the flight crew and 
payload such as passengers and cargo. The optimum shape for the internal volume 
at minimum drag is a body for which the length is larger than the width or height. 

shermanp
Highlight

shermanp
Highlight



2.3 Static Stability and Control 53 

For most fuselage shapes used in airplane designs, the width and height are on the 
same order of magnitude and for many designs a circular cross-section is used. 

The aerodynamic characteristics of long, slender bodies were studied by Max 
Munk [2.8] in the earlier 1920s. Munk was interested in the pitching moment 
characteristics of airship hulls. In his analysis, he neglected viscosity and treated the 
flow around the body as an ideal fluid. Using momentum and energy relationships, 
he showed that the rate of change of the pitching moment with angle of attack (per 
radian) for a body of revolution is proportional to the body volume and dynamic 
pressure: 

Multhopp [2.9] extended this analysis to account for the induced flow along the 
fuselage due to the wings for bodies of arbitrary cross-section. A summary of 
Multhopp's method for Cmo and C,- due to the fuselage is presented as follows: 

which can be approximated as 

where k, - k ,  = the correction factor for the body fineness ratio 
S = the wing reference area 
- 
c = the wing mean aerodynamic chord 
wf = the average width of the fuselage sections 

%w = the wing zero-lift angle relative to the fuselage reference line 
if = the incidence of the fuselage camber line relative to the fuselage 

reference line at the center of each fuselage increment. The 
incidence angle is defined as negative for nose droop and aft 
upsweep. 

Ax = the length of the fuselage increments 

Figure 2.1 1 illustrates how the fuselage can be divided into segments for the 
calculation of C9 and also defines the body width wf for various body cross- 
sectional shapes. The correction factor (k, - k , )  is given in Figure 2.12. 

The local angle of attack along the fuselage is greatly affected by the flow field 
created by the wing, as was illustrated in Figure 2.8. The portion of the fuselage 
ahead of the wing is in the wing upwash; the aft portion is in the wing downwash 
flow. The change in pitching moment with angle of attack is given by 

which can be approximated by 
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Fuselage is divided 
into increments 

Fuselage 
Reference 

Fuselage camber line 

FIGURE 2.11 
Procedure for calculating C,,, due to the fuselage 

k2-k,  ."I FIGURE 2.12 
k, - k ,  versus l,/d. 

0.7 

0.6 
0 10 20 

where S = the wing reference area and .? = the wing mean aerodynamic chord. 
The fuselage again can be divided into segments and the local angle of attack 

of each section, which is composed of the geometric angle of attack of the section 
plus the local induced angle due to the wing upwash or downwash for each segment, 
can be estimated. The change in local flow angle with angle of attack, as,/aa, 
varies along the fuselage and can be estimated from Figure 2.13. For locations 
ahead of the wing, the upwash field creates large local angles of attack; therefore, 
as,/aa > 1. On the other hand, a station behind the wing is in the downwash 
region of the wing vortex system and the local angle of attack is reduced. For the 
region behind the wing, i)s,/dcu is assumed to vary linearly from 0 to (1 - ae/aa) 
at the tail. The region between the wing's leading edge and trailing edge is assumed 
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Segment 1-4 n segment 

d€" . - IS obtained from 
da da 1, figure 2-13a 

FIGURE 2.13 
Variation of local flow angle along the 
fuselage. 

FIGURE 2.14 
Procedure for calculating 
Cmm due to the fuselage. 

Segment 5 
Section between the wing 

d€" . - 1s obtained from assumed to be uneffected 
figure 2-136 by the wing wake 

to be unaffected by the wing's flow field, ds,/dcu = 0. Figure 2.14 is a sketch 
showing the application of Equation (2.32). 

2.3.7 Power Effects 

The propulsion unit can have a significant effect on both the longitudinal trim and 
static stability of the airplane. If the thrust line is offset from the center of gravity, 
the propulsive force will create a pitching moment that must be counteracted by the 
aerodynamic control surface. 

The static stability of the airplane also is influenced by the propulsion system. 
For a propeller driven airplane the propeller will develop a normal force in its plane 
of rotation when the propeller is at an angle of attack. The propeller's normal force 
will create a pitching moment about the center of gravity, producing a propulsion 
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contribution to Cmm. Although one can derive a simple expression for Cmm due to the 
propeller, the actual contribution of the propulsion system to the static stability is 
much more difficult to estimate. This is due to the indirect effects that the propul- 
sion system has on the airplanes characteristics. For example, the propeller slip- 
stream can have an effect on the tail efficiency 7 and the downwash field. Because 
of these complicated interactions the propulsive effects on airplane stability are 
commonly estimated from powered wind-tunnel models. 

A normal force will be created on the inlet of a jet engine when it is at an angle 
of attack. As in the case of the propeller powered airplane, the normal force will 
produce a contribution to Cme. 

2.3.8 Stick Fixed Neutral Point 

The total pitching moment for the airplane can now be obtained by summing the 
wing, fuselage, and tail contributions: 

CmLg = Cmo f Cm,a (2.33) 

where Cmo = cmob, + c, + ~VHCL,,(&O + i .  - i r )  
"f 

(2.34) 

Notice that the expression for CmU depends upon the center of gravity position as 
well as the aerodynamic characteristics of the airplane. The center of gravity of an 
airplane varies during the course of its operation; therefore, it is important to know 
if there are any limits to the center of gravity travel. To ensure that the airplane 
possesses static longitudinal stability, we would like to know at what point 
Cma = 0. Setting Cma equal to 0 and solving for the center of gravity position yields 

In obtaining equation 2.36, we have ignored the influence of center of gravity 
movement on V,. We call this location the stick fixed neutral point. If the airplane's 

Cm xcg > xNp FIGURE 2.15 
The influence of center of gravity 

(+) 
position on longitudinal static 
stability. 

Xcg = XNP 

0 
a 

(4 

Xcg < XNP 
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center of gravity ever reaches this point, the airplane will be neutrally stable. 
Movement of the center of gravity beyond the neutral point causes the airplane to 
be statically unstable. The influence of center of gravity position on static stability 
is shown in Figure 2.15. 

EXAMPLE PROBLEM 22. Given the general aviation airplane shown in Figure 2.16, 
determine the contribution of the wing, tail, and fuselage to the C, versus u curve. Also 
determine the stick fixed neutral point. For this problem, assume standard sea-level 
atmospheric conditions. 

Solution. The lift curve slopes for the two-dimensional sections making up the wing 
and tail must be corrected for a finite aspect ratio. This is accomplished using the 
formula 

where Cia is given as per radian. 
Substituting the two-dimensional lift curve slope and the appropriate aspect ratio 

yields 

Fliaht condition 

W = 2750 Ib 
V = 176 Wsec 

X,. = 0.295E 

Wina airfoil characteristics Tail airfoil section 

Cmac = -0.116 Cia= O.Ol/deg 
Clm= 0.097ldeg CmaC= 0.0 
a, =-5O I, = -1.0" 
X,, = 0.25E 
No Twist 
i, = 1 .OD 

Reference geometry 

S = 184 it2 SH = 43 it2 
b = 33.4 ft I , =  l 6 f t  
E = 5.7 R 

FIGURE 2.16 
General aviation airplane. 
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In a similar manner the lift curve slope for the tail can be found: 

CLm, = 3.91 rad-' 

The wing contribution to Cmo and Cmm is found from Equations (2.8) and (2.9): 

and 

The lift coefficient at zero angle of attack is obtained by multiplying the absolute value 
of the zero lift angle of attack by the lift curve slope: 

Go, = CL,, I a 0  I 
= (4.3 rad-')(5 deg)/(57.3 deglrad) 

= 0.375 

Substituting the approximate information into the equations for Cm,,* and Cmmw yields 

For this particular airplane, the wing contribution to Cma is destabilizing. 
The tail contribution to the intercept and slope can be estimated from Equa- 

tions (2.26) and (2.27): 

The tail volume ratio V, is given by 

The downwash term is estimated using the expression 
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where E is the downwash angle in radians, 

and 

where CLaW is in radians, 

Substituting the preceding information into the formulas for the intercept and 
slope yields 

In this example, the ratio q of tail to wing dynamic pressure was assumed to be unity. 
The fuselage contribution to C,,,,, and Cmm can be estimated from Equations (2.30) 

and (2.32), respectively. To use these equations, we must divide the fuselage into 
segments, as indicated in Figure 2.17. The summation in Equation (2.30) easily can be 
estimated from the geometry and is found by summing the individual contributions as 
illustrated by the table in Figure 2.17. 

'B  

2 ~!(a,,~ + if) AX = - 1665 
x=O 

The body fineness ratio is estimated from the geometrical data given in Figure 2.16: 

and the correction factor k, - k ,  is found from Figure 2.12, k, - k ,  = 0.86. Substitut- 
ing these values into Equation (2.30) yields 
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Station Ax ft 

1 3.0 

2 3.0 

3 3.0 

4 3.0 

5 3.0 

6 3.0 

7 3.0 

8 3.0 

9 3.0 

if = 0 at every station 

FIGURE 2.17 

-194 

-317 

-317 

-317 

-252 

-1 44 

-79 

-34 

-10 

Sum = -1664 

Sketch of segmented fuselage for calculating C,= for the example problem. 

In a similar manner Cma can be estimated. A table is included in Figure 2.17 that 
shows the estimate of the summation. Cmq was estimated to be 

The individual contributions and the total pitching moment curve are shown in Fig- 
ure 2.18. 

The stick fixed neutral point can be estimated from Equation (2.36): 
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Station Ax ft wf ft 

FIGURE 2.17 
Continued. 

16.2 

22.5 

30.3 

84.7 

2.5 

5.0 

4.8 

2.8 

1 .o 

Sum = 85.1 
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FIGURE 2.18 
Component contributions to pitching 
moment for example problem. 

(Y - deg 

2.4 
LONGITUDINAL CONTROL 

Control of an airplane can be achieved by providing an incremental lift force on 
one or more of the airplane's lifting surfaces. The incremental lift force can be 
produced by deflecting the entire lifting surface or by deflecting a flap incorporated 
in the lifting surface. Because the control flaps or movable lifting surfaces are 
located at some distance from the center of gravity, the incremental lift force 
creates a moment about the airplane's center of gravity. Figure 2.19 shows the 
three primary aerodynamic controls. Pitch control can be achieved by changing the 
lift on either a forward or aft control surface. If a flap is used, the flapped portion 
of the tail surface is called an elevator. Yaw control is achieved by deflecting a flap 
on the vertical tail called the rudder, and roll control can be achieved by deflecting 
small flaps located outboard toward the wing tips in a differential manner. These 
flaps are called ailerons. A roll moment can also be produced by deflecting a wing 
spoiler. As the name implies a spoiler disrupts the lift. This is accomplished by 
deflecting a section of the upper wing surface so that the flow separates behind the 

FIGURE 2.19 
Primary aerodynamic controls. 
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spoiler, which causes a reduction in the lifting force. To achieve a roll moment, only 
one spoiler need be deflected. 

In this section we shall be concerned with longitudinal control. Control of the 
pitch attitude of an airplane can be achieved by deflecting all or a portion of either 
a forward or aft tail surface. Factors affecting the design of a control surface are 
control effectiveness, hinge moments, and aerodynamic and mass balancing. Con- 
trol effectiveness is a measure of how effective the control deflection is in producing 
the desired control moment. As we shall show shortly, control effectiveness is a 
function of the size of the flap and tail volume ratio. Hinge moments also are 
important because they are the aerodynamic moments that must be overcome to 
rotate the control surface. The hinge moment governs the magnitude of force 
required of the pilot to move the control surface. Therefore, great care must be used 
in designing a control surface so that the control forces are within acceptable limits 
for the pilots. Finally, aerodynamic and mass balancing deal with techniques to 
vary the hinge moments so that the control stick forces stay within an acceptable 
range. 

2.4.1 Elevator Effectiveness 

We need some form of longitudinal control to fly at various trim conditions. As 
shown earlier, the pitch attitude can be controlled by either an aft tail or forward 
tail (canard). We shall examine how an elevator on an aft tail provides the required 
control moments. Although we restrict our discussion to an elevator on an aft tail, 
the same arguments could be made with regard to a canard surface. Figure 2.20 
shows the influence of the elevator on the pitching moment curve. Notice that the 
elevator does not change the slope of the pitching moment curves but only shifts 
them so that different trim angles can be achieved. 

When the elevator is deflected, it changes the lift and pitching moment of the 
airplane. The change in lift for the airplane can be expressed as follows: 

ACL=CL8e6e where 

Slopes remain 
the same when 
control surface 
is deflected. 

(+) 

(4 

FIGURE 2.20 
The influence of the elevator on 
the C,,, versus a curve. 
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On the other hand, the change in pitching moment acting on the airplane can be 
written as 

dcm AC, = Cmse8, where C,,, = - " dds, 

The stability derivative Cmae is called the elevator control power. The larger the 
value of Cmser the more effective the control is in creating the control moment. 

Adding AC, to the pitching moment equation yields 

cm = cm, + Cm,a + Crn& (2.40) 

The derivatives CL,< and C,, can be related to the aerodynamic and geometric 
characteristics of the horizonfal tail in the following manner. The change in lift of 
the airplane due to deflecting the elevator is equal to the change in lift force acting 
on the tail: 

AL = AL, (2.4 1 ) 

where dC,/dds, is the elevator effectiveness. The elevator effectiveness is propor- 
tional to the size of the flap being used as an elevator and can be estimated from 
the equation 

The parameter T can be determined from Figure 2.21. 

The increment in airplane pitching moment is 

~ C L ,  
AC, = -VHq ACL, = - V H q  - 8, (2.45) 

d8, 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Control surface areallifting surface area 
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The designer can control the magnitude of the elevator control effectiveness by 
proper selection of the volume ratio and flap size. 

2.4.2 Elevator Angle to Trim 

Now let us consider the trim requirements. An airplane is said to be trimmed if the 
forces and moments acting on the airplane-are in equilibrium. Setting the pitching 
moment equation equal to 0 (the definition of trim) we can solve for the elevator 
angle required to trim the airplane: 

L m  % 

The lift coefficient to trim is 

We can use this equation to obtain the trim angle of attack: 

If we substitute this equation back into Equation (2.48) we get the following 
equation for the elevator angle to trim: 

The elevator angle to trim can also be obtained directly from the pitching moment 
curves shown in Figure 2.20. 

EXAMPLE PROBLEM 23. The longitudinal control surface provides a moment that 
can be used to balance or trim the airplane at different operating angles of attack or lift 
coefficient. The size of the control surface depends on the magnitude of the pitching 
moment that needs to be balanced by the control. In general, the largest trim moments 
occur when an airplane is in the landing configuration (wing flaps and landing gear 
deployed) and the center of gravity is at its forwardmost location. This can be explained 
in the following manner. In the landing configuration we fly the airplane at a high angle 
of attack or lift coefficient so that the airplane's approach speed can be kept as low as 
possible. Therefore the airplane must be trimmed at a high lift coefficient. Deployment 
of the wing flaps and landing gear create a nose-down pitching moment increment that 
must be added to the clean configuration pitching moment curve. The additional 
nose-down or negative pitching moment increment due to the flaps and landing gear 
shifts the pitching moment curve. As the center of gravity moves forward the slope of 
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the pitching moment curve becomes more negative (the airplane is more stable). This 
results in a large trim moment at high lift coefficients. The largest pitching moment that 
must be balanced by the elevator therefore occurs when the flaps and gear are deployed 
and the center of gravity is at its most forward position. 

Assume that the pitching moment curve for the landing configuration for the air- 
plane analyzed in Example Problem 2.2 at its forwardmost center of gravity position is 
as follows: 

C,% = -0.20 - 0 . 0 3 5 ~  

where a is in degrees. Estimate the size of the elevator to trim the airplane at the landing 
angle of attack of 10". Assume that the elevator angle is constrained to +20•‹ and -25". 

Solution. The increment in moment created by the control surface, AC,,,%, is both a 
function of the elevator control power, C,,, and the elevator deflection angle 6,. 

ACmq = Cm,& s e  

For a 10" approach angle of attack, the pitching moment acting on the airplane can be 
estimated as follows: 

ACmq = -0.20 - 0.035 (10') = -0.55 

This moment must be balanced by an equal and opposite moment created by deflecting 
the elevator. The change in moment coefficient created by the elevator was shown to be 

ACmq = c,, 8, 

where C,, is referred to as the elevator control power. The elevator control power is 
a function of the horizontal tail volume ratio, VH, and the flap effectiveness factor, T: 

c,, = -VH?~T~L, ,  

The horizontal tail volume ratio, V,, is set by the static longitudinal stability require- 
ments; therefore, the designer can change only the flap effectiveness parameter, T, to 
achieve the appropriate control effectiveness C,,. The flap effectiveness factor is a 
function of the area of the control flap to the total area of the lift surface on which it 
is attached. By proper selection of the elevator area the necessary control power can be 
achieved. 

For a positive moment, the control deflection angle must be negative; that is, 
trailing edge of the elevator is up: 

AC:!m = C i 2  a$-' 

Solving for the flap effectiveness parameter, T, 

cm6, 7 = -- 
VHVCL,, 

Using the values of VH, 7, and CLm, from Example Problem 2.2 we can estimate T: 
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Knowing r we can use Figure 2.21 to estimate the area of the elevator to the area of the 
horizontal tail: 

The elevator area required to balance the largest trim moment is 

This represents the minimum elevator area needed to balance the airplane. In practice 
the designer probably would increase this area to provide a margin of safety. 

This example also points out the importance of proper weight and balance for an 
airplane. If the airplane is improperly loaded, so that the center of gravity moves 
forward of the manufacturers specification, the pilot may be unable to trim the airplane 
at the desired approach CL. The pilot would be forced to trim the airplane at a lower 
lift coefficient, which means a higher landing speed. 

2.4.3 Flight Measurement of X,, 

The equation developed for estimating the elevator angle to trim the airplane can 
be used to determine the stick fixed neutral point from flight test data. Suppose we 
conducted a flight test experiment in which we measured the elevator angle of trim 
at various air speeds for different positions of the center of gravity. If we did this, 
we could develop curves as shown in Figure 2.22. 

Now, differentiating Equation (2.5 1) with respect to CLmm yields 

Note that when Crna = 0 (i.e., the center of gravity is at the neutral point) 
Equation (2.53) equals 0. Therefore, if we measure the slopes of the curves in 

FIGURE 2.22 
$"_ versus CL,", . 
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Neutral Point FIGURE 2.23 

Figure 2.22 and plot them as a function of center of gravity location, we can 
estimate the stick fixed neutral point as illustrated in Figure 2.23 by extrapolating 
to find the center of gravity position that makes dStri,/dCLlnm equal to 0. 

2.4.4 Elevator Hinge Moment 

It is important to know the moment acting at the hinge line of the elevator (or other 
type of control surface). The hinge moment, of course, is the moment the pilot must 
overcome by exerting a force on the control stick. Therefore to design the control 
system properly we must know the hinge moment characteristics. The hinge mo- 
ment is defined as shown in Figure 2.24. If we assume that the hinge moment can 
be expressed as the addition of the effects of angle of attck, elevator deflection 
angle, and tab angle taken separately, then we can express the hinge moment 
coefficient in the following manner: 

Ch, = Cho + charff, + Chg,d6e + Ch8,d6t (2.53) 

where Cho is the residual moment and 

The hinge moment parameters just defined are very difficult to predict analytically 
with great precision. Wind-tunnel tests usually are required to provide the control 
system designer with the information needed to design the control system properly. 

1 
ti, = Che TpVZ S, C, 
S, = Area aft of the hinge line 
C; = Chord measured from hinge 

line to trailing edge of the flap 

FIGURE 2.24 
Definition of hinge moments. 
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When the elevator is set free, that is, the control stick is released, the stability 
and control characteristics of the airplane are affected. For simplicity, we shall 
assume that both 6, and Cho are equal to 0. Then, for the case when the elevator is 
allowed to be free, 

Solving for 6, yields 

Usually, the coefficients Chat and Ch are negative. If this indeed is the case, then 
Z 

Equation (2.56) tells us that the elevator will float upwards as the angle of attack 
is increased. The lift coefficient for a tail with a free elevator is given by 

which simplifies to 

where 

The slope of the tail lift curve is modified by the term in the parentheses. The factor 
f can be greater or less than unity, depending on the sign of the hinge parameters 
C, and Chc Now, if we were to develop the equations for the total pitching moment 

at 

for the free elevator case, we would obtain an equation similar to Equations (2.34) 
and (2.35). The only difference would be that the term CLa, would be replaced by 
C;=, . Substituting CL4 into Equations (2.34) and (2.35) yields 

Cko = Cmol + Cm + CL,,rlVH(~, + i, - i,) (2.61) 
Of 

where the prime indicates elevator-free values. To determine the influence of a free 
elevator on the static longitudinal stability, we again examine the condition in 
which Cma = 0. Setting Ck- equal to 0 in Equation (2.62) and solving for x / F  yields 
the stick-free neutral point: 
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The difference between the stick fixed neutral point and the stick-free neutral point 
can be expressed as follows: 

The factor f determines whether the stick-free neutral point lies forward or aft of 
the stick fixed neutral point. 

Static margin is a term that appears frequently in the literature. The static 
margin is simply the distance between the neutral point and the actual center of 
gravity position 

XNP Xcg 
Stick fixed static margin = : - : 

C C 
(2.65) 

xLP x c g  
Stick-free static margin = T - T 

C 
(2.66) 

C 

For most aircraft designs, it is desirable to have a stick fixed static margin of 
approximately 5 percent of the mean chord. The stick fixed or stick-free static 
neutral points represent an aft limit on the center of gravity travel for the airplane. 

2.5 
STICK FORCES 

To deflect a control surface the pilot must move the control stick or rudder pedals. 
The forces exerted by the pilot to move the control surface is called the stick force 
or pedal force, depending which control is being used. The stick force is propor- 
tional to the hinge moment acting on the control surface: 

Figure 2.25 is a sketch of a simple mechanical system used for deflecting the 
elevator. The work of displacing the control stick is equal to the work in moving the 
control surface to the desired deflection angle. From Figure 2.25 we can write the 
expression for the work performed at the stick and elevator: 

where G = 6,/(1, 6,) called the gearing ratio, is a measure of the mechanical 
advantage provided by the control system. 

Substituting the expression for the hinge moment defined earlier into the stick 
force equation yields 
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FIGURE 2.25 
Relationship between stick force and hinge moment. 

From this expression we see that the magnitude of the stick force increases with the 
size of the airplane and the square of the airplane's speed. Similar expressions can 
be obtained for the rudder pedal force and aileron stick force. 

The control system is designed to convert the stick and pedal movements into 
control surface deflections. Although this may seem to be a relativey easy task, it 
in fact is quite complicated. The control system must be designed so that the control 
forces are within acceptable limits. On the other hand, the control forces required 
in normal maneuvers must not be too small; otherwise, it might be possible to 
overstress the airplane. Proper control system design will provide stick force mag- 
nitudes that give the pilot a feel for the commanded maneuver. The magnitude of 
the stick force provides the pilot with an indication of the severity of the motion 
that will result from the stick movement. 

The convention for longitudinal control is that a pull force should always rotate 
the nose upward, which causes the airplane to slow down. A push force will have 
the opposite effect; that is, the nose will rotate downward and the airplane will 
speed up. The control system designer must also be sure that the airplane does not 
experience control reversals due to aerodynamic or aeroelastic phenomena. 

2.5.1 Trim Tabs 

In addition to making sure that the stick and rudder pedal forces required to 
maneuver or trim the airplane are within acceptabe limits, it is important that some 
means be provided to zero out the stick force at the trimmed flight speed. If such 
a provision is not made, the pilot will become fatigued by trying to maintain the 
necessary stick force. The stick force at trim can be made zero by incorporating a 
tab on either the elevator or the rudder. The tab is a small flap located at the trailing 
edge of the control surface. The trim tab can be used to zero out the hinge moment 
and thereby eliminate the stick or pedal forces. Figure 2.26 illustrates the concept 
of a trim tab. Although the trim tab has a great influence over the hinge moment, 
it has only a slight effect on the lift produced by the control surface. 
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FIGURE 2.26 
Trim tabs. 

2.5.2 Stick Force Gradients 

Another important parameter in the design of a control system is the stick force 
gradient. Figure 2.27 shows the variation of the stick force with speed. The stick 
force gradient is a measure of the change in stick force needed to change the speed 
of the airplane. To provide the airplane with speed stability, the stick force gradient 
must be negative; that is, 

Stick 

Stick force 
gradient 

FIGURE 2.27 
Stick force versus velocity. 
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The need for a negative stick-force gradient can be appreciated by examining the 
trim point in Figure 2.27. If the airplane slows down, a positive stick force occurs 
that rotates the nose of the airplane downward, which causes the airplane to 
increase its speed back toward the trim velocity. If the airplane exceeds the trim 
velocity, a negative (pull) stick force causes the airplane's nose to pitch up, which 
causes the airplane to slow down. The negative stick force gradient provides the 
pilot and airplane with speed stability. The larger the gradient, the more resistant 
the airplane will be to disturbances in the flight speed. If an airplane did not have 
speed stability the pilot would have to continuously monitor and control the air- 
plane's speed. This would be highly undesirable from the pilot's point of view. 

2.6 
DEFINITION OF DIRECTIONAL STABILITY 

Directional, or weathercock, stability is concerned with the static stability of the 
airplane about the z axis. Just as in the case of longitudinal static stability, it is 
desirable that the airplane should tend to return to an equilibrium condition when 
subjected to some form of yawing disturbance. Figure 2.28 shows the yawing 

FIGURE 2.28 
Static directional stability. 
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moment coefficient versus sideslip angle P for two airplane configurations. To have 
static directional stability, the airplane must develop a yawing moment that will 
restore the airplane to its equilibrium state. Assume that both airplanes are dis- 
turbed from their equilibrium condition, so that the airplanes are flying with a 
positive sideslip angle P .  Airplane 1 will develop a restoring moment that will tend 
to rotate the airplane back to its equilibrium condition; that is, a zero sideslip angle. 
Airplane 2 will develop a yawing moment that will tend to increase the sideslip 
angle. Examining these curves, we see that to have static directional stability the 
slope of the yawing moment curve must be positive (CnB > 0). Note that an airplane 
possessing static directional stability will always point into the relative wind, hence 
the name weathercock stability. 

2.6.1 Contribution of Aircraft Components 

The contribution of the wing to directional stability usually is quite small in 
comparison to the fuselage, provided the angle of attack is not large. The fuselage 
and engine nacelles, in general, create a destabilizing contribution to directional 
stability. The wing fuselage contribution can be calculated from the following 
empirical expression taken from [2.7]: 

where k, = 

k ~ 1  = 

s,, = 
1, = 

an empirical wing-body interference factor that is a function of the 
fuselage geometry 
an empirical correction factor that is a function of the fuselage 
Reynolds number 
the projected side area of the fuselage 
the length of the fuselage 

The empirical factors k, and k,, are determined from Figures 2.29 and 2.30 
respectively. 

Since the wing-fuselage contribution to directional stability is destabilizing, the 
vertical tail must be properly sized to ensure that the airplane has directional 
stability. The mechanism by which the vertical tail produces directional stability is 
shown in Figure 2.3 1. If we consider the vertical tail surface in Figure 2.3 1, we see 
that when the airplane is flying at a positive sideslip angle the vertical tail produces 
a side force (lift force in the xy plane) that tends to rotate the airplane about its 
center of gravity. The moment produced is a restoring moment. The side force 
acting on the vertical tail can be expressed as 

where the subscript vrefers to properties of the vertical tail. The angle of attack ac 
that the vertical tail plane will experience can be written as 
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Sg = Body side area 

A w!; = Maximum bodywidth 

I I, 1- 

FIGURE 2.29 
Wing body interference factor. 

FIGURE 2.30 
Reynolds number correction factor. 
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FIGURE 2.31 
Vertical tail contribution to 
directional stability. 

u -Sidewash 
due to wing vortices 

where u is the sidewash angle. The sidewash angle is analogous to the downwash 
angle E for the horizontal tail plane. The sidewash is caused by the flow field 
distortion due to the wings and fuselage. The moment produced by the vertical tail 
can be written as a function of the side force acting on it: 

N, = l , Y ,  = 1,CL (p  + u)Q,;S, (2.76) 

or in coefficient form 

where V, = 1, S,/(Sb) is the vertical tail volume ratio and 77, = Q,/Q, is the ratio 
of the dynamic pressure at the vertical tail to the dynamic pressure at the wing. 

The contribution of the vertical tail to directional stability now can be obtained 
by taking the derivative of Equation (2.78) with respect to P :  

A simple algebraic equation for estimating the combined sidewash and tail effici- 
ency factor qj is presented in [2.7] and reproduced here: 

= 0.724 + 3.06 s"/S + 0.4 + 0.009 AR,, (2.80) 
1 + cos A,,,, d 
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where S = the wing area 
So = the vertical tail area, including the submerged area to the fuselage 

centerline 
z, = the distance, parallel to the z axis, from wing root quarter chord 

point to fuselage centerline 
d = the maximum fuselage depth 

AR, = the aspect ratio of the wing 
A,,,, = sweep of wing quarter chord. 

2.7 
DIRECTIONAL CONTROL 

Directional control is achieved by a control surface, called a rudder, located on the 
vertical tail, as shown in Figure 2.32. The rudder is a hinged flap that forms the aft 
portion of the vertical tail. By rotating the flap, the lift force (side force) on the fixed 
vertical surface can be varied to create a yawing moment about the center of 
gravity. The size of the rudder is determined by the directional control require- 
ments. The rudder control power must be sufficient to accomplish the requirements 
listed in Table 2.1. 

The yawing moment produced by the rudder depends on the change in lift on 
the vertical tail due to the deflection of the rudder times its distance from the center 
of gravity. For a positive rudder deflection, a positive side force is created on the 
vertical tail. A positive side force will produce a negative yawing moment: 

where the side force is given by 

Yc = C L ~  Q, Sc 

Rewriting this equation in terms of a yawing moment coefficient yields 

FIGURE 2.32 
Directional control by means of the rudder. 
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TABLE 2.1 
Requirements for directional control 

Rudder 
requirements Implication for rudder design 

Adverse yaw When an airplane is banked to execute a turning maneuver the ailerons 
may create a yawing moment that opposes the turn (i.e., adverse yaw). The 
rudder must be able to overcome the adverse yaw so that a coordinated 
turn can be achieved. The critical condition for adverse yaw occurs when 
the airplane is flying slow (i.e., high C,.) 

Crosswind landings To maintain alignment with the runway during a crosswind landing 
requires the pilot to fly the airplane at a sideslip angle. The rudder must be 
powerful enough to permit the pilot to trim the airplane for the specified 
crosswinds. For transport airplanes, landing may be carried out for 
crosswinds up to 15.5 m/s or 51 ftls. 

Asymmetric power The critical asymmetric power condition occurs for a multiengine airplane 
condition when one engine fails at low flight speeds. The rudder must be able to 

overcome the yawing moment produced by the asymmetric thrust 
arrangement. 

Spin recovery The primary control for spin recovery in many airplanes is a powerful 
rudder. The rudder must be powerful enouah to oppose the spin rotation. 

The rudder control effectiveness is the rate of change of yawing moment with 
rudder deflection angle: 

where 

and the factor 7 can be estimated from Figure 2.2 1. 

2.8 
ROLL STABILITY 

An airplane possesses static roll stability if a restoring moment is developed when 
it is disturbed from a wings-level attitude. The restoring rolling moment can be 
shown to be a function of the sideslip angle P as illustrated in Figure 2.33. The 
requirement for stability is that Clp < 0. The roll moment created on an airplane 
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Wings level 
Roll upset 

Airplane begins 
to sideslip p > 0 

Roll moment created by sideslip rolls 
airplane to larqer roll anale 

B 
Wings level 

Roll upset 

Roll moment created by sideslip rolls 
airplane back toward wings level attitude 

FIGURE 2.33 
Static roll stability. 

when it starts to sideslip depends on the wing dihedral, wing sweep, position of the 
wing on the fuselage, and the vertical tail. Each of these contributions will be 
discussed qualitatively in the following paragraphs. 

The major contributor to C,# is the wing dihedral angle T. The dihedral angle 
is defined as the spanwise inclination of the wing with respect to the horizontal. If 
the wing tip is higher than the root section, then the dihedral angle is positive; if 
the wing tip is lower than the root section, then the dihedral angle is negative. A 
negative dihedral angle is commonly called anhedral. 

When an airplane is disturbed from a wings-level attitude, it will begin to 
sideslip as shown in Figure 2.34. Once the airplane starts to sideslip a component 
of the relative wind is directed toward the side of the airplane. The leading wing 
experiences an increased angle of attack and consequently an increase in lift. The 
trailing wing experiences the opposite effect. The net result is a rolling moment that 
tries to bring the wing back to a wings-level attitude. This restoring moment is often 
referred to as the dihedral effect. 

The additional lift created on the downward-moving wing is created by the 
change in angle of attack produced by the sideslipping motion. If we resolve the 
sideward velocity component into components along and normal to the wing span 
the local change in angle of attack can be estimated as 

where v, = V sin r 
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Wing contribution 

Chanqe in lift due to dihedral effect 

Induced anqle of attack 

V- v, Normal component of side velocity 

A a l =  2 V Velocity due to sideslip 

p =  b u t v n = V r  u Foreward velocity 

:, Aal  = pT and Aa2 = -pT V, Resultant velocity 

Fuselage contributions 

High wing 

Relative flow Stabilizing roll 
moment created around the fuselage 
by flow around 
fuselage 

Decreased lift . Destabilizing roll 
moment created 
by flow around 
fuselage 

FIGURE 2.34 
Wing and fuselage contribution to the dihedral 

By approximating the sideslip angle as 

and assuming that r is a small angle, the change of attack can be written as 

Aa p r  (2.90) 
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The angle of attack on the upward-moving wing will be decreased by the 
same amount. Methods for estimating the wing contribution to ClP can again be 
found in [2.7]. 

Wing sweep also contributes to the dihedral effect. In a sweptback wing, the 
windward wing has an effective decrease in sweep angle and the trailing wing 
experiences an effective increase in sweep angle. For a given angle of attack, a 
decrease in sweepback angle will result in a higher lift coefficient. Therefore, the 
windward wing (with a less effective sweep) will experience more lift than the 
trailing wing. It can be concluded that sweepback adds to the dihedral effect. On 
the other hand, sweep forward will decrease the effective dihedral effect. 

The fuselage contribution to dihedral effect is illustrated in Figure 2.34. The 
sideward flow turns in the vicinity of the fuselage and creates a local change in wing 
angle of attack at the inboard wing stations. For a low wing position, the fuselage 
contributes a negative dihedral effect; the high wing produces a positive dihedral 
effect. To maintain the same CI0, a low-wing aircraft will require a considerably 
greater wing dihedral angle than a high-wing configuration. 

The horizontal tail also can contribute to the dihedral effect in a manner similar 
to the wing. However, owing to the size of the horizontal tail with respect to the 
wing, its contribution is usually small. The contribution to dihedral effect from the 
vertical tail is produced by the side force on the tail due to sideslip. The side force 
on the vertical tail produces both a yawing moment and a rolling moment. The 
rolling moment occurs because the center of pressure for the vertical tail is located 
above the aircraft's center of gravity. The rolling moment produced by the vertical 
tail tends to bring the aircraft back to a wings-level attitude. 

2.9 
ROLLCONTROL 

Roll control is achieved by the differential deflection of small flaps called ailerons 
which are located outboard on the wings, or by the use of spoilers. Figure 2.35 is 
a sketch showing both types of roll control devices. The basic principle behind these 
devices is to modify the spanwise lift distribution so that a moment is created about 
the x axis. An estimate of the roll control power for an aileron can be obtained by 
a simple strip integration method as illustrated in Figure 2.36 and the equations 
that follow. The incremental change in roll moment due to a change in aileron angle 
can be expressed as 

which can be written in coefficient form as 
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Roll moment FIGURE 2.35 
Aileron and spoilers for roll 
control. 

'., Aileron control 

Roll moment 

Spoiler neutrali 
position 

The section lift coefficient C, on the stations containing the aileron can be written 

.- 

which is similar to the technique used to estimate the control effectiveness of 
an elevator and rudder. Substituting Equation (2.93) into Equation (2.94) and 

--, FIGURE 2.36 
Strip theory approximation 
of roll control effectiveness. 
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integrating over the region containing the aileron yields 

where CL and T have been corrected for three-dimensional flow and the factor of 
2 has been introduced to account for the other aileron. The control power C, can 

6" be obtained by taking the derivative with respect to 6,: 

EXAMPLE PROBLEM 2.4. For the NAVION airplane described in Appendix B, esti- 
mate the roll control power, C,,. Assume that the wing and aileron geometry are as 
shown in Figure 2.37. 

Sohtion. Equation (2.96) can be used to estimate the roll control power, C,,. 

b/2 = 16.7 ft. A = 0.54 cr = 7.2 ft. 
ct=3.9ft .  y , = l l . l f t .  y, = 16 ft. 

S = 184 ft.= C = 4.44lrad. c,/c = 0.18 ft. 
L"w 

FIGURE 2.37 
Approximate wing geometry of the NAVION airplane. 
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For a tapered wing the chord can be expressed as a function of y by the following 
relationship: 

Substituting the relationship for the chord back into the expression for C , ,  yields 

This equation can be used to estimate C,,, using the data in Figure 2.37 and estimating 
T from Figure 2.21. Because the chord ratio is the same as the area ratio used in 
Figure 2.21, we can use c,/c = 0.18 to estimate the flap effectiveness parameter, 7. 

2(4.3/rad)(0.36)(7.2 ft) 
G*, = (90.4 ft2 - 49 ft2) 

(184 ft2)(33.4 ft) 

The control derivative C,,, is a measure of the power of the aileron control; it represents 
the change in moment per unit of aileron deflection. The larger C,, ,  the more effective 
the control is at producing a roll moment. 

2.10 
SUMMARY 

The requirements for static stability were developed for longitudinal, lateral direc- 
tional, and rolling motions. It is easy to see why a pilot would require the airplane 
that he or she is flying to possess some degree of static stability. Without static 
stability the pilot would have to continuously control the airplane to maintain a 
desired flight path, which would be quite fatiguing. The degree of static stability 
desired by the pilot has been determined through flying quality studies and will be 
discussed in a later chapter. The important point at this time is to recognize that the 
airplane must be made statically stable, either through inherent aerodynamic char- 
acteristics or by artificial means through the use of an automatic control system. 

The inherent static stability tendencies of the airplane were shown to be a 
function of its geometric and aerodynamic properties. The designer can control the 
degree of longitudinal and lateral directional stability by proper sizing of the 
horizontal and vertical tail surfaces, whereas roll stability was shown to be a 
consequence of dihedral effect, which is controlled by the wing's placement or 
dihedral angle. 

In addition to static stability, the pilot wants sufficient control to keep the 
airplane in equilibrium (i.e., trim) and to maneuver. Aircraft response to control 
input and control force requirements are important flying quality characteristics 
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determined by the control surface size. The stick force and stick force gradient are 
important parameters that influence how the pilot feels about the flying character- 
istics of the airplane. Stick forces must provide the pilot a feel for the maneuver 
initiated. In addition, we show that the stick force gradient provides the airplane 
with speed stability. If the longitudinal stick force gradient is negative at the trim 
flight speed, then the airplane will resist disturbances in speed and fly at a constant 
speed. 

Finally, the relationship between static stability and control was examined. An 
airplane that is very stable statically will not be very maneuverable; if the airplane 
has very little static stability, it will be very maneuverable. The degree of maneu- 
verability or static stability is determined by the designer on the basis of the 
airplane's mission requirements. 

PROBLEMS 

2.1. If the slope of the C,,, versus C, curve is -0.15 and the pitching moment at zero lift 
is equal to 0.08, determine the trim lift coefficient. If the center of gravity of the 
airplane is located at X& = 0.3, determine the stick fixed neutral point. 

2.2. For the data shown in Figure P2.2, determine the following: 
(a) The stick fixed neutral point. 
(b) If we wish to fly the airplane at a velocity of 125 ftls at sea level, what would be 

the trim lift coefficient and what would be the elevator angle for trim? 

FIGURE P2.2 

2.3. Analyze the canard-wing combination shown in Figure P2.3. The canard and wing 
are geometrically similar and are made from the same airfoil section. 

ARC = AR, S, = 0.2Sw rc = 0.45Fw 

(a) Develop an expression for the moment coefficient about the center of gravity. You 
may simplify the problem by neglecting the upwash (downwash) effects between 
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the lifting surfaces and the drag contribution to the moment. Also assume small 
angle approximations. 

(b) Find the neutral point for this airplane. 

FIGURE P2.3 

2.4. The C, versus, a curve for a large jet transport can be seen in Figure P2.4. Use the 
figure and the following information to answer questions (a) to (c). 

C, = 0.03 + 0.08a (deg.) 

-15" 5 6, 5 20" 

(a)  Estimate the stick fixed neutral point. 
(b) Estimate the control power C,,. 
(c) Find the forward center of gravity limit. Hint: 

0 2 4 6 8 10 12 14 16 18 20 

a (deg) 

FIGURE P2.4 
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2.5. Using the data for the business jet aircraft included in Appendix B, determine the 
following longitudinal stability information at subsonic speeds: 
(a) Wing contribution to the pitching moment 
(b) Tail contribution to the pitching moment 
(c) Fuselage contribution to the pitching moment 
(d) Total pitching moment 
(e) Plot the various contributions 
( f )  Estimate the stick fixed neutral point 

2.6. An airplane has the following pitching moment characteristics at the center of gravity 
position: 

x& = 0.3. 

where C,, = 0.05 - dC"- - - -0.1 Cm, = -0.Olldeg 
~ C L  

If the airplane is loaded so that the center of gravity position moves to xCg/-6 = 0.10, 
can the airplane be trimmed during landing, CL = 1 .O? Assume that C,, and Cm, are 
unaffected by the center of gravity travel and that 6,mx = 220". 

2.7. The pitching moment characteristics of a general aviation airplane with the landing 
gear and flaps in their retracted position are given in Figure P2.7. 

0.0 0.4 0.8 1.2 1.6 

CL 

FIGURE P2.7 
Pitching moment characteristics of a general aviation airplane. 
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(a) Where is the stick fixed neutral point located? 
(b) If the airplane weighs 2500 Ibs and is flying at 150 ftls at sea level, p = 0.002378 

slug/ft3, what is the elevator angle required for trim? 
(c) Discuss what happens to the pitching moment curve when the landing gear is 

deployed? How does the deflection of the high lift flaps affect the stability of the 
airplane? 

2.8. Estimate the fuselage and engine nacelle contribution to Cme using the method dis- 
cussed in section 2.3 for the STOL transport shown in Figure P2.8. The airplane has 

FIGURE P2.8 
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been divided into 12 sections as indicated in Figure P2.8. The section length, width, 
and distance from the wing leading or trailing edge to the midpoint of each section is 
given in the table below. The engine nacelles have been approximated by one section 
as indicated on the figure. 

Fuselage 

Station Axft w,ft xift 

Assume that c = 12.6 ft (the fuselage region between the wing leading and trailing 
edge), I,, = 34 ft (the distance from the wing trailing edge to the quarter chord of the 
horizontal tail), and de/dcu at the tail is 0.34. 

2.9. The downwash angle at zero angle of attack and the rate of change of downwash with 
angle of attack can be determined experimentally by several techniques. The down- 
wash angle can be measured directly by using a five- or seven-hole pressure probe to 
determine the flow direction at the position of the tail surface or indirectly from 
pitching moment data measured from wind-tunnel models. This latter technique will 
be .demonstrated by way of this problem. Suppose that a wind-tunnel test were 
conducted to measure the pitching moment as a function of the angle of attack for 
various tail incidence settings as well as for the case when the tail surface is removed. 
Figure P2.9 plots such information. Notice that the tail-off data intersect the 

0 2 4 6 8 10 

a, - deg 

FIGURE P2.9 
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complete configuration data at several points. At the points of intersection, the 
contribution of the tail surface to the pitching moment curve must be 0. For this to be 
the case, the lift on the tail surface is 0, which implies that the tail angle of attack is 
0 at these points. From the definition of the tail angle of attack, 

at = a,,, - iw - e + i, 
we obtain e = aw - iw + it 
at the interception points. Using the data of Figure P2.9 determine the downwash 
angle versus the angle of attack of the wing. From this information estimate e, and 
d ~ / d a .  

2.10. The airplane in Example Problem 2.2 has the following hinge moment characteristics: 

CLmw = 0.09/deg C,* = -0.003/deg C,, = -0.005/deg V, = 0.4 

C,,,, =0.08/deg Ch,=O.O S,/S, = 0.35 de/da = 0.4 

What would be the stick-free neutral point location? 

2.11. As an airplane nears the ground its aerodynamic characteristics are changed by the 
presence of the ground plane. This change is called ground effect. A simple model for 
determining the influence of the ground on the lift drag and pitching moment can be 
obtained by representing the airplane by a horseshoe vortex system with an image as 
shown in Figure P2.11. Using this sketch, shown qualitatively, explain the changes 
that one might expect; that is, whether the forces and moment increase or decrease. 

Bound 
Trailing 

'Ortex 1 ,/vortices\ 
Ground 
plane 

h = Height above Image 
the ground vortex system 

b = Span of 
bound vortex 

FIGURE P2.11 

2.12. If the control characteristics of the elevator used in Example Problem 2.2 are as 
follows, determine the forwardmost limit on the center of gravity travel so that the 
airplane can be controlled during landing; that is, at CLgnaX. Neglect ground effects on 
the airplane's aerodynamic characteristics: 
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2.13. Size the vertical tail for the airplane configuration shown in Figure P2.13 so that its 
weathercock stability has a value of C,,, = f0.1 rad-'. Clearly state your assump- 
tions. Assume V = 150 m/s at sea level. 

I 

FIGURE P2.13 

2.14. Figure P2.14 is a sketch of a wing planform for a business aviation airplane. 
(a) Use strip theory to determine the roll control power. 
(b) Comment on the accuracy of the strip theory integration technique. 

I 

FIGURE P2.14 
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2.15. Suppose the wing planform in Problem 2.14 is incorporated into a low-wing aircraft 
design. Find the wing dihedral angle necessary to produce a dihedral effect of 
C,, = -0.1 rad-'. Neglect the fuselage interference on the wing dihedral contri- 
bution. 

2.16. For the twin engine airplane shown in Figure P2.16, determine the rudder size to 
control the airplane if one engine needs to be shut down. Use the flight information 
shown in the figure and 

Wing: S = 980 ft2 b = 93 ft 

Vertical tail: S, = 330 ft2 AR, = 4.3 1, = 37 ft q, = 1.0 

Rudder: 6, = 5 15" 

Propulsion: T = 14,000 Ib each y ,  = 16 ft 

Flight condition: V = 250 ftls p = 0.002378 sluglft3 

FIGURE P2.16 

2.17. The elevator for a business jet aircraft is shown in Figure P2.17. Estimate the eleva- 
tor's control power C,, using the geometric information that follows: 

S = 232 ft' AR, = 4.0 
- 
c = 7.0 ft 1, = 21.6 ft 

b, = 14.7 ft C,", = 0. l ldeg(2D) 

s, = 54 ft2 
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I 

! $ Aircraft 

FIGURE P2.17 

2.18. Develop an expression for the wing dihedral effect Cl, for a wing planform that uses 
dihedral only for the outboard portion of the wing (see Figure P2.18). Clearly state 
all of your assumptions. 

FIGURE P2.18 

2.19. The trailing vortex wake left behind by an airplane can be a safety hazard to following 
aircraft as illustrated in Figure P2.19. The most likely place to encounter the wake of 
another aircraft is in the vicinity of the airport during takeoff or landing. To minimize 
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Loss of altitude 
rate of climb 

Structural 
load factors 

FIGURE P2.19 

the possibility of a wake encounter the FAA has developed a separation criteria 
between aircraft of different sizes. If an elliptic wing loading is assumed, the strength 
of the trailing wake can be shown to be related to the size and speed of the generating 
aircraft. 

where L = lift 
W = weight 
p = air density 
V = velocity of the airplane 
r = vortex strength 
b' = effective span of vortices. 

The effective span of the wing tip vortices for an elliptic load distribution can be 
shown to be 

where b is the wingspan of the generating aircraft. Solving for the circulation (i.e., 
vortex strength) yields 

The tangential velocity field at some point downstream created by one of the vortices 
is given by 

I- 
uo = - r I a,. 

27rr 
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From the simple analysis presented here it is clear that the vortex strength is 
proportional to the weight of the generating aircraft and inversely proportional to its 
speed. Therefore large heavy transports flying at approach or takeoff speeds will 
create the strongest wakes and the greatest hazard to following aircraft. 

Wake vortices decay slowly in calm atmospheric conditions. Because the wake 
vortices decay very slowly in a calm atmosphere we will neglect vortex decay in this 
problem. Develop an expression for estimating the roll moment induced on an air- 
plane wing when the wing is centered in the vortex core of another aircraft's trailing 
vortex wake. 

2.20. Using the expression developed in Problem 2.19, estimate the roll moment induced by 
the wake of a large jet transport on several smaller aircraft. Use the data in Appen- 
dix B. Use the information for the 747 for the generating aircraft and evaluate the roll 
moment induced on the Convair 880, STOL transport, business jet, and the NAVION. 
Compare the induced roll moment to the maximum roll moment that could be 
developed by full aileron deflection. Assume the aileron maximum deflection is 525" 
for each aircraft. 
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CHAPTER 3 

Aircraft Equations of Motion 

Success four flights Thursday morning all against 21 mile wind-started from 
level with engine power alone average speed through air 30 miles-longest 
57 seconds inform press home Christmas 

Telegram message sent by Orville Wright, December 17, 1903 

3.1 
INTRODUCTION 

In Chapter 2, the requirements for static stability were examined. It was shown that 
static stability is a tendency of the aircraft to return to its equilibrium position. In 
addition to static stability, the aircraft also must be dynamically stable. An airplane 
can be considered to be dynamically stable if after being disturbed from its equi- 
librium flight condition the ensuing motion diminishes with time. Of particular 
interest to the pilot and designer is the degree of dynamic stability. The required 
degree of dynamic stability usually is specified by the time it takes the motion to 
damp to half of its initial amplitude or in the case of an unstable motion the time 
it takes for the initial amplitude or disturbance to double. Also of interest is the 
frequency or period of the oscillation. 

An understanding of the dynamic characteristics of an airplane is important in 
assessing its handling or flying qualities as well as for designing autopilots. The 
flying qualities of an airplane are dependent on pilot opinion; that is, the pilot's 
likes or dislikes with regard to the various vechile motions. It is possible to design 
an airplane that has excellent performance but is considered unsatisfactory by the 
pilot. Since the early 1960s, considerable research has been directed toward quan- 
tifying pilot opinion in terms of aircraft motion characteristics, such as frequency 
and damping ratio of the aircraft's various modes of motion. Therefore, it is 
important to understand the dynamic characteristics of an airplane and the rela- 
tionship of the motion to the vehicle's aerodynamic characteristics and pilot 
opinion. 

Before developing the equations of motion, it is important to review the axis 
system specified earlier. Figure 3.1 shows the body axis system fixed to the aircraft 
and the inertial axis system that is fixed to the Earth. 
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FIGURE 3.1 
Body and inertial axis systems. 

3.2 
DERIVATION OF RIGID BODY EQUATIONS OF MOTION 

The rigid body equations of motion are obtained from Newton's second law, which 
states that the summation of all external forces acting on a body is equal to the time 
rate of change of the momentum of the body; and the summation of the external 
moments acting on the body is equal to the time rate of change of the moment of 
momentum (angular momentum). The time rates of change of linear and angular 
momentum are referred to an absolute or inertial reference frame. For many 
problems in airplane dynamics, an axis system fixed to the Earth can be used as an 
inertial reference frame. Newton's second law can be expressed in the following 
vector equations: 

The vector equations can be rewritten in scalar form and then consist of three 
force equations and three moment equations. The force equations can be expressed 
as follows: 

d d d 
F, = - (mu) F,, = - (mu) FZ = - (mw) 

dt d l  dt 
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where F,, F,, F, and u, v ,  w are the components of the force and velocity along the 
x, y, and z axes, respectively. The force components are composed of contributions 
due to the aerodynamic, propulsive, and gravitational forces acting on the airplane. 
The moment equations can be expressed in a similar manner: 

where L, M, Nand Hx, H,, Hz are the components of the moment and moment of 
momentum along the x, y, and z axes, respectively. 

Consider the airplane shown in Figure 3.2. If we let 6m be an element of mass 
of the airplane, v be the velocity of the elemental mass relative to an absolute or 
inertial frame, and 6F be the resulting force acting on the elemental mass, then 
Newton's second law yields 

and the total external force acting on the airplane is found by summing all the 
elements of the airplane: 

The velocity of the differential mass 6m is 

where v, is the velocity of the center of mass of the airplane and dr/dt is the velocity 
of the element relative to the center of mass. Substituting this expression for the 

FIGURE 3.2 
An element of mass on an airplane. 
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velocity into Newton's second law yields 

If we assume that the mass of the vehicle is constant, Equation (3.8) can be 
rewritten as 

dv, d2 
F = m - + - C r a m  dt dt2 

Because r  is measured from the center of mass, the summation C r  Sm is equal to 
0. The force equation then becomes 

which relates the external force on the airplane to the motion of the vehicle's center 
of mass. 

In a similar manner, we can develop the moment equation referred to a moving 
center of mass. For the differential element of mass, Sm, the moment equation can 
be written as 

The velocity of the mass element can be expressed in terms of the velocity of the 
center of mass and the relative velocity of the mass element to the center of mass: 

where o is the angular velocity of the vehicle and r  is the position of the mass 
element measured from the center of mass. The total moment of momentum can 
be written as 

H = ~ 6 H = x ( r X v c ) S m + x [ r X ( o X r ) ] 8 m  (3.14) 

The velocity v, is a constant with respect to the summation and can be taken outside 
the summation sign: 

H = 2 r  Sm X v, + [r X (o X r)] Sm (3.15) 

The first term in Equation (3.15) is 0 because the term C. r  6m = 0, as explained 
previously. If we express the angular velocity and position vector as 

o = pi + q j  + rk (3.16) 

and r = x i  + y j  + zk (3.17) 



100 CHAPTER 3: Aircraft Equations of Motion 

then after expanding Equation (3.15), H can be written as 

H = ( p i  + q i  + r k )  ( x Z  + y Z  + z 2 )  6rn 
(3.18) 

- 2 ( x i  + y i  + z k ) ( p x  + q y  + rz )6rn  

The scalar components of H are 

H, = p x  ( y 2  + z 2 )  Srn - q x  xy  6rn - r x  xz6rn  

H, = - p  2 xy  Srn + q  C ( x 2  + z 2 )  Srn - r x  yz  6m (3.19) 

H , = - p ~ x z ~ r n - ~ ~ y z 6 r n + r ~ ( ~ ~ + y ~ ) S r n  

The summations in these equations are the mass moment and products of inertia 
of the airplane and are defined as follows: 

The terms I,, I,,, and I, are the mass moments of inertia of the body about the x ,  y, 
and z  axes, respectively. The terms with the mixed indexes are called the products 
of inertia. Both the moments and products of inertia depend on the shape of the 
body and the manner in which its mass is distributed. The larger the moments of 
inertia, the greater will be the resistance to rotation. The scaler equations for the 
moment of momentum follow: 

If the reference frame is not rotating, then as the airplane rotates the moments and 
products of inertia will vary with time. To avoid this difficulty we will fix the axis 
syst,:m to the aircraft (body axis system). Now we must determine the derivatives 
of the vectors v and H referred to the rotating body frame of reference. 

It can be shown that the derivative of an arbitrary vector A referred to a 
rotating body frame having an angular velocity o can be represented by the 
following vector identity: 

where the subscripts I and B refer to the inertial and body fixed frames of reference. 
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Applying this identity to the equations derived earlier yields 

F = m - + m ( o  X v,) Y E  
The scalar equations are 

L = + qHz - rH, M = H, + rHx - pHz N = & + pH, - qHx 
(3.25) 

The components of the force and moment acting on the airplane are composed of 
aerodynamic, gravitational, and propulsive contributions. 

By proper positioning of the body axis system, one can make the products of 
inertia I,, = I,, = 0. To do this we are assuming that the xz plane is a plane of 
symmetry of the airplane. With this assumption, the moment equations can be 
written as 

L = l x p  - Ixzt + qr(Iz - Iy) - Ixzpq 

M = 1,q + rp(lx - I,) + Ixz(pZ - r 2 )  (3.26) 

3.3 
ORIENTATION AND POSITION OF THE AIRPLANE 

The equations of motion have been derived for an axis system fixed to the airplane. 
Unfortunately, the position and orientation of the airplane cannot be described 
relative to the moving body axis frame. The orientation and position of the airplane 
can be defined in terms of a fixed frame of reference as shown in Figure 3.3. At 
time t = 0, the two reference frames coincide. 

The orientation of the airplane can be described by three consecutive rotations, 
whose order is important. The angular rotations are called the Euler angles. The 
orientation of the body frame with respect to the fixed frame can be determined in 
the following manner. Imagine the airplane to be positioned so that the body axis 
system is parallel to the fixed frame and then apply the following rotations: 

1. Rotate the x,, y,, 5 frame about Ozf through the yaw angle + to  the frame to 
XI, Yl, 21. 

2. Rotate the x, ,  y, ,  z ,  frame about Oy, through the pitch angle 8 bringing the 
frame to x,, y,, 2,. 

3. Rotate the x,, y,, 2, frame about Ox, through the roll angle @ to bring the frame 
to x3, y3, Z3, the actual orientation of the body frame relative to the fixed frame. 

Remember that the order of rotation is extremely important. 
Having defined the Euler angles, one can determine the flight velocities compo- 

nents relative to the fixed reference frame. To accomplish this, let the velocity 
components along the x,, y,, z, frame be dxldt, dyldt, dzldt and similarly let the 
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z,, z, I* First Rotation z,, z, 1 Second Rotation 

FIGURE 3.3 
Relationship between body and 
inertial axes systems. 

subscripts I and 2 denote the components along x ,  , y ,  , z ,  and x,, y,, z,, respectively. 
Examining Figure 3.3, we can show that 

Before proceeding further, let us use the shorthand notation S, = sin +, C ,  = 
cos +, So sin 0, and so forth. In a manner similar to Equation (3.27), u , ,  u , ,  and 
w ,  can be expressed in terms of u,, v2, and w,: 

and u, = u u2 = vC, - wS* w, = us, + wC,  (3.29) 

where u,  v, and w are the velocity components along the body axes x,, y,, z,. 
If we back-substitute the preceding equations, we can determine the absolute 

velocity in terms of the Euler angles and velocity components in the body frame: 
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Integration of these equations yields the airplane's position relative to the fixed 
frame of reference. 

The relationship between the angular velocities in the body frame (p, q, and r) 
and the Euler rates ($1, 8, and 6) also can be determined from Figure 3.3: 

Equation (3.31) can be solved for the Euler rates in terms of the body angular 
velocities: 

[I] = [0 C@ (3.32) 
0 S* sec 13 C@ sec 0 

By integrating these equations, one can determine the Euler angles @, 8, and a. 

3.4 
GRAVITATIONAL AND THRUST FORCES 

The gravitational force acting on the airplane acts through the center of gravity of 
the airplane. Because the body axis system is fixed to the center of gravity, the 
gravitational force will not produce any moments. It will contribute to the external 
force acting on the airplane, however, and have components along the respective 
body axes. Figure 3.4 shows that the gravitational force components acting along 
the body axis are a function of the airplane's orientation in space. The gravitational 

xb FIGURE 3.4 
Components of gravitational 
force acting along the body axis. 
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FIGURE 3.5 
Force and moments due to 
propulsion system. 

force components along the x, y, and z axes can be easily shown to be 

( F J g r a v i t y  = -mg sin 8 

( F v ) g r a w t y  = mg case sin @ (3.33) 

(FJgravity = mg cos 8 cos @ 

The thrust force due to the propulsion system can have components that act along 
each of the body axis directions. In addition, the propulsive forces also can create 
moments if the thrust does not act through the center of gravity. Figure 3.5 shows 
some examples of moments created by the propulsive system. 

The propulsive forces and moments acting along the body axis system are 
denoted as follows: 

( F J p r o p u l a i v e  = X T  (Fy)propul s i ve  = YT (F')propulsive = Z T  (3.34) 

and ( L I p r o p u l r i v e  = LT ( M I p r o p u l s i v e  = MT ( N ) p r o p u ~ s l v e  = NT (3.35) 

Table 3.1 gives a summary of the rigid body equations of motion. 

3.5 
SMALL-DISTURBANCE THEORY 

The equations developed in the previous section can be linearized using the small- 
disturbance theory. In applying the small-disturbance theory we assume that the 
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TABLE 3.1 
Summary of kinematic and dynamic equations 

X - mgS, = m(li + qw - ru) 
Y + mgC,S, = m(d + ru - pw) Force equations 
Z + mgC,C, = m(w + pv - qu) 

L = l zp  - Izz t  + qr(Iz - ly)  - Ixzpq 
M = 1,q + rq(1, - I,) + I,,(p2 - r 2 )  Moment equations 
N = -I,,p + I,i + pq(ly - I,) + I,,qr 

Body angular velocities 
in terms of Euler angles 
and Euler rates 

Euler rates in terms of 
Euler angles and body 
angular velocities 

Velocity of aircraft in the fixed frame in terms of Euler angles and 
body velocity components 

motion of the airplane consists of small deviations about a steady flight condition. 
Obviously, this theory cannot be applied to problems in which large-amplitude 
motions are to be expected (e.g., spinning or stalled flight). However, in many cases 
the small-disturbance theory yields sufficient accuracy for practical engineering 
purposes. 

All the variables in the equations of motion are replaced by a reference value 
plus a perturbation or disturbance: 

For convenience, the reference flight condition is assumed to be symmetric and the 
propulsive forces are assumed to remain constant. This implies that 

Furthermore, if we initially align the x axis so that it is along the direction of the 
airplane's velocity vector, then wo = 0. 
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Now, if we introduce the small-disturbance notation into the equations of 
motion, we can simplify these equations. As an example, consider the X force 
equation: 

X - mg sin 0 = m(u + qw - ru) (3.38) 

Substituting the small-disturbance variables into this equation yields 

If we neglect products of the disturbance and assume that 

then the X equation becomes 

This equation can be reduced further by applying the following trigonometric 
identity: 

sin(0, + A@) = sin $ cos A0 + cos $ sin A0 = sin 0, + A0 cos $ 

Therefore, X, + AX - mg(sin 0, + A0 cos 0,) = m Au (3.42) 

If all the disturbance quantities are set equal to 0 in these equation, we have the 
reference flight condition 

X, - mg sin 0, = 0 (3.43) 

This reduces the X-force equation to 

The force AX is the change in aerodynamic and propulsive force in the x direction 
and can be expressed by means of a Taylor series in terms of the perturbation 
variables. If we assume that AX is a function only of u,  w, 6,, and 6,, then AX can 
be expressed as 

where ax/&, a x l a w ,  dX/dS,, and dX/a6,, called stability derivatives, that are 
evaluated at the reference flight condition. The variables 6, and 6,  are the change 
in elevator angle and throttle setting, respectively. If a canard or all-moveable 
stabilator is used for longitudinal control, then the control term would be re- 
placed by 

ax ax 
- AS, or - A6, 
as" 86, 
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Substituting the expression for AX into the force equation yields: 

ax ax ax ax 
- Au + - Aw + - ASe + - AS, - mg A8 cos $ = m Au (3.46) au aw a& 8% 

or on rearranging 

ax ax 
( m  % - g) AU - (s) AW + (mg cos 4) AO = - AS. + - A% 

a& as, 
The equation can be rewritten in a more convenient form by dividing through by 
the mass m: 

where Xu = dX/du/m, X, = dX/dw/m, and so on are aerodynamic derivatives 
divided by the airplane's mass. 

The change in aerodynamic forces and moments are functions of the motion 
variables Au, Aw, and so forth. The aerodynamic derivatives usually the most 
important for conventional airplane motion analysis follow: 

a~ a~ a~ a~ 
AL = - Av + - Ap + - Ar + - AS, + - Aaa 

av P d r asr aSa 1 
aM dM + - Ase + - As, a& as, 

a N aN a N a~ a N 
AN = - Av + - Ap + - Ar + - AS, + - ASa 

av a~ ar asr ass I 
The aerodynamic forces and moments can be expressed as a function of all the 
motion variables; however, in these equations only the terms that are usually 
significant have been retained. Note also that the longitudinal aerodynamic control 
surface was assumed to be an elevator. For aircraft that use either a canard or 
combination of longitudinal controls, the elevator terms in the preceding equations 
can be replaced by the appropriate control derivatives and angular deflections. 

The complete set of linearized equations of motion is presented in Table 3.2. 
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TABLE 3.2 

The linearized small-disturbance longitudinal and lateral rigid body equation 
of motion 

Longitudinal equations 

$ - Xu) Au - XN, Aw + ( g  cos BO) A0 = Xh A& + X+ A 4  

- g sin O,, A0 = Z6< A6, + Z,, A& I 
= M8?A6,  + M,,A6 ,  

Lateral equations 

($ - Y.) A" - q, Ap + (u,, - Y,) Ar - ( g  cos 4,) Ar$ = Ys 88, 

- L ,  AU + ($- L , , ) A p -  (ti+ L r ) A r =  L68ASu+ L,,AS, 

Ar = N, , ,AS ,+  N,,A6, 

3.6 
AERODYNAMIC FORCE AND MOMENT REPRESENTATION 

In previous sections we represented the aerodynamic force and moment contribu- 
tions by means of the aerodynamic stability coefficients. We did this without 
explaining the rationale behind the approach. 

The method of representing the aerodynamic forces and moments by stability 
coefficients was first introduced by Bryan over three-quarters of a century ago 
[3.1, 3.31. The technique proposed by Bryan assumes that the aerodynamic forces 
and moments can be expressed as a function of the instantaneous values of the 
perturbation variables. The perturbation variables are the instantaneous changes 
from the reference conditions of the translational velocities, angular velocities, 
control deflection, and their derivatives. With this assumption, we can express 
the aerodynamic forces and moments by means of a Taylor series expansion of the 
perturbation variables about the reference equilibrium condition. For example, the 
change in the force in the x direction can be expressed as follows: 

AX(u, a, w, w,  . . ., a,,, &) 

ax ax (3.50) 
= ;ly Au + - Ar + - . . + - A6, + H.O.T. (higher order terms) 

au au a 4  
The term dX/du, called the stability derivative, is evaluated at the reference flight 
condition. 

The contribution of the change in the velocity u to the change AX in the X 
force is just [aX/du] Au. We can also express ax/& in terms of the stability 
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coefficient Cxu as follows: 

where 

Note that the stability derivative has dimensions, whereas the stability coefficient 
is defined so that it is nondimensional. 

The preceding discussion may seem as though we are making the aerodynamic 
force and moment representation extremely complicated. However, by assuming 
that the perturbations are small we need to retain only the linear terms in Equa- 
tion (3.50). Even though we have retained only the linear terms, the expressions 
still may include numerous first-order terms. Fortunately, many of these terms also 
can be neglected because their contribution to a particular force or moment is 
negligible. For example, we have examined the pitching moment in detail in Chap- 
ter 2. If we express the pitching moment in terms of the perturbation variables, as 
indicated next, 

it should be quite obvious that terms such as ( dM/dv )  Av and ( d M / d p )  Ap are not 
going to be significant for an airplane. Therefore, we can neglect these terms in our 
analysis. 

In the following sections, we shall use the stability derivative approach to 
represent the aerodynamic forces and moments acting on the airplane. The expres- 
sions developed for each of the forces and moments will include only the 
terms usually important in studying the airplane's motion. The remaining portion 
of this chapter is devoted to presentation of methods for predicting the longitudi- 
nal and lateral stability coefficients. We will confine our discussion to methods that 
are applicable to subsonic flight speeds. Note that many of the stability coefficients 
vary significantly with the Mach number. This can be seen by examining the data 
on the A-4D airplane in Appendix B or by examining Figure 3.6. 

We have developed a number of relationships for estimating the various stabil- 
ity coefficients; for example, expressions for some of the static stability coefficients 
such as Cmd, CnB and ClP were formulated in Chapter 2. Developing prediction 
methods for all of the stability derivatives necessary for performing vehicle motion 
analysis would be beyond the scope of this book. Therefore, we shall confine our 
attention to the development of several important dynamic derivatives and simply 
refer the reader to the US Air Force Stability and Control DATCOM [3.4]. This 
report is a comprehensive collection of aerodynamic stability and control predic- 
tion techniques, which is widely used through the aviation industry. 
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Variation of selected longitudinal and  lateral stability derivatives 

jymbol Derivative i-- Variation with Mach number Symbol 

C n ~  

'nr 

C ' ~  

FIGURE 3.6 

Derivative 

Variation of selected longitudinal and lateral derivatives with the Mach number. 

3.6.1 Derivatives Due to the Change in Forward Speed 

Variation with Mach numbel 

The drag, lift, and pitching moments vary with changes in the airplane's forward 
speed. In addition the thrust of the airplane is also a function of the forward speed. 
The aerodynamic and propulsive forces acting on the airplane along the X body 
axes are the drag force and the thrust. The change in the X force, that is, A X  due 
to a change in forward speed, can be expressed as 

I 

The derivative a X / a u  is called the speed damping derivative. Equation (3.55) can 
be rewritten as 

where the subscript 0 indicates the reference condition. Expressing a X / a u  in 
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coefficient form yields 

CX" = -(Gu + 2CDJ + G" (3.57) 

where 

are the changes in the drag and thrust coefficients with forward speed. These 
coefficients have been made nondimensional by differentiating with respect to 
(ulu,). The coefficient CDu can be estimated from a plot of the drag coefficient 
versus the Mach number: 

where M is the Mach number of interest. The thrust term CTu is 0 for gliding flight; 
it also is a good approximation for jet powered aircraft. For a variable pitch 
propeller and piston engine power plant, CTu can be approximated by assuming it 
to be equal to the negative of the reference drag coefficient (i.e., C," = -CDo).  

The change in the Z force with respect to forward speed can be shown to be 

or in coefficient form as 

czu = -[CL, + ~ C L  J (3.61) 

The coefficient CLu arises form the change in lift coefficient with the Mach number. 
CLu can be estimated from the Prandtl-Glauent formula, which corrects the incom- 
pressible lift coefficient for the Mach number effects: 

Differentiating the list coefficient with respect to the Mach number yields 

but 

where a is the speed of sound. 
CLu therefore can be expressed as 
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This coefficient can be neglected at low flight speeds but can become quite large 
near the critical Mach number for the airplane. 

The change in the pitching moment due to variations in the forward speed can 
be expressed as 

The coefficient Cmu can be estimated as follows: 

The coefficient Cmu depends on the Mach number but also is affected by the elastic 
properties of the airframe. At high speeds aeroelastic bending of the airplane can 
cause large changes in the magnitude of C,". 

3.6.2 Derivatives Due to the Pitching Velocity, q 

The stability coefficients CZy and Cmq represent the change in the Z force and 
pitching moment coefficients with respect to the pitching velocity q . The aerody- 
namic characteristics of both the wing and the horizontal tail are affected by the 
pitching motion of the airplane. The wing contribution usually is quite small in 
comparison to that produced by the tail. A common practice is to compute the tail 
contribution and then increase it by 10 percent to account for the wing. Figure 3.7 
shows an airplane undergoing a pitching motion. 

As illustrated in Figure 3.7, the pitching rate q causes a change in the angle of 
attack at the tail, which results in a change in the lift force acting on the tail: 

AL, = C, Aa, Q,S,  (3.70) 
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FIGURE 3.7 
Mechanism for aerodynamic force due to 
pitch rate. 

The pitching moment due to the change in lift on the tail can be calculated as 
follows: 

AM,, = -1, AL, (3.76) 

Equations (3.75) and (3.79) represent the tail contribution to Czq and C,,,?, respec- 
tively. The coefficients for the complete airplane are obtained by increasing the tail 
values by 10 percent to account for the wing and fuselage contributions. 

3.6.3 Derivatives Due to the Time Rate of Change 
of the Angle of Attack 

The stability coefficients C,, and Cma arise because of the lag in the wing downwash 
getting to the tail. As the wing angle of attack changes, the circulation around the 
wing will be altered. The change in circulation alters the downwash at the tail; 
however, it takes a finite time for the alteration to occur. Figure 3.8 illustrates the 
lag in flow field development. If the airplane is traveling with a forward velocity u,, 
then a change in circulation imparted to the trailing vortex wake will take the 
increment in time At = l,/u, to reach the tail surface. 

The lag in angle of attack at the tail can be expressed as 

where 

or 

d& 
Aa, = - At 

dt 
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Steady state condition 
angle of attack is constant 

FIGURE 3.8 
Mechanism for aerodynamic force due 
development. 

The change in the lift force can be expressed as 

AL, = CL", Aa, Q, s ,  

or in terms of the z force coefficient 

Unsteady flow created 
by change in wing angle 
of attack; change in wing 
circulation is convected 
downstream 

the lag in flow field 

A L ACT = - ---! = - C A S, 
- Qs L,, fff 7) S 

d c ,  - 2 ~ ,  ac, 
C = 

=" - d(&C/2uo) c a& 

The pitching moment due to the lag in the downwash field can be calculated as 
follows: 

AM,, = -1, AL, = -l,CL Am, Q,S, (3.89)  
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Equations (3.89) and (3.92) yield only the tail contribution to these stability 
coefficients. To obtain an estimate for the complete airplane these coefficients are 
increased by 10 percent. A summary of the equations for estimating the longitudi- 
nal stability coefficients is included in Table 3.3. 

3.6.4 Derivative Due to the Rolling Rate, p 

The stability coefficients Cyp, Cnp, and C,g arise due to the rolling angular velocity, 
p. When an airplane rolls about its longitudinal axis, the roll rate creates a linear 
velocity distribution over the vertical, horizontal, and wing surfaces. The velocity 
distribution causes a local change in angle of attack over each of these surfaces that 
results in a change in the lift distribution and, consequently, the moment about the 
center of gravity. In this section we will examine how the roll rate creates a rolling 
moment. Figure 3.9 shows a wing planform rolling with a positive rolling velocity. 
On the portion of the wing rolling down, an increase in angle of attack is created 
by the rolling motion. This results in an increase in the lift distribution over the 
downward-moving wing. If we examine the upward-moving part of the wing we 
observe that the rolling velocity causes a decrease in the local angle of attack and 

Relative velocity normal 
to the wing due to the 

Relative velocity 
components I A ~ i f t  

Station 2 

u 0 

Station 1 

FIGURE 3.9 
Wing planform undergoing a rolling motion. 



TABLE 3 3  

Equations for estimating the longitudinal stability coefficients 

X-force 
derivatives 

Z-force 
derivatives 

Pitching moment 
derivatives 

Subscript 0 indicates reference values and M is the Mach number. 
AR Aspect ratio V, Horizontal tail volume ratio 
C,, Reference drag coefficient M Flight mach number 
CLm Reference lift coefficient S Wing area 
CLa Airplane lift curve slope S, Horizontal tail area 
CLa* Wing lift curve slope de - 
CLm, Tail lift curve slope Change in downwash due to a change in angle of attack 

d a  
F Mean aerodynamic chord q Efficiency factor of the horizontal tail 
e Oswald's span efficiency factor 
1, Distance from center of gravity to tail quarter chord 
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the lift distribution decreases. The change in the lift distribution across the wing 
produces a rolling moment that opposes the rolling motion and is proportional to 
the roll rate, p. In Figure 3.9 the negative rolling velocity induces a positive rolling 
moment. 

An estimate of the rolling damping derivative, Clo, due to the wing surface can 
be developed in the following manner. The incremental lift force created by rolling 
motion can be expressed as 

d(Lift) = Cia AaQc dy (3.93) 

where A a  = pylu, . 
The incremental roll moment can be estimated by multiplying the incremental 

lift by the moment arm y: 

dL = - Cia - Qcy dy (3 
The total roll moment now can be calculated by integrating the moment contribu- 
tion across the wing: 

or in coefficient form 

To simplify this integral, the sectional lift curve slope is approximated by the wing 
lift curve slope as follows: 

The roll damping coefficient Clp is defined in terms of a nondimensional roll rate: 

Differentiating Equation (3.98) yields 

which provides an estimate to Clp, the roll damping coefficient due to wing surface. 
From this simple analysis we readily can see that Clp depends on the wing span. 
Wings of large span or high aspect ratio will have larger roll damping than low 
aspect ratio wings of small wing span. 

The roll damping of the airplane is made up of contributions from the wing, 
horizontal, and vertical tail surfaces. The wing, typically being the largest aerody- 
namic surface, provides most of the roll damping. This is not necessarily the case 
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for aircraft having low aspect ratio wings or missile configurations; for these 
configurations, the other components may contribute as much to the roll damping 
coefficients as the wing. 

3.6.5 Derivative Due to the Yawing Rate, r 

The stability coefficient C , ,  Cnr, and C!, are caused by the yawing angular velocity, 
r .  A yawing rate causes a change in the side force acting on the vertical tail surface 
as illustrated in Figure 3.10. As in the case of the other angular rate coefficients the 
angular motion creates a local change in the angle of attack or in this case a change 
in sideslip angle of the vertical tail. 

A positive yaw rate produces a negative sideslip angle on the vertical tail. The 
side force created by the negative sideslip angle is in the positive direction: 

y = - c~~~ Q, (3.100) 

where Ap = -r2,/uo for a positive yawing rate. Rewritting Equation (3.100) in 
coefficient form yields 

The stability coefficient C,, is defined in terms of the nondimensional yaw rate as 
follows: 

Taking the derivative of C, with respect to rb/2u, yields 

The term CLm, q is approximately -Cflta,,; therefore, 

The stability coefficients, C,,,, which is the change in yaw moment coefficient 
with respect to a nondimensional yaw rate rb/(2uo), is made up of contributions 
from the wing and the vertical tail. The vertical tail contribution is derived next. 
The yaw moment produced by the yawing rate is a result of the sideslip angle 
induced on the vertical tail. A positive yaw rate produces a negative sideslip at the 
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Lower dynamic pressure 
is seen by this wing, 
therefore, a lower lift 

Relative velocity 

Higher dynamic pressure is 
seen by this wing, therefore, 
a higher lift 

The difference in dynamic 
pressure seen by the yawing 
wing creates a roll moment 
due to the yaw rate, r. 

Relative velocity distribution 
seen by the wing and vertical tail 
due to  a yawing velocity 

Side force and yawing moment 
due to  yawing rate, r 

Side force on the vertical 
tail created by yawing rate, 
r, causes a rolling moment 
due to its displacement 

Roll moment due to 
yawing rate, r 

above the center of gravity - 
in the vertical direction. 

FIGURE 3.10 
Influence of the yawing rate on the wing and vertical tail. 

n 

ri 
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vertical tail or a positive side force on the tail. A positive side force causes a 
negative yawing moment; therefore, 

But A/? = -rl,/uo for a positive yawing rate: 

Or in coefficient form 

where qc = Q,/Q and V ,  = SJJSb, 
The stability coefficient C,, is defined as 

The vertical tail contribution to C,, also can expressed in terms of the side force 
coefficient with respect to sideslip: 

The yaw rate, r, also produces a roll moment. The stability coefficient C,, is due 
to both the wing and the vertical tail. An expression for estimating C,, is given in 
Table 3.4. As shown earlier the yawing rate creates a side force on the vertical tail 
that is proportional to the yaw rate, r .  Because this force acts above the center of 
gravity a rolling moment is created. The contribution of the wing to C,r is due to the 
change in velocity across the wing in the plane of the motion. Development of an 
expression for C,, due to the wing and the vertical tail is left as an exercise problem 
at the end of this chapter. 

In this section we have attempted to provide a physical explanation of some 
of the stability coefficients. This was accomplished by simple models of the flow 
physics responsible for the creation of the force and moments due to the motion 
variables such asp, q, and r . Most of the simple expressions developed for estimat- 
ing a particular stability coefficient were limited to only the contribution due to 
the primary aircraft component; that is, either the wing, horizontal, or vertical tail 
surface. To provide a more complete analysis of the aerodynamic stability coeffi- 
cients a more detailed analysis is required than has been presented in this chapter. 
References [3.4] and [3.5] provide a more complete set of stability and control 
prediction methods. 

The stability coefficients C,p, C,,,, CZq, Cmq, Czm, and Cme all oppose the motion 
of the vehicle and thus can be considered as damping terms. This will become more 
apparent as we analyze the motion of an airplane in Chapters 4 and 5.  



TABLE 3.4 
Equations for estimating the lateral stability coefficients 

Y-force Yawing moment Rolling moment 
derivatives derivatives derivatives 

AR + cos A CL 
Cyp = AR + 4cos 

tanA C n P = - -  
8 

0 C,,, = 2KCL0 C,, (see Figure 3.12) Clg = - 

AR Aspect ratio 
b Wingspan S 
CLo Reference lift coefficient sG 
CLm Airplane lift curve slope & 
CLmW Wing lift curve slope 
CLm, Tail lift curve slope r 
Z Mean aerodynamic chord A 
K empirical factor 7, 
I, Distance from center of gravity to vertical tail A 

aerodynamic center - d a  
V, Vertical tail volume ratio dB 

Wing area 
Vertical tail area 
Distance from center of pressure of vertical tail to 
fuselage centerline 
Wing dihedral angle 
Wing sweep angle 
Efficiency factor of the vertical tail 
Taper ratio (tip chordlroot chord) 

Change in sidewash angle with a change in sideslip angle 



Maximum ordinales 
on upper surface - Maximum ordinales Maximum ordinales 

on mean surface on lower surface - - 
ACI = 0 

P 
ACl = 0.0002/rad 

P 

-0.0003 

-0.0002 
C l ~  - 
r 

(per d w 2 )  -O.OOOI 

0 
0 2 4 6  8 10 

Aspect Ratio 

FIGURE 3.11 
Tip shape and aspect ratio effect on C,,. 

Spanwise distance from centerline to the 
y1 inboard edge of the aileron control v = - =  

b,/ 2 Semispan 

FIGURE 3.12 
Empirical factor for Cna0 
estimate. 
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TABLE 35  
Summary of longitudinal derivatives 

2, = -cZqL QS/m (ftls) or (rnls) 
2uo 

Z = -c - .. QS/(U~-) 

Z ,  = u, Z, (ftls) or (mls) 

Z8< = -Czs, QS/m (ftls2) 

TABLE 3.6 
Summary of lateral directional derivatives 

As noted earlier, there are many more derivatives for which we could develop 
prediction methods. The few simple examples presented here should give the 
reader an appreciation of how one would go about determining estimates of the 
aerodynamic stability coefficients. A summary of some of the theoretical predic- 
tion methods for some of the more important lateral and longitudinal stability 
coefficients is presented in Tables 3.3 and 3.4. Tables 3.5 and 3.6 summarize the 
longitidinal and lateral derivatives. 
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EXAMPLE PROBLEM 3.1. Estimate the longitudinal stability derivatives for the 
STOL transport described in Appendix B. A summary of the mass, geometric, and 
aerodynamic characteristics of the airplane were obtained from [3.6] and are given 
in Table 3.7. 

Solution. The stability coefficients, CXu, Crm, Czu, Cza, CZm, Czq, C,,, e m u ,  Cm,, Cm,, em,, 

and Cm8- can be calculated from the formulas given in Table 3.3. Because we are 

considering a low-speed flight condition, the terms related to the Mach number can be 
ignored; for example, dCm/dM and CDu, The stability coefficient for the STOL trans- 
port are calculated next. 

The change in the X force coefficient, C,, with respect to a change in the forward 
speed is given by 

C," = + 2 C , J  + c, 
CDu is set to 0 and CL is assumed to be equal to -C&, as explained in Section 3.6: 

TABLE 3.7 
Geometric, aerodynamic, and mass data for the STOL transport 

Wing area, S, ft2 

Wing span, b, ft 

Wing mean aerodynamic 
chord, 7, ft 
Wing aspect ratio, AR 

Location of wing 1/4 root 
chord on the fuselage, % 
of fuselage length, I, 

Wing lift curve slope, 
CLmw h a d  

Aircraft lift coefficient, CL 

Span efficiency factor, e 

Fuselage length, l,, ft 

Aircraft weight, W, Ibs 

Center of gravity location, 
% c, ft, measured from 
leading edge 

Aircraft mass moment of 
inertia, I,, slug-ft2, 
measured about center of 
gravity 

Horizontal tail area, S, 

Horizontal tail span, b, 

Horizontal tail mean 
aerodynamic chord, c, 
Horizontal tail aspect 
ratio, AR, 

Horizontal tail 
moment arm, I,, 
distance from center of 
gravity to tail aricraft 
characteristics 

Horizontal tail lift 
curve slope, C,_/rad 

Elevator area, S,, ft2 

Cmm due to fuselage and 
power effects per rad 

Fuselage width, w f ,  ft 

Aircraft altitude, ft 

Ambient air density, p, 
slug/ft3 

Flight velocity u,,, ft/s 
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The change in the X-force coefficient, C,, with respect to a change in angle of 
attack can be estimated from the following formula: 

The Z-force coefficient, C,, with respect to a change in forward speed is given by 

where the first term can be neglected due to the low flight speed: 

CZu = -2(0.77) = - 1.54 

The Z-force coefficient, C,, with respect to a change in angle of attack is given by 
the expression 

c,, = - (CL, + CDo) 

= -[5.2 + 0.0571 = -5.26lrad 

The Z-force coefficient, C, with respect to a change time rate of angle of attack 
c i ,  is given by 

The rate of change of the downwash angle with respect to the angle of attack can 
be estimated using the relationship presented in Section 2.3 

and the horizontal tail volume ratio, VH, is defined as 

The tail efficiency factor, 7 ,  is assumed to be equal to unity. With this information 
we can now calculate C,-: 

C,= = -2(3.5/rad)(1.0)(1.1)(0.34) 

The change in the Z-force coefficient, CZ, with respect to a nondimensional pitch 
rate qF/(2u,,) is given by 
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The Z-force coefficient, C,, with respect to a change in the elevator angle, a,, is 
given by 

The flap effectiveness parameter, T, can be estimated from Figure 2.21. For the 
ratio of elevator area to tail plane area, S,/Sf = 81.5 ft2/233 ft2 = 0.35 the flap 
effectiveness parameter is estimated to be r = 0.55. 

The rate of change of the pitch moment coefficient, C,, with respect to a change 
speed, u, is given by 

For low-speed flight dC,/dM can be assumed to be 0; therefore, Cmu = 0. 
The rate of change of the pitching moment coefficient, C,, with respect to a change 

in angle of attack, a, is given by 

The fuselage contribution to C," including power effects was given as Cmaru7 = 

0.93lrad. The wing and tail contribution are added to the fuselage contribution: 

C,,, = (5.2/rad)(0.4 - 0.25) + 0.93 -- (1.0)(1.1)(3.5/rad)(l - 0.34) 

= -0.83lrad 

The stability coefficients Cmc, Cmy, and C,, are related to the corresponding 
Z-force coefficients times the ratio of the tail moment over the wing mean chord. For 
example, 

The dimensional derivatives Xu, X,, and the like can be estimated from the formulas 
in Tables 3.5 and 3.6. To complete this problem we need to multiply each stability 
coefficient by the appropriate parameter. The parameters included in the dimen- 
sional derivatives are QS/m, QS/(mu,), (F/2,,) QS/m, QSz/Iy, or (F/2,,) QSFlI,,. These 
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TABLE 3.8 
Longitudinal dimensional derivatives for STOL transport 

quantities are calculated next: 

m = W/g = 40,000 lb132.2 ft/s2 = 1242 slugs 

1 
Q = - pui = (0.5)(0.0238 slug/ft3)(215 ftls)' = 55 Ib/ft2 

2 

QS/m = (55 lb/ft2)(975 ft2)/(1242 slugs) = 43 ft/s2 

QS/(md = (43 ft/s)/(215 ftls) = 0.21s 
- 
c/(2u0) = (10.1 ft)/[2(215 ftls)] = 0.023 s 

QSZ/l, = (55 1 b/ft2)(975 ft2)(10. 1 ft)/(215,000 slug-ft2) 

QSC/I, = 2.521s' 

A summary of the dimensional longitudinal derivatives are presented in Table 3.8. 

3.7 
SUMMARY 

The nonlinear differential equations of motion of a rigid airplane were developed 
from Newton's second law of motion. Linearization of these equations was accom- 
plished using the small-disturbance theory. In following chapters we shall solve the 
linearized equations of motion. These solutions will yield valuable information on 
the dynamic characteristics of airplane motion. 
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PROBLEMS 

Starting with the Y force equation, use the small-disturbance theory to determine the 
linearized force equation. Assume a steady-level flight for the reference flight condi- 
tions. 

Starting with the Z-force equation, use the small-disturbance theory to determine the 
linearized force equation. Assume a steady-level flight for the reference flight condi- 
tions. 

Repeat Problem 3.2 assuming the airplane is experiencing a steady pull-up maneuver; 
that is, q, = constant. 

Discuss why the products of inertial IYZ and I,, are usually 0 for an airplane 
configuration. Use simple sketches to support your arguments. The products of inertia 
I ,,:, I,,, and Ir2 are defined as follows: 

Why is I,, usually not O? 

Using the geometric data given below and in Figure P3.5, estimate Cmo, Cmm, Cmy, 
and C,,,. 

Geometric data Assume 

S = 232 ftz b = 36 CLmw= O.l/deg Cmacw= -0.02ldeg 
Wing: 

SH=54ft2 4 = 2 1 f t  al0 = -1.0" 
S,=37ftz lU=18.5ft 

Tail: CLew= O.l/deg Cmacw= 0.00 r = 37 f t2  
a~~ = o0 

FIGURE P3.5a 
Three-view sketch of a business jet. 
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Nose Tail 
Body station - ft 

FIGURE P3.5b 
Aircraft fuselage width as a function of body 
station. 

3.6. Estimate Clp and C,, for the airplane described in Problem 3.5. 

3.7. Show that for a straight tapered wing the roll damping coefficient Clp can be ex- 
pressed as 

3.8. Develop an expression for Cmq due to a canard surface. 

3.9. Estimate CC, C,,, and C,,, for the Boeing 747 at subsonic speeds. Compare your 
predictions with the data in Appendix B. 

3.10. Estimate the lateral stability coefficients for the STOL transport. See Example 3.1 and 
Appendix B for the appropriate data. 

3.11. Explain why deflecting the ailerons produces a yawing moment. 

3.12. (a) The stability coefficient Cl, is the change in roll moment due to the yawing rate. 
What causes this effect and how does the vertical tail contribute to the C,? A 
simple discussion with appropriate sketches is required for this problem. 

(b) The stability coefficient C1, is the change in roll moment coefficient due to rudder 
deflection. Again, explain how this effect occurs. 

3.13. In this chapter we developed an expression for C due to the wing. How would you 
I! 

estimate CiP due to the vertical and horizontal tail surfaces. Use simple sketches to 
support your discussion. 
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CHAPTER 4 

Longitudinal Motion (Stick Fixed) 

"The equilibrium and stability of a bird injight, or an aerodome orfiing 
machine, has in the past been the subject of considerable speculation, and no 
adequate explanation of the principles involved has hitherto been given. " 

Frederick W. Lanchester, Aerodonetics [4.1], published in 1908, in which 
he develops an elementary theory of longitudinal dynamic stability. 

4.1 
HISTORICAL PERSPECTIVE 

The theoretical basis for the analysis of flight vehicle motion developed almost 
concurrently with the successful demonstration of a powered flight of a human- 
carrying airplane. As early as 1897, Frederick Lanchester was studying the motion 
of gliders. He conducted experiments with hand-launched gliders and found that 
his gliders would fly along a straight path if they were launched at what he called 
the glider's natural speed. Launching the glider at a higher or lower speed would 
result in an oscillatory motion. He also noticed that, if launched at its "natural 
speed" and then disturbed from its flight path, the glider would start oscillating 
along its flight trajectory. What Lanchester had discovered was that all flight 
vehicles possess certain natural frequencies or motions when disturbed from their 
equilibrium flight. 

Lanchester called the oscillatory motion the phugoid motion. He wanted to use 
the Greek word meaning "to fly" to describe his newly discovered motion; actually, 
phugoid means "to flee." Today, we still use the term phugoid to describe the 
long-period slowly damped oscillation associated with the longitudinal motion of 
an airplane. 

The mathematical treatment of flight vehicle motions was first developed by 
G. H. Bryan. He was aware of Lanchester's experimental observations and set out 
to develop the mathematical equations for dynamic stability analysis. His stability 
work was published in 191 1. Bryan made significant contributions to the analysis 
of vehicle flight motion. He laid the mathematical foundation for airplane dynamic 
stability analysis, developed the concept of the aerodynamic stability derivative, 
and recognized that the equations of motion could be separated into a symmetric 
longitudinal motion and an unsymmetric lateral motion. Although the mathemati- 
cal treatment of airplane dynamic stability was formulated shortly after the first 
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successful human-controlled flight, the theory was not used by the inventors be- 
cause of its mathematical complexity and the lack of information on the stability 
derivatives. 

Experimental studies were initiated by L. Bairstow and B. M. Jones of the 
National Physical Laboratory (NPL) in England and Jerome Hunsaker of the 
Massachusetts Institute of Technology (MIT) to determine estimates of the aerody- 
namic stability derivatives used in Bryan's theory. In addition to determining 
stability derivatives from wind-tunnel tests of scale models, Bairstow and Jones 
nondimensionalized the equations of motion and showed that, with certain as- 
sumptions, there were two independent solutions; that is, one longitudinal and one 
lateral. During the same period, Hunsaker and his group at MIT conducted wind- 
tunnel studies of scale models of several flying airplanes. The results from these 
early studies were extremely valuable in establishing relationships between aerody- 
namics, geometric and mass characteristics of the airplanes, and its dynamic sta- 
bility.* 

Although these early investigators could predict the stability of the longitudi- 
nal and lateral motions, they were unsure how to interpret their findings. They were 
preplexed because when their analysis predicted an airplane would be unstable the 
airplane was flown successfully. They wondered how the stability analysis could be 
used to assess whether an airplane was of good or bad design. The missing factor 
in analyzing airplane stability in these early studies was the consideration of the 
pilot as an essential part of the airplane system. 

In the late 1930s the National Advisory Committee of Aeronautics (NACA) 
conducted an extensive flight test program. Many airplanes were tested with the 
goal of quantitatively relating the measured dynamic characteristics of the airplane 
with the pilot's opinion of its handling characteristics. These experiments laid the 
foundation for modern flying qualities research. In 1943, R. Gilruth reported the 
results of the NACA research program in the form of flying qualities' specifica- 
tions. For the first time, the designer had a list of specifications that could be used 
in designing the airplane. If the design complied with the specifications, one could 
be reasonably sure that the airplane would have good flying qualities [4.1-4.41. 

In this chapter we shall examine the longitudinal motion of an airplane dis- 
turbed from its equilibrium state. Several different analytical techniques will be 
presented for solving the longitudinal differential equations. Our objectives are for 
the student to understand the various analytical techniques employed in airplane 
motion analysis and to appreciate the importance of aerodynamic or configuration 
changes on the airplane's dynamic stability characteristics. Later we shall discuss 
what constitutes good flying qualities in terms of the dynamic characteristics pre- 
sented here. Before attempting to solve the longitudinal equations of motion, we 
will examine the solution of a simplified aircraft motion. By studying the simpler 
motions with a single degree of freedom, we shall gain some insight into the more 
complicated longitudinal motions we shall study later in this chapter. 

*The first technical report by the National Advisory Committee of Aeronautics, NACA (forerunner 
of the National Aeronautics and Space Administration, NASA), summarizes the MIT research in 
dynamic stability. 



4.2 Second-Order Differential Equations 133 

4.2 
SECOND-ORDER DIFFERENTIAL EQUATIONS 

Many physical systems can be modeled by second-order differential equations. For 
example, control servomotors, special cases of aircraft dynamics, and many elec- 
trical and mechanical systems are governed by second-order differential equations. 
Because the second-order differential equation plays such an important role in 
aircraft dynamics we shall examine its characteristics before proceeding with our 
discussion of aircraft motions. 

To illustrate the properties of a second-order differential equation, we examine 
the motion of a mechanical system composed of a mass, a spring, and a damping 
device. The forces acting on the system are shown in Figure 4.1. The spring 
provides a linear restoring force that is proportional to the extension of the spring, 
and the damping device provides a damping force that is proportional to the 
velocity of the mass. The differential equation for the system can be written as 

d2x c dx k 1 
- + - - + - x = - F ( t )  
dt2 m d t  m m (4.2) 

This is a nonhomogeneous, second-order differential equation with constant co- 
efficients. The coefficients in the equation are determined from the physical char- 
acteristics of the mechanical system being modeled, that is, its mass, damping 
coefficient, and spring constant. The function F(t )  is called the forcing function. If 
the forcing function is 0, the response of the system is referred to as the free 
response. When the system is driven by a forcing function F(t )  the response is refer- 
red to as the forced response. The general solution of the nonhomogeneous differ- 
ential equation is the sum of the homogeneous and particular solutions. The homo- 
geneous solution is the solution of the differential equation when the right-hand 
side of the equation is 0. This corresponds to the free response of the system. The 
particular solution is a solution that when substituted into the left-hand side of the 

m - mass 

k - spring constant 

c - viscous damping Free body 
diagram 

Rolling friction is 

Fx-i 
neglected 

FIGURE 4.1 
A spring mass damper system. 
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differential equation yields the nonhomogeneous or right-hand side of the differen- 
tial equation. In the following section we will restrict our discussion to the solution 
of the free response or homogeneous equation. 

The solution of the differential equation with constant coefficients is found by 
letting 

and substituting into the differential equation yields 

Clearing the equation of AeA' yields 

which is called the characteristic equation. The roots of the characteristic equation 
are called the characteristic roots or eigenvalues of the system. 

The roots of Equation (4.5) are 

The solution of the differential equation can now be written as 

where C, and C, are arbitrary constants determined from the initial conditions of 
the problem. The type of motion that occurs if the system is displaced from its 
equilibrium position and released depends on the value of A. But A depends on the 
physical constants of the problem; namely, m, c, and k.  We shall consider three 
possible cases for A. 

When (c/2m) > m, the roots are negative and real, which means that the 
motion will die out exponentially with time. This type of motion is referred to as 
an overdamped motion. The equation of motion is given by 

For the case where (c/2m) < m, the roots are complex: 
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The equation of motion is as follows: 

which can be rewritten as 

The solution given by Equation (4.11) is a damped sinusoid having a natural 
frequency given by 

The last case we consider is when (c/2m) = @. This represents the 
boundary between the overdamped exponential motion and the damped sinusoidal 
motion. This particular motion is referred to as the critically damped motion. The 
roots of the characteristic equation are identical; that is, 

The general solution for repeated roots has the form 

x(t) = (C, + C,t) eAr (4.14) 

If his a negative constant, then eAr will go to 0 faster than C2tgoes to infinity as time 
increases. Figure 4.2 shows the motion for the three cases analyzed here. 

The damping constant for the critically damped case, called the critical damp- 
ing constant, is defined as 

c,, = 2 6  (4.15) 

For oscillatory motion, the damping can be specified in terms of the critical 
damping: 

where cis called the damping ratio, 
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Overdamped FIGURE 

Underdamped o&e 
For a system that has no damping, that is, c = 0, which implies that 5 = 0, the 
motion is an undamped oscillation. The natural frequency, called the undamped 
natural frequency, can be obtained from Equation (4.12) by setting c = 0: 

r 

Since both the damping ratio and undamped natural frequency are specified as 
functions of the system physical constants, we can rewrite the differential equation 
in terms of the damping ratio and undamped natural frequency as follows: 

Equation (4.19) is the standard form of a second-order differential equation with 
constant coefficients. Although we developed the standard form of a second-order 
differential equation from a mechanical mass-spring-damper system, the equation 
could have been developed using any one of an almost limitless number of physical 
systems. For example, a torsional spring-mass-damper equation of motion is given 
by 

d20 c d 0  k - + - - + - o =  f ( t )  
dt2 I d t  I 

where c, k, and I are the torsional damping coefficient, torsional spring constant, 
and moment of inertia, respectively. 
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Characteristic roots 

Imaginary 
0 = cos-' 5 1 pan 

Period 

Real part 
* - 

Period 
increasing 

Time to halve Time to double 
amplitude increasing amplitude increasing 1- 

FIGURE 4.3 
Relationship among 7 ,  w, l, and w,. 

Left half plane is stable 

The characteristic equation for the standard form of the second-order differen- 
tial equation with constant coefficients can be shown to be 

Right half plane is unstable 

The roots of the characteristic equation are 

or A,,, = q 2 iw (4.23) 

where (4.24) 

The real part of A, that is, q, governs the damping of the response and the imagi- 
nary part, o, is the damped natural frequency. 

Figure 4.3 shows the relationship between the roots of the characteristic equa- 
tion and q, o, f; and on. When the roots are complex the radial distance from the 
origin to the root is the undamped natural frequency. The system damping 77 is the 
real part of the complex root and the damped natural frequency is the imaginary 
part of the root. The damping ratio 5is equal to the cosine of the angle between the 
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negative real axis and the radial line from the origin to the root: 

or 5 = cos 8 (4.27) 

The influence of the damping ratio on the roots of the characteristic equation 
can be examined by holding the undamped natural frequency constant and varying 
y from -a to m as shown in Figure 4.4. The response of the homogeneous equation 
to a displacement from its equilibrium condition can take on many forms depend- 
ing on the magnitude of the damping ratio. The classification of the response is 
given in Table 4.1. 

w, = Constant FIGURE 4.4 
Variation of roots with damping ratio. 

TABLE 4.1 
Variation of response with damping ratio 

Magnitude of 
damping ratio Type of root 

[ < - 1  Two positive real distinct roots 
0 > 5 > -1 Complex roots with a positive 

real part 
[ = O  Complex roots with a real 

part 0 
0 < [ < 1  Complex roots with a real 

part negative 
L = I  Two negative equal real 

roots 
5 > l  Two negative distinct real 

roots 

Time response 

Exponentially growing motion 
Exponentially growing sinusoidal 

motion 
Undamped sinusoidal motion 
Pure harmonic motion 
Underdamped exponentially 

decaying sinusoidal motion 
Critically damped exponentially 

decaying motion 
Overdamped exponentially 

decaying motion 
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4.3 
PURE PITCHING MOTION 

Consider the case in which the airplane's center of gravity is constrained to move 
in a straight line at a constant speed but the aircraft is free to pitch about its center 
of gravity. Figure 4.5 is the sketch of a wind-tunnel model constrained so that it can 
perform only in a pitching motion. 

The equation of motion can be developed from the rigid body equations devel- 
oped in Chapter 3 by making the appropriate assumptions. However, to aid our 
understanding of this simple motion, we shall rederive the governing equation from 
first principles. The equation governing this motion is obtained from Newton's 
second law: 

Pitching moments = M,, = 1, 8 (4.28) 

The pitching moment M and pitch angle 6 can be expressed in terms of an initial 
reference value indicated by a subscript, 0, and the perturbation by the A symbol: 

M = Mo + AM (4.29) 

6 = 6, + A6 (4.30) 

If the reference moment Mo is 0, then equation (4.28) reduces to 

For the restricted motion that we are examining, the variables are the angle of 
attack, pitch angle, the time rate of change of these variables, and the elevator 
angle. The pitching moment is not a function of the pitch angle but of the other 
variables and can be expressed in functional form as follows: 

AM = fn(Aa, Ah,  Aq, A&,) (4.32) 

Equation (4.32) can be expanded in terms of the perturbation variables by means 

Bearing, / 

FIGURE 4.5 
A model constrained to a pure pitching motion. 
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of a Taylor series: 

If we align the body and fixed frames so they coincide at t = 0, the change in angle 
of attack and pitch angles are identical; that is, 

Aa = A8 and A0 = Aq = Aff (4.34) 

This is true only for the special cases where the center of gravity is constrained. 
Substituting this information into Equation (4.3 1) yields 

Aii - (M, + M,)Aff - M,Aa = M,,AS, (4.35) 

where 

Equation (4.35) is a nonhomogeneous second-order differential equation, having 
constant coefficients. This equation is similar to a torsional spring-mass-damper 
system with a forcing function, which was mentioned briefly in the previous sec- 
tion. The static stability of the airplane can be thought of as the equivalent of an 
aerodynamic spring, while the aerodynamic damping terms are similar to a tor- 
sional damping device. The characteristic equation for Equation (4.35) is 

This equation can be compared with the standard equation of a second-order 
system: 

A 2  + 25w,A + wi  = 0 (4.37) 

where l i s  the damping ratio and w,is the undamped natural frequency. By inspec- 
tion we see that 

w, = e (4.38) 

and 

Note that the frequency is related to the airplane's static stability and that the 
damping ratio is a function of the aerodynamic damping and static stability. 

If we solve the characteristic Equation (4.37), we obtain the following roots: 

Expressing the characteristic root as 
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and comparing Equation (4.42) with (4.41), yields 

and 

which are the real and imaginary parts of the characteristic roots. The angular 
frequency w is called the damped natural frequency of the system. 

The general solution to Equation (4.35) for a step change AS,in the elevator 
angle can be expressed as 

where Aatri, = change in trim angle of attack = - (M,z A&)/M, 
[ = damping ratio = - ( M ,  + ~&)/(2-) 

on = undamped natural frequency = - Ma 
4 = phase angle = tan-'(--/-[) 

The solution is a damped sinusoidal motion with the frequency a function of 
C,,,.and the damping rate a function of Cmq + Cmi and CmL. Figure 4.6 illustrates 
the angle of attack time history for various values of the damping ratio 5. Note that 
as the system damping is increased the maximum overshoot of the response dimin- 
ishes. 

FIGURE 4.6 
Angle of attack time history 
of a pitching model for 
various damping ratios. 
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------ Variation of Cma 
with C, + Cmd, t 6 . ~  5- 
held fixzd a 

t 
Variation of Cmq + Cmi 
with Cmn 
held fixed 

-35 - 
I I I - I 

-8.0 -6.0 -4. 

Real part 

I - -4.0 

-6.0 
Time to one half amplitude (sec) 

FIGURE 4.7 
Variation of the characteristic roots of the pitching motion as a 
function of the stability coefficients. 

The influence of the stability coefficients on the roots of the characteristic 
equation can be seen in Figure 4.7. The curves show the effect of variations in CmU 
and Cmq + Cma on the roots. This type of curve is referred to as a root locus plot. 
Notice that as the roots move into the right half plane the vehicle will become 
unstable. 

The roots of the characteristic equation tell us what type of response our 
airplane will have. If the roots are real, the response will be either a pure divergence 
or a pure subsidence, depending on whether the root is positive or negative. If the 
roots are complex, the motion will be either a damped or undamped sinusoidal 
oscillation. The period of the oscillation is related to the imaginary part of the root 
as follows: 

2n- 
Period = - (4.46) 

W 

The rate of growth or decay of the oscillation is determined by the sign of the real 
part of the complex root. A negative real part produces decaying oscillation, 
whereas a positive real part causes the motion to grow. A measure of the rate of 
growth or decay of the oscillation can be obtained from the time for halving or 
doubling the initial amplitude of the disturbance. Figure 4.8 shows damped and 
undamped oscillations and how the time for halving or doubling the amplitude can 
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e = eoeqt, q c 0 

---_ ---- 
l ime 

Period l ime to half or double amplitude 

e e 
- = eqt or In- = qt 
00 00 

FIGURE 4.8 
Relationships for time to halve or double amplitude and the period. 

be calculated. The expression for the time for doubling or  halving of the amplitude is 

and the number of cycles for doubling or  halving the amplitude is 

EXAMPLE PROBLEM 4.1. A flat plate lifting surface is mounted on a hollow slender 
rod as illustrated in Figure 4.9. The slender rod is supported in the wind tunnel by a 
transverse rod. A low friction bearing is used so that the slender rod-flat plate system 
can rotate freely in pitch. To have the center of gravity located at the pivot point ballast 
is placed inside the slender tube forward of the pivot. Estimate the damping ratio, l, the 
undamped natural frequency, w,, and the damped natural frequency of the tube-flat 
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WB = 0.6 l b ~  

Low friction 

-Pivot and cg of 
tube-plate system 

Low friction' 
bearing 

FIGURE 4.9 
Rod-plate assembly constrained to a pure pitching motion. 

plate assembly. The following assumptions are made in the analysis: 

1. Neglect the mass of the slender rod. 
2. Neglect the contribution of the pitching moment contribution due to the slender rod. 
3. Neglect the mechanical friction of the bearings. 

Solution. The equation of motion governing the pitching motion of the slender rod- 
flat plate model can be derived as follows: 

2 Pitching moments about the center of gravity = 1,0 

M = 1,0 

The pitching moment for this model will be a function of only the angle of attack, a, 
and the pitch rate, q. The contribution due to d! is not included because this effect is due 
primarily to the interaction of the wing wake on an aft surface. Because there is no wing 
in this case the & term can be ignored. The aerodynamic pitching moment can be 
expressed as follows: 

Substituting the moment expression into the differential equation and rearranging 
yields 

8 - M,q - M,a = 0 

where 
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Because the center of gravity is constrained the angle of attack, a ,  and the pitch angle, 
8, are the same. The pitch rate, q, is the same as & therefore, the equation of motion 
can be written in terms of either a or 8. In terms of 8 the equation is as follows: 

This equation is similar to the differential equation developed for a pitching aircraft. 
The next step in the analysis is to develop expressions to estimate the stability deriva- 
tives Mq and Ma.  

The moment contribution due to a change in angle of attack can be estimated from 
the geometric and aerodynamic characteristics of the flat plate lifting surface. The 
moment created by a change in angle of attack is due to the change in lift on the flat 
plate times the moment arm to the pivot (center of gravity location). 

M ( a )  = -1  A Lift 

M ( a )  = - 1  C L m a  QS 

where Q = ipu& 1 is the distance from the center of gravity to the aerodynamic center 
of the plate, S is the planform area of the plate, and CLa is the lift curve slope of the flat 
plate. 

The derivative Ma can be estimated from the preceding formula: 

In a similar manner the moment contribution due to the pitch rate, q, can be estimated. 
Recall that when an aft surface undergoes a pitching motion a change in the angle of 
attack is induced on the surface. The change in angle of attack can be approximated as 

41 tan a = - 
u, 

or for small angles 

The pitching moment as a function of q is equal to the change in lift on the aft plate 
times the moment arm to the center of gravity: 

The derivative Mq can be estimated from this equation: 

The next step in our analysis it to determine the appropriate values for CLm, Q, and I, 
from the data given. The lift curve slope, CLa,  can be estimated by using the theoretical 
value of an infinite flat plate, Gem = 2~r/rad and correcting this value for the influence 
of aspect ratio: 
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The flat plate has an aspect ratio of 6, therefore, CLa = 4.7/rad. The only term in the 
expression that is not known is the mass moment of inertia, I,. The inertia of a thin flat 
plate about the y' axis through the plate's center of gravity is given in terms of p, b, t ,  
and c, the mass density of the material and the dimensions of the plate, respectively. 

The inertia of the plate about an axis through the pivot point can be determined using 
the parallel axis theorem: 

I, = I,, + md2 

where d is the distance to the new axis: 

I, = 2.16 X 10-'slug . ft2 + (9.3 X slugs)(l ft)' 

= 9.32 X 10-3slug . ft2 

The mass moment of inertia of the complete system, flat plate, and ballast is given by 

4 = lYPl., + IYba l l rU  

= 9.32 X 10-3slug . ft2 + (1.86 X slugs)(0.5 ft)' 

= 1.4 X 10-2slug . ft2 

With the expressions developed for Ma and M, and the data in Figure 4.9 we now can 
develop estimates of the derivatives: 

and M, = - I&- ($ )  QS/IY 

= - (0.92 ft)(4.7/rad)[(0.96 ft)/(25 ft/s)](0.7 lb/ft2)(0. 167 ft2)/ 
(1.4 X 10-2slugs . ft2) 

= - 1.381s 

Substituting these values into the differential equation yields 

e + 1.38 b + 36.10 = 0 

A second-order differential equation can be expressed in terms of the system damping 



4.4 Stick Fixed Longitudinal Motion 147 

ratio, 5, and the system's undamped natural wn frequency as follows: 

The system damping ratio and undamped natural frequency can be obtained by inspec- 
tion: 

and 25% = 1.38 

5 = 0.115 

Finally the damped natural frequency, o, is obtained from the following equation: 

" = w , V F - p  

= 5.96 radls 

In this example problem we have developed the governing differential equation 
from Newton's second law. The aerodynamic moment was assumed to be linear and 
a function of a and q and was expressed in terms of stability derivatives. Expressions 
for estimating the stability derivatives were developed in terms of the aerodynamic, 
geometric, and inertia characteristics of the rod-plate system. 

4.4 
STICK FIXED LONGITUDINAL MOTION 

The motion of an airplane in free flight can be extremely complicated. The airplane 
has three translation motions (vertical, horizontal, and transverse), three rotational 
motions (pitch, yaw, and roll), and numerous elastic degrees of freedom. To ana- 
lyze the response of an elastic airplane is beyond the scope of this book. 

The problem we shall address in this section is the solution of the rigid-body 
equations of motion. This may seem to be a formidable task; however, some 
simplifying assumptions will reduce the complexity of the problem. First, we shall 
assume that the aircraft's motion consists of small deviations from its equilibrium 
flight condition. Second, we shall assume that the motion of the airplane can be 
analyzed by separating the equations into two groups. The X-force, Z-force, and 
pitching moment equations embody the longitudinal equations, and the Y-force, 
rolling, and yawing moment equations form the lateral equations. To separate the 
equations in this manner, the longitudinal and lateral equations must not be cou- 
pled. These are all reasonable assumptions provided the airplane is not undergoing 
a large-amplitude or very rapid maneuver. 

In aircraft motion studies, one must always be sure that the assumptions made 
in an analysis are appropriate for the problem at hand. Students are all too eager 
to use the first equation they can find to solve their homework problems. This type 
of approach can lead to many incorrect or ridiculous solutions. To avoid such 
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Motion occurs at 
constant angle of attack ,-Minimum speed 

Change 
in altitude 

damped &--- -- Long period d 
oscillation (order of 30 or more seconds) 

Change in Motion occurs at 
angle of attack nearly constant speed 

Short period (several seconds) 

FIGURE 4.10 
The phugoid and short-period motions 

embarrassment, one must always verify that the assumptions used in developing the 
equations one wishes to use are consistent with the problem one is attempting to 
solve. This is particularly important when solving problems related to aircraft 
dynamics. 

In the following sections we shall examine the longitudinal motion of an 
airplane without control input. The longitudinal motion of an airplane (controls 
fixed) disturbed from its equilibrium flight condition is characterized by two oscil- 
latory modes of motion, Figure 4.10 illustrates these basic modes. We see that one 
mode is lightly damped and has a long period. This motion is called the long-period 
or phugoid mode. The second basic motion is heavily damped and has a very short 
period; it is appropriately called the short-period mode. 

4.4.1 State Variable Representation of the Equations of Motion 

The linearized longitudinal equations developed in Chapter 3 are simple, ordinary 
linear differential equations with constant coefficients. The coefficients in the 
differential equations are made up of the aerodynamic stability derivatives, mass, 
and inertia characteristics of the airplane. These equations can be written as a set 
of first-order differential equations, called the state-space or state variable equa- 
tions and represented mathematically as 

where x is the state vector, q is the control vector, and the matrices A and B contain 
the aircraft's dimensional stability derivatives. 



4.4 Stick Fixed Longitudinal Motion 149 

The linearized longitudinal set of equations developed earlier are repeated 
here: 

where AS and AST are the aerodynamic and propulsive controls, respectively. 
In practice, the force derivatives 2, and Z, usually are neglected because they 

contribute very little to the aircraft response. Therefore, to simplify our presenta- 
tion of the equations of motion in the state-space form we will neglect both Z, and 
Z,. Rewriting the equations in the state-space form yields 

M6 + M,Za M+ + MWZaT 

where the state vector x and control vector q are given by 

and the matrices A and B are given by 
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TABLE 4.2 

Summary of longitudinal derivatives 

(QsF) 
M, = C,, - 

uo 4 

- 
c QSF M = C  -- 

ma 2uo u,, I, 

The force and moment derivatives in the matrices have been divided by the mass 
of the airplane or the moment of inertia, respectively, as indicated: 

ax /au  
X,, = - , Mu=-  and so forth 

m 1, 

Table 4.2 includes a list of the definitions of the longitudinal stability derivatives. 
Methods for coefficients were discussed in Chapter 3. 

(4.49) can be obtained by assuming a 
solution of the form 

Substituting Equation (4.56) into Equation (4.49) yields 

where I is the identity matrix 

r l  o o O -  

Lo 0 0 1 -  

For a nontrivial solution to exist, the determinant 

IhJ - A1 = 0 
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must be 0. The roots A, of Equation (4.59) are called the characteristic roots or 
eigenvalues. The solution of Equation (4.59) can be accomplished easily using a 
digital computer. Most computer facilities will have a subroutine package for 
determining the eigenvalues of a matrix. The software package MATLAB* was 
used by the author for solution of matrix problems. 

The eigenvectors for the system can be determined once the eigenvalues are 
known from Equation (4.60). 

where Pi, is the eigenvector corresponding to the jth eigenvalue. The set of equa- 
tions making up Equation (4.60) is linearly dependent and homogeneous; there- 
fore, the eigenvectors cannot be unique. A technique for finding these eigenvectors 
will be presented later in this chapter. 

EXAMPLE PROBLEM 4.2. Given the differential equations that follow 

where x, and x2 are the state variables and 8 is the forcing input to the system: 

(a) Rewrite these equations in state space form; that is, 

(b) Find the free response eigenvalues. 
(c) What do these eigenvalues tell us about the response of this system? 

Solution. Solving the differential equations for the highest order derivative yields 

or in matrix form 

which is the state space formulation 

-0.5 10 
where A = [- .O] and B = [;I] 

The eigenvalues of the system can be determined by solving the equation 

- 

* MATLAB is the trademark for the software package of scientific and engineering cornputrics 
produced by The Math Works, Inc. 
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where I is the identity matrix. Substituting the A matrix into the preceding equation 
yields 

Expanding the determinant yields the characteristic equation 

The characteristic equation can be solved for the eigenvalues for the system. 
The eigenvalues for this particular characteristic equation are 

= 0.25 + 3.07i 

The eigenvalues are complex and the real part of the root is positive. This means that 
the system is dynamically unstable. If the system were given an initial disturbance, the 
motion would grow sinusoidally and the frequency of the oscillation would be gov- 
erned by the imaginary part of the complex eigenvalue. The time to double amplitude 
can be calculated from Equation (4.47). 

The period of the sinusoidal motion can be calculated from Equation (4.46). 

2%- 27r 
Period = - = - = 2.05 s 

o 3.07 

4.5 
LONGITUDINAL APPROXIMATIONS 

We can think of the long-period or phugoid mode as a gradual interchange of 
potential and kinetic energy about the equilibrium altitude and airspeed. This is 
illustrated in Figure 4.10. Here we see that the long-period mode is characterized 
by changes in pitch attitude, altitude, and velocity at a nearly constant angle of 
attack. An approximation to the long-period mode can be obtained by neglecting 
the pitching moment equation and assuming that the change in angle of attack is 
0; that is, 
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Making these assumptions, the homogeneous longitudinal state equations reduce to 
the following: 

The eigenvalues of the long-period approximation are obtained by solving the 
equation 

Expanding this determinant yields 

The frequency and damping ratio can be expressed as 

I 

If we neglect compressibility effects, the frequency and damping ratios for the 
long-period motion can be approximated by the following equations: 

1 1  5 =-- 
" .\/z LID 

Notice that the frequency of oscillation and the damping ratio are inversely propor- 
tional to the forward speed and the lift-to-drag ratio, respectively. We see from this 
approximation that the phugoid damping is degraded as the aerodynamic efficiency 
(LID) is increased. When pilots are flying an airplane under visual flight rules the 
phugoid damping and frequency can vary over a wide range and they will still find 
the airplane acceptable to fly. On the other hand, if they are flying the airplane 
under instrument flight rules low phugoid damping will become very objectable. To 
improve the damping of the phugoid motion, the designer would have to reduce the 
lift-to-drag ratio of the airplane. Because this would degrade the performance of 
the airplane, the designer would find such a choice unacceptable and would look for 
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another alternative, such as an automatic stabilization system to provide the proper 
damping characteristics. 

4.5.1 Short-Period Approximation 

An approximation to the short-period mode of motion can be obtained by assuming 
Au = 0 and dropping the X-force equation. The longitudinal state-space equations 
reduce to the following: 

This equation can be written in terms of the angle of attack by using the relation- 
ship 

In addition, one can replace the derivatives due to w and w with derivatives due to 
a and c i  by using the following equations. The definition of the derivative Ma is 

In a similar way we can show that 

Z , = u , Z ,  and Mi=uoMi .  (4.74) 

Using these expressions, the state equations for the short-period approximation 
can be rewritten as 

The eigenvalues of the state equation can again be determined by solving the 
equation 

which yields 

z a  - M a  - M e -  A - ( M ,  + M,) 
uo 

The characteristic equation for this determinant is 
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TABLE 4.3 
Summary of longitudinal approximations 

Long period (phugoid) Short period 

Frequency 

The approximate short-period roots can be obtained easily from the characteristic 
equation, 

A,, = Mq + M, + - ( z9/2 2 [ ( M ,  + Ma + - 
uo " uo )' 

or in terms of the damping and frequency 

Equations (4.80) and (4.81) should look familiar. They are very similar to the 
equations derived for the case of a constrained pitching motion. If we neglect the 
Z, term (i.e., neglect the vertical motion), Equations (4.80) and (4.81) are identical 
to  Equations (4.38) and (4.39). A summary of the approximate formulas is pre- 
sented in Table 4.3. 

To help clarify the preceding analysis, we shall determine the longitudinal 
characteristics of the general aviation airplane included in Appendix B. 

E X A M P L E  P R O B L E M  4.3. Find the longitudinal eigenvalues and eigenvectors for the 
general aviation airplane included in Appendix B and Figure 4.1 1. Compare these 
results with the answers obtained by using the phugoid and short-period approxima- 
tions. The exact solution was determined numerically using MATLAB. 

Solution. First, we must determine the numerical values of the dimensional longitudi- 
nal stability derivatives. The dynamic pressure Q and the terms QS, QSF, and 2/2u0 are 

Q = f puE = (0.5)(0.002378 slug/ft")(176 f t / ~ ) ~  

= 36.8 Ib/ft2 

QS = (36.8 lb/ft2)(184 ft2) = 6771 Ib 

QSF = (6771 lb)(5.7 ft) = 38596 ft . lb 
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The longitudinal derivatives can be estimated from the formulas in Table 4.2. 

u derivatives 

xu = - (CD,, + ~ C D , ) Q S / ( W ~  

= -[O.O + 2(0.05)](6771 lb)/[(176 ft/s)(85.4 slugs)] 

= -0.045 (s-I) 

z, = -(CL,, + 2C~JQsl(uom) 

= -[0.0 + 2(0.41)](6771 lb)/[(176 ft/s)(85.4 slugs)] 

= -0.369 (s-I) 

Mu = 0 

w derivatives 

X, = -(c D, - C~,)QSl(uom) 

= -(0.33 - 0.41)(6771 lb)/[(176 ft/s)(85.4 slugs)] 

= 0.036 (s-I) 

Zw = - (CL~ + C~,)Qsl(uom) 

= -(4.44 + 0.05)(6771 lb)/[((176 ft/s)(85.4 slugs)) 

= -2.02 (sf1) 

Mw = CmmQS~I(uo~,) 

= (-0.683)(38 596 ft . lb)/[(176 ft/s)(3000 slugs. ft2)] 

= -0.05 [l/(ft . s)] 

w derivatives 

x; = 0 

z; = 0 
- 
C 

M; = Cma - QSc/(uo I,) 
2uo 

= (-4.36)(0.016 s)(38 596 ft . lb)/[(176 ft/s)(3000 slugs. ft2)] 

= -0.0051 (ft-I) 

q derivatives 

x, = 0 

z, = 0 
- 
C 

M, = CmY - QSclI, 
2uo 

= (-9.96)(0.016 s)(38 596 ft . lb)/(3000 slugs. ft2) 

= -2.05 (s-I) 
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Substituting the numerical values of the stability derivatives into Equation (4.51), we 
can obtain the stability matrix: 

i = Ax 

-0.045 0.036 0.0000 -32.2 
-0.369 -2.02 176 

or 
0.0019 -0.0396 -2.948 
0.0000 0.0000 1.0000 

The eigenvalues can be determined by finding eigenvalues of the matrix A: 

IhI - A1 = 0 

The resulting characteristic equation is 

The solution of the characteristic equation yields the eigenvalues: 

Al,*  = -0.0171 + i(0.213) (phugoid) 

A,,, = -2.5 +. i (2.59) (short period) 

The period, time, and number of cycles of half amplitude are readily obtained once the 
eigenvalues are known. 

Phugoid 
(long period) 

Period = ~ T / W  = 240.213 

Period = 29.5 s 

Number of cycles to half amplitude 

N i l ,  = 1.37 cycles 

Short period 

t i / ,  = 0.28 s 

Period = ~ T / W  = 242.59 

Period = 2.42 s 

Number of cycles to half amplitude 

- - (0.1 10)(2.59) 
1-2.51 

N1,2 = 0.1 l cycles 

Now let us estimate these parameters by means of the long- and short-period approx- 
imations. The damping ratio and undamped natural frequency for the long-period 
motion was given by Equations (4.69), (4.70), (4.80), and (4.81). 

Phugoid approximation 
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4-p = 

h . 2  = 

- - 

- - 

Period = 

1112 = 

N1/2 = 

Short-period approximation 

Recall that Z,  = uoZw, Ma = uoMw, and M ,  = u,M, 

27r 2%- 
Period = - = - = 2.4 s 

w 2.61 

w 3.6 
NI/, = 0.110 - = 0.110- = 0.16 cycles 

1171 ( -2.48 1 
A summary of the results from the exact and approximate analyses is included in 

Table 4.4. In this analysis, the short-period approximation was found to be in closer 
agreement with the exact solution than the phugoid approximation. In general, the 
short-period approximation is the more accurate one. 

The eigenvectors for this problem can be determined by a variety of techniques; 
however, we will discuss only one relatively straightforward method. For additional 
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TABLE 4.4 

Comparison of exact and aproximate methods 

Exact method A~~roximate method Difference 

Phugoid t,,, = 40.3 s tllz = 30 s 25% 

Short period t,,, = 0.280 s t,,, = 0.278 s 0% 

information on other techniques, readers should go to their methematics library or 
computer center. Most computer facilities maintain digital computer programs suitable 
for extracting eigenvalues and eigenvectors of large-order systems. 

To obtain the longitudinal eigenvectors for this example problem, we will start 
with Equation (4.60), which is expanded as follows: 

- A 3 ,  Au, - A3,AwJ + (A, - A3,)AqJ - A3,AOJ = 0 

In this set of equations, the only unknowns are the components of the eigenvector; the 
eigenvalues A, and the elements of the A matrix were determined previously. Dividing 
the preceding equations by any one of the unknowns (for this example we will use doj) ,  
we obtain four equations for the three unknown ratios. Any three of the four equations 
can be used to find the eigenvectors. If we drop the fourth equation, we will have a set 
of three equations with the three unknown ratios, as follows: 

This set of equations can easily be solved by conventional techniques to yield the 
eigenvector [Au/AO, Aw/AO, Aq/AO, 11. 

The nondimensional eigenvectors for the example problem have been computed 
and are listed in Table 4.5. The longitudinal modes now can be examined by means of 
a vector or Argand diagram. The magnitude of the eigenvectors are arbitrary so only 
the relative length of the vectors is important. 

Figure 4.12 is an Argand diagram illustrating the long-period and short-period 
modes. In this diagram the lengths of the vectors are decreasing exponentially with 
time, while the vectors are rotating with the angular rate w. The motion of the airplane 
can be imagined as the projection of the eigenvectors along the real axis. 

On close examination of Figure 4.12, several observations can be made. For the 
long-period mode, we see that the changes in angle of attack and pitch rate are 
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TABLE 4 5  

Longitudinal eigenvectors for general aviation 

Eigenvector Long period Short period 

A = -0.0171 -C 0.213i A = -2.5 + 2.591 

& -0.1 14 + 0.837i 0.034 + 0.025 
A8 

period mode 
shOfi \ 1 -not visible 

u 0 

Long FIGURE 4.12 
period mode 

Irn 
Eigenvectors for the general 

Au w = 0.213 radlsec vectors aviation airplane in 
- 

u 0 
are decaying exp (-0.0171t) Problem 4.3. 

A0 

OJ = 2.5 radlsec vectors 
are decaying exp (-2.5t) 

- 

negligible. The motion is characterized by changes in speed and pitch attitude. Notice 
that the velocity vector leads the pitch attitude by nearly 90" in phase. In contrast, the 
short-period mode is characterized by changes in angle of attack and pitch attitude with 
negligible speed variations. As we can see from the vector diagrams, the assumptions 
we made earlier in developing the long- and short-period approximations indeed are 
consistent with the exact solution. 

- - 
Re 

W 
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4.6 
THE INFLUENCE OF STABILITY DERIVATIVES 
ON THE LONGITUDINAL MODES OF MOTION 

The type of response we obtain from solving the differential equations of motion 
depends on the magnitude of the stability coefficients. This easily can be seen by 
examining the expressions for the damping ratio and frequency of the long- and 
short-period approximations. Table 4.6 summarizes the effect of each derivative on 
the longitudinal motion 

Of the two characteristic modes, the short-period mode is the more important. 
If this mode has a high frequency and is heavily damped, then the airplane will 
respond rapidly to an elevator input without any undesirable overshoot. When the 
short-period mode is lightly damped or has a relatively low frequency, the airplane 
will be difficult to control and in some cases may even be dangerous to fly. 

The phugoid or long-period mode occurs so slowly that the pilot can easily 
negate the disturbance by small control movements. Even though the pilot can 
correct easily for the phugoid mode it would become extremely fatiguing if the 
damping were too low. 

Figures 4.13 and 4.14 show the effects of varying the center of gravity position 
and the horizontal tail area size on the long- and short-period responses. As the 
center of gravity is moved rearward the longitudinal modes become aperiodic and, 
eventually, unstable. 

From a performance standpoint, it would be desirable to move the center of 
gravity further aft so that trim drags during the cruise portion of the flight could 
be reduced. Unfortunately, this leads to a less stable airplane. By using an active 
control stability augmentation system, the requirement of static stability can be 
relaxed without degrading the airplane's flying qualities. 

Recent studies by the commercial aircraft industry have shown that fuel saving 
of 3 or 4 percent is possible if relaxed stability requirements and active control 
stability augmentation are incorporated into the design. With the ever-rising costs 
of jet fuel, this small percentage could mean the savings of many millions of dollars 
for the commercial airlines. 

TABLE 4.6 

Influence of stability derivatives on the long- and 
short-period motions 

Stabilitv derivative Mode affected How affected 

M, + M ,  Damping of short- 
period mode of motion 

Me Frequency of short- 
period mode of motion 

Damping of the phugoid 
or long-period mode of 
motion 

Frequency of phugoid 
mode of motion 

Increasing M, + M ,  
increases damping 

Increasing M, or static 
stability increases the 
frequency 

Increasing X ,  increases 
damping 

increasing Z, increases 
the frequency 



Arrow indicates direction of decreasing 
static margin. Center of gravity is moving aft. 

FIGURE 4.13 
Influence of center of gravity position on longitudinal 
response. 
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4.7 
FLYING QUALITIES 

In the previous sections we examined the stick fixed longitudinal characteristics of 
an airplane. The damping and frequency of both the short- and long-period mo- 
tions were determined in terms of the aerodynamic stability derivatives. Because 
the stability derivatives are a function of the geometric and aerodynamic character- 
istics of the airplane, designers have some control over the longitudinal dynamics 
by their selection of the vehicle's geometric and aerodynamic characteristics. For 
example, increasing the tail size would increase both the static stability of the 
airplane and the damping of the short-period motion.* However, the increased tail 
area also would increase the weight and drag of the airplane and thereby reduce the 
airplane's performance, The designer is faced with the challenge of providing an 
airplane with optimum performance that is both safe and easy to fly. To achieve 
such a goal, the designer needs to know what degree of stability and control is 
required for the pilot to consider the airplane safe and flyable. 

The flying qualities of an airplane are related to the stability and control 
characteristics and can be defined as those stability and control characteristics 
important in forming the pilot's impression of the airplane. The pilot forms a 
subjective opinion about the ease or difficulty of controlling the airplane in steady 
and maneuvering flight. In addition to the longitudinal dynamics, the pilot's im- 
pression of the airplane is influenced by the feel of the airplane, which is provided 
by the stick force and stick force gradients. The Department of Defense and 
Federal Aviation Administration has a list of specifications dealing with airplane 
flying qualities. These requirements are used by the procuring and regulatory 
agencies to determine whether an airplane is acceptable for certification. The 
purpose of these requirements is to ensure that the airplane has flying qualities that 
place no limitation in the vehicle's flight safety nor restrict the ability of the 
airplane to perform its intended mission. The specification of the requirements for 
airplane flying qualities can be found in [4.5]. 

As one might guess, the flying qualities expected by the pilot depend on the 
type of aircraft and the flight phase. Aircraft are classified according to size and 
maneuverability as shown in Table 4.7. The flight phase is divided into three 
categories as shown in Table 4.8. Category A deals exclusively with military air- 
craft. Most of the flight phases listed in categories B and C are applicable to either 
commercial or military aircraft. The flying qualities are specified in terms of three 
levels: 

Level 1 Flying qualities clearly adequate for the mission flight phase. 
Level 2 Flying qualities adequate to accomplish the mission flight phase but 

with some increase in pilot workload and/or degradation in mission 
effectiveness or both. 

*Because the aerodynamic derivatives also are a function of the Mach number, the designer can 
optimize the dynamic characteristics for only one flight regime. To provide suitable dynamic charac- 
teristics over the entire flight envelope, the designer must provide artificial damping by using stability 
augmentation. 



4.7 Flying Qualities 165 

TABLE 4.7 

Classification of airplanes 

Class I Small, light airplanes, such as light utility, primary trainer, and light 
observation craft 

Class I1 Medium-weight, low-to-medium maneuverability airplanes, such as heavy 
utilitylsearch and rescue, light or medium transportlcargoltanker, 
reconnaissance, tactical bomber, heavy attack and trainer for Class I1 

Class I11 Large, heavy, low-to-medium maneuverability airplanes, such as heavy 
transportlcargoltanker, heavy bomber and trainer for Class 111 

Class IV High-maneuverability airplanes, such as fighterlinterceptor. attack, tactical 
reconnaissance, observation and trainer for Class IV 

TABLE 4.8 
Flight phase categories 

- 

Nonterminal flight phase 
Category A Nonterminal flight phase that require rapid maneuvering, precision track~ng, 

or precise flight-path control. Included in the category are air-to-air combat 
ground attack, weapon deliveryllaunch, aerial recovery, reconnaissance, 
~n-flight refueling (receiver), terrain-following, antisubmarine search, and 
close-formation flying 

Category B Nonterminal flight phases that are normally accomplished using gradual 
maneuvers and wlthout precision tracking, although accurate flight-path 
control may be required. Included in the category are climb, cruise, loiter, 
in-flight refueling (tanker), descent, emergency descent, emergency 
deceleration, and aerial delivery. 

Terminal flight phases 
Category C Terminal flight phases are normally accomplished using gradual maneuvers 

and usually require accurate flight-path control. Included in this category 
are takeoff, catapult takeoff, approach, wave-offlgo-around and landing. 

Level 3 Flying qualities such that the airplane can be controlled safely but pilot 
workload is excessive and/or mission effectiveness is inadequate or 
both. Category A flight phases can be terminated safely and Category 
B and C flight phases can be completed. 

The levels are determined on the basis of the pilot's opinion of the flying character- 
istics of the airplane. 

4.7.1 Pilot Opinion 

Handling or flying qualities of an airplane are related to the dynamic and control 
characteristics of the airplane. For example, the short- and long-period damping 
ratios and undamped natural frequencies influence the pilot's opinion of how easy 
or difficult the airplane is to fly. Although we can calculate these qualities, the 
question that needs to be answered is what values should 5 and on take so that the 
pilot finds the airplane easy to fly. ~esearchers have studied this problem using 
ground-based simulators and flight test aircraft. To establish relationships between 
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TABLE 4.9 

Cooper-Harper scale 

Pilot 
rating Aircraft characteristic Demand of pilot 

Overall 
assessment 

Excellent, highly desirable 

Good, negligible 
deficiencies 

Fair, some mildly 
unpleasant deficiencies 

Minor but annoying 
deficiencies 

Moderately objectionable 
deficiencies 

Very objectionable but 
tolerable deficiencies 

Major deficiencies 

Major deficiencies 

Major deficiencies 

Major deficiencies 

Pilot compensation not a factor for 
desired performance 

Pilot compensation not a factor for 
desired performance 

Minimal pilot compensation 
required for desired performance 

Good flying 
qualities 

Desired performance requires 
moderate pilot compensation 

Adequate performance requires 
considerable pilot compensation 

Adequate performance requires 
extensive pilot compensation 

Adequate performance not 
attainable with maximum tolerable 
pilot compensation; controllability 
not in question 

Considerable pilot compensation is 
required for control 

Intense pilot compensation is 
required to retain control 

Control will be lost during some 
portion of required operation 

Flying qualities 
warrant 
improvement 

Flying quality 
deficiencies 
require 
improvement 

Improvement 
mandatory 

the stability and control parameters of the airplane and the pilot's opinion of the 
airplane a pilot rating system was developed. A variety of rating scales have been 
used over the years; however, the rating system proposed by Cooper and Harper 
[4.6] has found widespread acceptance. The Cooper-Harper scale is presented in 
Table 4.9. The rating scale goes from 1 to 10 with low numbers corresponding to 
good flying or handling qualities. The scale is an indication of the difficulty in 
achieving the desired performance that the pilot expects. 

Flying qualities research provides the designer information to assess the flying 
qualities of a new design early in the design process. If the flying qualities are found 
to be inadequate then the designer can improve the handing qualities by making 
design changes that influence the dynamic characteristics of the airplane. A de- 
signer that follows the flying qualities guidelines can be confident that when the 
airplane finally is built it will have flying qualities acceptable to its pilots. 

Extensive research programs have been conducted by the government and the 
aviation industry to quantify the stability and control characteristics of the airplane 
with the pilot's opinion of the airplane's flying qualities. Figure 4.15 is an example 
of the type of data generated from flying qualities research. The figure shows the 
relationship between the level of flying qualities and the damping ratio and un- 
damped natural frequency of the short-period mode. This kind of figure is some- 
times referred to as a thumbprint plot. Table 4.10 is a summary of the longitudinal 
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0.1 0.2 0.4 0.6 0.8 1.0 2.0 

Short-period damping ratio, 5 

TABLE 4.10 
Longitudinal flying qualities 

FIGURE 4.15 
Short-period flying qualities. 

- - -- -- - -- - -- 

Phugoid mode 

Level 1 f > 0.04 
Level 2 5 > 0 
Level 3 T, > 55 s 

Short-period mode 

Categories A and C Category B 

bp kp fTP f s p  

Level min max min max 

1 0.35 1.30 0.3 2.0 

2 0.25 2.00 0.2 2.0 

3 0.15 - 0.15 - 

specifications for the phugoid and short-period motions that is valid for all classes 
of aircraft. 

The information provided by Table 4.10 provides the designer with valuable 
design data. As we showed earlier, the longitudinal response characteristics of an 
airplane are related to its stability derivatives. Because the stability derivatives are 
related to the airplane's geometric and aerodynamic characteristics it is possible for 
the designer to consider flying qualities in the preliminary design phase. 

E X A M P L E  P R O B L E M  4.4. A fighter aircraft has the aerodynamic, mass, and geomet- 
ric characteristics that follow. Determine the short-period flying qualities at sea level, 
at 25,000 ft, and at 50,000 ft for a true airspeed of 800 ftls. How can the designer 
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improve the flying qualities of this airplane? 

W = 17 580 Ib I, = 25 900 slug . ft2 
S = 260 ft2 C = 10.8 ft 

CLm = 4.0 rad-' Cmq = -4.3 rad-' 
Cmm = -0.4 rad-' C,,,. = - 1.7 rad-' 

Solution. The approximate formulas for the short-period damping ratio and frequency 
are given by Equations (4.80) and (4.81): 

where Z, = - c , ~  Q S / ~  

Ma = cm. (a) 
I" 

If we neglect the effect of Mach number changes in the stability coefficients, the 
damping ratio and frequency can easily be calculated from the preceding equations. 
Figure 4.16 is a plot of lSp and wnW as functions of the altitude. Comparing the esti- 
mated short-period damping ratio and frequency with the pilot opinion contours in 
Figure 4.15, we see that this airplane has poor handling qualities at sea level that 
deteriorate to unacceptable characteristics at altitude. 

To improve the flying qualities of this airplane, the designer needs to provide more 
short-period damping. This could be accomplished by increasing the tail area or the tail 
moment arm. Such geometric changes would increase the stability coefficients Cmm, 
Cmq, and Cma. Unfortunately, this cannot be accomplished without a penalty in flight 
performance. The larger tail area results in increased structural weight and empennage 
drag. For low-speed aircraft geometric design changes usually can be used to provide 
suitable flying qualities; for aircraft that have an extensive flight envelope such as 
fighters it is not possible to provide good flying qualities over the entire flight regime 

FIGURE 4.16 
Variation of C;,, and o,,,~ as a 

- 5 function of altitude. 

0 10 20 30 40 50 60 
Altitude: 1000 f? 
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from geometric considerations alone. This can be accomplished, however, by using a 
stability augmentation system. 

4.8 
FLIGHT SIMULATION 

To determine the flying quality specifications described in a previous section re- 
quires some very elaborate test facilities. Both ground-based and in-flight simulators 
are used to evaluate pilot opinion on aircraft response characteristics, stick force 
requirements, and human factor data such as instrument design, size, and location. 

The ground-based flight simulator provides the pilot with the "feel" of flight by 
using a combination of simulator motions and visual images. The more sophisti- 
cated flight simulators provide six degrees of freedom to the simulator cockpit. 
Hydraulic servo actuators are attached to the bottom of the simulator cabin and 
driven by computers to produce the desired motion. The visual images produced on 
the windshield of the simulator are created by projecting images from a camera 
mounted over a detailed terrain board or by computer-generated images. Fig- 
ure 4.17 is a sketch of a five degree of freedom ground-based simulator used by the 

FIGURE 4.17 
Sketch of United States Air Force Large Amplitude Multimode Aerospace Research 
Simulator (LAMARS). Courtesy of the Flight Control Division, Flight Dynamics 
Directorate, Wright Laboratory. 
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United States Air Force for handling qualities research. The crew station is located 
at the end of a 30 ft arm that can be controlled to provide the crew with vertical 
and lateral accelerations. 

An exsmple of an in-flight simulator is shown in Figure 4.18. This figure is a 
sketch of the U.S. Air Force's total in-flight simulator (TIFS), which is a modified 
C 13 1 transport. By using special force-producing control surfaces such as direct 
lift flaps and side force generators, this airplane can be used to simulate a wide 
range of larger aircraft. The TIFS has been used to simulate the B-1, C-5, and 
space shuttle among other craft. 

The stability characteristics of the simulator can be changed through the com- 
puter. This capability permits researchers to establish the relationship between 
pilot opinion and aircraft stability ch.~racteristics. For example, the short-period 
characteristics of the simulator could be varied and the simulator pilot would be 
asked to evaluate the ease or difficulty of flying the simulator. In this manner, the 
researcher can establish the pilot's preference for particular airplane response 
characteristics. 

4.9 
SUMMARY 

In this chapter we examined the stick fixed longitudinal motion of an airplane using 
the linearized equations of motion developed in Chapter 3. The longitudinal dy- 
namic motion was shown to consist of two distinct and separate modes: a long- 
period oscillation that is lightly damped, and a very short-period but heavily 
damped oscillation. 

Approximate relationships for the long- and short-period modes were devel- 
oped by assuming that the long-period mode occurred at constant angle of attack 
and the short-period mode occurred at a constant speed. These assumptions were 
verified by an examination of the exact solution. The approximate formulas permit- 
ted us to examine the relationship of the stability derivatives on the longitudinal 
motion. 

Before concluding, it seems appropriate to discuss several areas of research 
that will affect how we analyze aircraft motions. As mentioned, active control 
technology in commercial aircraft can be used to improve aerodynamic efficiency. 
With active controls, the aircraft can be flown safely with more aft center of gravity 
position than would be possible with a standard control system. By shifting the 
center of gravity further aft, the trim drag can be reduced substantially. This allows 
for improved fuel economy during the cruise portion of the flight. 

Active control technology also can be used to improve ride comfort and reduce 
wing bending during flight in turbulent air. With active controls located on the 
wing, a constant load factor can be maintained. This alleviates most of the un- 
wanted response associated with encounters with a vertical gust field. In addition 
to improving the ride for passengers, the gust alleviation system reduces the wing 
bending moments, which means the wing can be lighter. Again, this will result in 
potential fuel savings. 
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Body vortices 

t'p C\ vortex 

FIGURE 4.19 
Sketch of a fighter aircraft illustrating separated vortical 
flows. 

The analysis presented in this chapter assumes that the aerodynamic character- 
istics are linear and can be represented by stability derivatives. This assumption is 
quite good if the angle of attack of the airplane is small. However, modern fighter 
aircraft are capable of performing transient maneuvers that involve high angular 
rates and large angles of attack [4.7, 4.81. The flow field around a slender fighter 
aircraft at large angles of attack is dominated by vortices created by flow separation 
around the forebody (nose of the fuselage), strake, wing and control surfaces. 
Figure 4.19 is a sketch of the leeward wake over a slender fighter aircraft. The 
interaction of these vortices with various components of the aircraft can create 
significant nonlinear aerodynamic forces and moments. To further illustrate the 
complexity of the wake flow around a fighter aircraft, we will examine the separated 
flow over the forebody that is the nose region of the fuselage in the next section. 

As the angle of attack of the airplane increases, the flow around the fuselage 
separates. The separated flow field can cause nonlinear static and dynamic aerody- 
namic characteristics. An example of the complexity of the leeward wake flows 
around a slender aircraft and a missile is sketched in Figure 4.20. Notice that as the 
angle of attack becomes large the separated body vortex flow can become asym- 
metric. The occurence of this assymetry in the flow can give rise to large side 
forces, yawing, and rolling moments on the airplane or missile even though the 
vehicle is performing a symmetric maneuver (i.e., sideslip angle equals 0). The 
asymmetric shedding of the nose vortices is believed to be a major contribution to 
the stall spin departure characteristics of many high-performance airplanes. 

Figure 4.21 a and b are multiple exposure photographs of the vortex pattern 
above a cone finned model. A laser light sheet is used to illuminate smoke entrained 
into the body vortices. The light sheet was positioned so that it intersected the flow 
normal to the longitudinal axis of the model. The cross section of the body vortices 
are observed at several axial locations along the model. The model was painted 
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FIGURE 4.20 
Vortex flows around an aircraft at large angles of attack. 

(b) 
FIGURE 4.21 
Flow visualization of body vortices. (a) Symmetric body 
vortex pattern. (b) Asymmetric body vortex pattern. 
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black so that only the vortices are visible. The model surface is indicated by a 
curved line which is a reflection of the laser sheet from the model surface. In part 
a the body vortices are symmetric; however, as the angle of attack is increased 
further the wake vortices become asymmetric. The vortex on the right side of the 
model is farther away from the model surface than the left side vortex. When the 
wake vortices become asymmetric the body experiences both a side force and 
yawing moment even though the model is at zero sideslip angle. 

The asymmetric vortex wake can lead to aerodynamic cross-coupling between 
the longitudinal and lateral equations of motion. Analyzing these motions requires 
a much more sophisticated analysis than that presented in this chapter. 

PROBLEMS 

Problems that require the use of a computer have the capital letter C after the problem 
number 

4.1. Starting with Newton's second law of motion, develop the equation of motion for 
the simple torsional pendulum shown in Figure P4.1. The concept of the torsional 
pendulum can be used to determine the mass moment of inertia of aerospace 
vehicles or components. Discuss how one could use the torsional pendulum con- 
cept to determine experimentally the mass moment of inertia of a test vehicle. 

TOrsiOna oendulum $ 

FIGURE P4.1 
Aircraft model swinging as a torsional pendulum. 

4.2. A mass weighing 5 lb is attached to a spring as shown in Figure P4.2 (a). The 
spring is observed to extend 1 in. when the mass is attached to the spring. Suppose 
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the mass is given an instantaneous velocity of 10 ftis in the downward direction 
from the equilibrium position. Determine the displacement of the mass as a 
function of time. Repeat your analysis for the spring mass damper system in 
Figure P4.2 (b), assume F = -cy, where c = 0.6 (lb . sift.). 

(a) Mass-spring system (b) Mass-spring-damper-system 

FIGURE P4.2 
Spring-mass and spring-mass-damper systems. 

4.3. The differential equation for the constrained center of gravity pitching motion of 
an airplane is computed to be 

Find the following: 
(a) w,,, natural frequency, radis 
(b) 5, damping ratio 
(c) w,, damped natural frequency, radis 

4.4. Given the second-order differential equation 

(a) Rewrite this equation in the state space form: 

(c) Determine the eigenvalues of the A matrix. 

4.5(C). Determine the eigenvalues and eigenvectors for the following matrix: 

4.6. The characteristic roots of a second-order system are shown in Figure P4.6. If this 
system is disturbed from equilibrium, find the time to half-amplitude, the number 
of cycles to half amplitude, and the period of motion. 
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FIGURE P4.6 
Second-order system roots. 

4.7(C). The missile shown in Figure P4.7 is considered so that only a pitching motion is 
possible. Assume that the aerodynamic damping and static stability come com- 
pletely from the tail surface (i.e., neglect the body contribution). If the model is 
displaced 10' from its trim angle of attack (a, = 0) and then released determine 
t5e angle of attack time history. Plot your results. What effect would moving the 
center of gravity have on the motion of the model? 

+\ 
l o  D~ D =Characteristic length 

Pivot D = 5.0cm i-p2 hilsufiacesare V = 30mIsec 
flat plates 

1, = 5.0 X lo-= kg - m2 

FIGURE P4.7 
Pitching wind-tunnel model. 

4.8. Develop the equation of motion for an airplane that has freedom only along the 
flight path; that is, variations in the forward speed. Assume that X = fn (u,  ST), 
where u is the forward speed and ST is the propulsive control. If the airplane is 
perturbed from its equilibrium state, what type of motion would you expect? 

4.9. Given the following differential equation 

(a) Rewrite the equation in state-space form; that is, i = Ax + Bq. Hint: let 
X,  = X, X2 = X, x j  = X. 

(b) If the characteristic equation is given by 

describe the free response modes of motion. 
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4.10. Given the differential equation 

(a) Rewrite the equation in state-space form. 
(b) Determine the characteristic equation of the system 
(c) Find the eigenvalues of the system and describe the motion one might expect 

for these eigenvalues. 

4.11(C). For the set of differential equations that follow 

(a) Rewrite the equations in state-space form. 
(b) Use MATLAB or similar software to determine the eigenvalues of the A 

matrix. 
(c) Determine the response of the system to a unit step input. Assume the initial 

states all are 0. 

4.12. Use the short- and long-period approximations to find the damping ratio for the 
executive jet airplane described in Appendix B. 

4.13. Show that if one neglects compressibility effects the frequency and damping ratio 
for the phugoid mode can be expressed as 

1 1  
w,,, = fi and 5 = - - 

uo " f i L / D  

4.14. From data in Figure P4.14 estimate the time to half-amplitude and the number of 
cycles for both the short- and long-period modes. 

Longitudinal roots FIGURE P4.14 

4.15. The short-period equations for a particular airplane can be expressed as follows: 
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Suppose Z,/u, = - 1. Determine M, and M ,  so that the damping ration 5 = 0, 
and the undamped natural frequency is 2 radls. 

4.16. What effect will increasing altitude have on the short- and long-period modes? Use 
the approximate formulas in your analysis. 

4.17. Develop the equation of motion for an airplane that has freedom only along the 
flight path; that is, variations in forward speed. If the airplane is perturbed from 
its equilibrium state what type of motion would you expect? Clearly state all of 
your assumptions. 

4.18(C). Develop a computer program to compute the eigenvalues for the longitudinal 
equations of motion. Use your program to determine the characteristic roots for 
the executive jet airplane described in Appendix B. Compare your results with 
those obtained in Problem 4.12. 

4.19(C). An airplane has the following stability and inertia characteristics: 

I, = 30.5 X l o 6  slug . ft2 CLe = 5.7 rad-' 

I, = 43.1 X 1 O6 slug . ft2 CDm = 0.66 rad-' 

h = sea level Cmm = -1.26 rad-I 

(a) Find the frequency and damping ratios of the short- and long-period modes. 
(b) Find the time to half-amplitude for each mode. 
(c) Discuss the influence of the coefficients Cmqand Cmmon the longitudinal 

motion. 

4.20(C). Determine the longitudinal equations 

for that STOL transport in Appendix B. 
(a) Determine the eigenvalues of the A matrix. 
(b) Determine the response of the airplane to a step input of the elevator, 

AS, = -0.1 rad. 

4.21(C). Using the plant matrix A determined in Problem 4.18(C), examine the influ- 
ence of the stability derivatives, Cme, Cm4, CZm, and CXuon the longitudinal eigen- 
values. Vary one stability coefficient at a time and plot the movement of the 
eigenvalues. 
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4.22. A wind-tunnel model is constrained so that only a pitching motion can occur. The 
model is in equilibrium when the angle of attack is 0. When the model is displaced 
from its equilibrium state and released, the motion shown in Figure P4.22 is 

0 

FIGURE P4.22 

2 4 6 
Time (seconds) 

recorded. Using the following data determine Cmm an1 

u, = 100 ft/s c = 0.2 ft 

Q = 1 1.9 1b/ft2 1, = 0.01 slug - ft2 

S = 0.5 ft2 

Assume that equation of motion is 

O(t) = 0, en' cos o t  

where q = (M, + Mi)/2.0 

and o = f l  
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CHAPTER 5 

Lateral Motion (Stick Fixed) 

"Dutch Roll is a complex oscillating motion of an aircraft involving rolling, 
yawing and sideslipping. So named for the resemblance to the characteristic 
rhythm of an ice skater." 

F. D. Adams, Aeronautical Dictionary [5.1] 

5.1 
INTRODUCTION 

The stick fixed lateral motion of an airplane disturbed from its equilibrium state is 
a complicated combination of rolling, yawing, and sideslipping motions. As was 
shown in Chapter 2, an airplane produces both yawing and rolling moments due to 
the sideslip angle. This interaction between the roll and the yaw produces the 
coupled motion. Three potential lateral dynamic instabilities are of interest to the 
airplane designer: directional divergence, spiral divergence, and the so-called 
Dutch roll oscillation. 

Directional divergence can occur when the airplane lacks directional or weath- 
ercock stability. If disturbed from its equilibrium state such an airplane will tend 
to rotate to ever-increasing angles of sideslip. Owing to the side force acting on the 
airplane, it will fly a curved path at large sideslip angles. For an airplane that has 
lateral static stability (i.e., dihedral effect) the motion can occur with no significant 
change in bank angle. Obviously, such a motion cannot be tolerated and readily can 
be avoided by proper design of the vertical tail surface to ensure directional sta- 
bility. 

Spiral divergence is a nonoscillatory divergent motion that can occur when 
directional stability is large and lateral stability is small. When disturbed from 
equilibrium, the airplane enters a gradual spiraling motion. The spiral becomes 
tighter and steeper as time proceeds and can result in a high-speed spiral dive if 
corrective action is not taken. This motion normally occurs so gradually that the 
pilot unconsciously corrects for it. 

The Dutch roll oscillation is a coupled lateral-directional oscillation that can 
be quite objectionable to pilots and passengers. The motion is characterized by a 
combination of rolling and yawing oscillations that have the same frequency but 
are out of phase with each other. The period can be on the order of 3 to 15 seconds, 
so that if the amplitude is appreciable the motion can be very annoying. 
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Before analyzing the complete set of lateral equations we shall examine several 
motions with a single degree of freedom. The purpose of examining the single 
degree of freedom equations is to gain an appreciation of the more complicated 
motion comprising the stick fixed lateral motion of an airplane. 

5.2 
PURE ROLLING MOTION 

A wind-tunnel model free to roll about its x axis is shown in Figure 5.1. The 
equation of motion for this example of a pure rolling motion is 

Rolling moments = I,$ (5.1) 

where (dL/a6,) As, is the roll moment due to the deflection of the ailerons and 
(dL/ap)  Ap is the roll-damping moment. Methods for estimating these derivatives 
were presented in Chapters 2 and 3. The roll angle 4 is the angle between z, of the 
body axes and zfof the fixed axis system. The roll rate Ap is equal to A& which will 
allow us to rewrite Equation (5.2) as follows: 

L~ 

Here r ,  L,, and L,, are defined as follows: 

The parameter r i s  referred to as the time constant of the system. The time constant 
tells us how fast our system approaches a new steady-state condition after being 
disturbed. If the time constant is small, the system will respond very rapidly; if the 
time constant is large, the system will respond very slowly. 

The solution to Equation (5.3) for a step change in the aileron angle is 

L 
Ap(t) = - "(1 - e-''7 AS, (5.5) 

L, 
Recall that C,,, is negative; therefore, the time constant will be positive. The roll 
rate time history for this example will be similar to that shown in Figure 5.2. The 
steady-state roll rate can be obtained from Equation ( 5 . 3 ,  by assuming that time 
t is large enough that e-'IT is essentially 0: 
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t 
Zb. Zf 

FIGURE 5.1 
Wind-tunnel model constrained to a pure rolling motion. 

P,,-steady state roll rate FIGURE 5.2 
Typical roll response due to aileron 
deflection. 

P(t) 

Time 

The term (ps,b/2uo) for full aileron deflection can be used for sizing the aileron. 
The minimum requirement for this ratio is a function of the class of airplane under 
consideration: 

Cargo or  transport airplanes: pb/2u, = 0.07 
Fighter airplanes: pb/2u, = 0.09 

EXAMPLE PROBLEM 5.1. Calculate the roll response of the F104A to a step 
change in aileron deflection. Assume the airplane is flying at sea level with a velocity 
of 87 mls, The F104A has the following aerodynamic and geometric characteristics: 
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Steady-state roll rate 

Lb AS, P s s  = - - 
L, 

L ,  = C,, QSblI, 

L8a = (0.039 rad-')(4636 N/m2)(18 m2)(6.7 m)/(4676 kg . m2) = 4.66 (s-~)  
ps, = -(4.661 s-')(5 deg)/[(-1.3 s-')(57.3 deglrad)] = 0.31 rad/s 

Figure 5.3 is a plot of the roll rate time history for a step change in aileron deflection. 

Let us reconsider this problem. Suppose that Figure 5.3 is a measured roll rate 
instead of a calculated response. The roll rate of the airplane could be measured by 
means of a rate gyro appropriately located on the airplane. If we know the mass and 
geometric properties of the airplane we can extract the aerodynamic stability 
coefficients from the measured motion data. 

If we fit the solution to the differential equation of motion to the response we 
can obtain values for C, and C$. It can be shown that after one time constant the 
response of a first-orde?system to a step input is 63% of its final value. With this 

5-Degree 
aileron step 

input 

FIGURE 5.3 
Roll time history of an F 104A to a 
5" step change in aileron 
deflection. 

Time (sec) 
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in mind we can obtain the time constant from Figure 5.3. The steady-state roll rate 
can also be measured directly from this figure. Knowing r andp,,, we can compute 
L6a and L, and, in turn, C, and C,p. The technique of extracting aerodynamic data 
from the measured resp2nse is often called the inverse problem or parameter 
identification. 

5.2.1 Wing Rock 

One of the most common dynamic phenomena experienced by slender-wing air- 
craft flying at high angles of attack is known as wing rock. Wing rock is a 
complicated motion that typically affects several degrees of freedom simulta- 
neously; however, as the name implies the primary motion is an oscillation in roll. 
The rolling motion is self-induced and characterized by a limit cycle behavior. 
Obviously such a dynamic motion is unwanted and should be avoided. 

A highly swept wing will undergo a wing rock motion at large angles of attack. 
Figure 5.4 shows the rolling motion for a delta wing having a leading edge sweep 
of 80" (from [5.2] and [5.3]). The wing was mounted on an air bearing system that 
permitted only a free to roll motion. The model was released with initial conditions 
4 = 0 and 4 = 0. The model is unstable in a roll: The motion begins to build up 
until it reaches some maximum amplitude at which time it continues to repeat the 
motion. This type of motion is called a limit cycle oscillation. The limit cycle 
motion clearly is indicated when the response data is plotted in a phase plane 
diagram. In the phase plane diagram, the amplitude, 4, is plotted versus the roll 
velocity, 4. The data in Figure 5.4 when plotted in the phase plane is as shown on 

60 " " " " " " " ' " " ' " ' " " " ' " " ' " ' " '  

Alpha = 30 deg Q 

FIGURE 5.4 
Wing rock motion of a flat plate delta wing. 
Leading edge sweep angle of 80" and a = 30" 
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Roll angle (deg) Roll angle (deg) 
Phase plane of wing rock buildup (a = 30"). Phase plane of wing rock for 4, = 55" 

(a = 30•‹). 

FIGURE 5.5 
Phase plane plots of the wing rock motion of a delta wing. 

the left side of Figure 5.5. The motion is observed to spiral out to the limit cycle. 
If the initial conditions on release were any combination on 4 and 6 within the 
limit cycle boundary the motion would still spiral out the limit cycle boundary. On 
the other hand if the initial conditions were outside the limit cycle boundary 
the motion would spiral into the limit cycle as illustrated on the right side of Fig- 
ure 5.5. The limit cycle motion is due to the nonlinear aerodynamic characteristics 
of a slender delta wing at large angles of attack. Because the aerodynamics are 
nonlinear, the equation of motion also will be nonlinear. This type of motion can 
not be predicted using the linear differential equations presented in this chapter. 

Airplanes most susceptible to this oscillatory phenomenon typically have 
highly swept planforms or long, slender forebodies that produce vortical flows 
during excursions into the high angle-of-attack regime. The wing rock motion 
arises from the unsteady behavior of the vortical flow fields associated with these 
planforms, coupled with the rolling degree of freedom of the aircraft. The unsteady 
loads created by the flow field produce a rolling oscillation that exhibits the classic 
limit cycle behavior. The motion can be quite complex and in many cases is the 
result of the coupling of several degrees of freedom. There are cases where the 
motion is primarily a rolling motion, however, as presented here. 

5.2.2 Roll Control Reversal 

The aileron control power per degree, (pb/2u,) /6 ,  is shown in Figure 5.6. Note that 
(pb/2u0)/6, essentially is a constant, independent of speeds below 140 m/s. How- 
ever, at high speeds (pb/2u,)/S, decreases until a point is reached where roll 
control is lost. The point at which (pb/2u0)/6, = 0 is called the aileron reversal 
speed. The loss and ultimate reversal of aileron control is due to the elasticity of the 
wing. 
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FIGURE 5.6 
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Aileron control power per degree versus flight velocity. 
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Some understanding of this aeroelastic phenomenon can be obtained from the 
following simplified analysis. Figure 5.7 shows a two-dimensional wing with an 
aileron. As the aileron is deflected downward it increases the lift acting on the wing. 
The increased lift produces a rolling moment. Deflecting the aileron also produces 
a nose-down aerodynamic pitching moment that tends to twist the wing downward. 
Such a rotation will reduce the lift and rolling moment. The aerodynamic forces 
vary with the square of the airplane's velocity whereas the elastic stiffness of the 
wing is independent of the flight speed. Thus, the wing may twist enough that the 
ailerons become ineffective. The speed at which the ailerons become ineffective is 
called the critical aileron reversal speed. 

To determine the aileron reversal speed, we shall use the information in Fig- 
ure 5.7. The torsional stiffness of the wing will be modeled by the simple torsional 
spring located at the elastic axis of the wing. The lift and moment coefficients for 
the two-dimensional airfoil can be expressed as functions of the stability co- 
efficients: 

where 6 is the flap angle; that is, aileron. Aileron reversal occurs when the rate of 
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change of lift with aileron deflection is 0: 

L = (Ceca + CYsS) Qc 

Note that the angle of attack is a function of the flap angle because the wing can 
twist. The aerodynamic moment acting about the elastic axis is 

M = [Cmdc + CmsS + (Ctm a + CPs S)  a] Qc (5.13) 

This moment is balanced by the torsional moment to the wing: 

ka = [Cmc + CmSS + (Ct a + Ct,S) a] Qc2 (5.14) 

where k is the torsional stiffness of the wing. 
Differentiating Equation (5.14) with respect to 6 yields 

Substituting Equation (5.12) into (5.15) and solving for Q yields the critical dy- 
namic pressure when control reversal will occur: 

Q = -  
kc(, 

rev 

The reversal speed is given by 

Note that the reversal speed increases with increasing torsional stiffness and in- 
creasing altitude. 

5.3 
PURE YAWING MOTION 

As our last example of a motion with a single degree of freedom, we shall examine 
the motion of an airplane constrained so that it can perform only a simple yawing 
motion. Figure 5.8 illustrates a wind-tunnel model that can only perform yawing 
motions. The equation of motion can be written as follows: 

Yawing moments = I,* (5.18) 

The yawing moment N and the yaw angle t,!~ can be expressed as 

N = N , , + A N  t,!I=t,!I,,+At,!I (5.19) 
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The yawing moment equation reduces to 

AN = I, A$ 

where 

FIGURE 5.8 
Wind- tunnel model 
constrained to a pure 
yawing motion. 

Because the center of gravity is constrained, the yaw angle +and the sideslip angle 
p are related by the expression 

A +  = -Ap A* = -AD A* = Ar (5.22) 

Substituting these relationships into Equation (5.20) and rearranging yields 

where N, = - aN'ar and so forth. 
4 

For airplanes, the term Ns usually is negligible and will be eliminated in future 
expressions. 

The characteristic equation for Equation (5.23) is 

A 2  - N,A + N o =  0 (5.24) 

The damping ratio 5 and the undamped natural frequency w,, can be determined 
directly from Equation (5.24): 

on = * (5.25) 

The solution to Equation (5.23) for a step change in the rudder control will 
result in a damped sinusoidal motion, provided the airplane has sufficient aerody- 
namic damping. As in the ease of the pure pitching we see that the frequency of 
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FIGURE 5.9 
Yawing motion due to rudder 
deflection. 

oscillation is a function of the airplane's static stability (weathercock or directional 
stability) and the damping ratio is a function of the aerodynamic damping deriva- 
tive. Figure 5.9 illustrates the yawing motion due to a step change in rudder deflec- 
tions for different levels of aerodynamic damping. 

E X A M P L E  P R O B L E M  5.2. Suppose an airplane is constrained to a pure yawing 
motion as described in Section 5.3. Using the data for the general aviation airplane in 
Appendix B, determine the following: 

(a) The yawing moment equation rewritten in state-space form. 
(6 )  The characteristic equation and eigenvalues for the system. 
(c) The damping ratio, l, and undamped natural frequency, w,. 
(d) The response of the airplane to a 5" rudder input. Assume the initial conditions 

are AP(0) = 0. Ar(0) = 0. 

Solution. The lateral derivatives can be estimated from the data in Appendix B. For 
the sea-level flight condition, the weathercock static stability coefficient, C,,, the 
yawing damping coefficient, C,,, and the rudder control power, C,,, have the following 
numerical values: 

The derivative C,, is not included in the table of Appendix B and will be assumed to 
be 0 for this problem. 

For a flight velocity of 176 ftls, the dimensional derivatives Np,  N,, and N,, can be 
estimated from the mass, geometric, and aerodynamic stability coefficient data of 
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Appendix B. The dynamic pressure, Q, is calculated next: 

The dimensional derivative, No, which is the yaw moment due to the airplane's weath- 
ercock stability, is obtained from the expression 

cn, QSb 
Ns = - 

4 
NB = 

(0.07lJrad) (36.8 lb/ft2) (184 ft2) (33.4 ft) 
3530 slug . ft2 

= 4.55/s2 

The dimensional derivative, N,, which is the yaw damping of the airplane, is obtained 
from the expression 

N, = 
4 

- - (-0.1251rad) [33.4 ft/(2(176 ftls))] (36.8 lb/ft2) (184 ft2) (33.4 ft) 
3530 slug . ft2 

The dimensional derivative, Ns,, the rudder control derivative, is obtained from the 
expression 

- - (-0.072lrad) (36.8 lb/ft2) (184 ft2) (33.4 ft) 
3530 slug . ft2 

Substituting the dimensional derivatives into the constrained yawing moment equation 
(Equation (5.23)) yields 

A* - (N, - Na) A* + No A+ = Nar As, 

where Ns is assumed to be 0: 

A$ + 0.76 A$ + 4.55 A+ = -4.6 A6, 

This is a second-order differential equation in terms of the dependent variable A+. The 
preceding second-order differential equation can be written as a system of two first- 
order differential equations by defining the system states as A+ and Ar. Recall that the 
time rate of change of the yaw angle is the same as the yaw rate; that is, A+ = Ar. 
Solving the yaw moment equation for the highest order derivative A*, 

A* = -0.76 A& - 4.55 A# - 4.6 AS, 
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The two state equations are 

which can be readily arranged in matrix form as 

where the state vector, x = [::I, the control vector is A&, and the A and B matrices 

are 

The characteristic equation for the system is found from the equation 

where on substituting in the A matrix yields 

The characteristic equation for a second-order system could have been obtained di- 
rectly from the second-order differential equation. 

The eigenvalues of the system are found by obtaining the roots of the characteristic 
equation. For this example the root or eigenvalues can be shown to be 

The eigenvalues are complex; therefore the free response motion will be a damped 
sinusoidal oscillation. The motion is damped because the real part of the eigenvalue is 
negative. 

The damping ratio, 5, and the undamped natural frequency can be estimated from 
Equations (5.25) and (5.26): 

and 
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Yawing Response to a Step Change in Rudder Angle 

FIGURE 5.10 
Yawing motion response to a 5 O  step input in the rudder angle. 

Finally the response of the airplane to a 5' step input in the rudder is shown in Fig- 
ure 5.10. The change in both heading angle ht,!~ and the yaw rate Ar  are presented 
as a function of time. The response was determined using MATLAB. 

5.4 
LATERAL-DIRECTIONAL EQUATIONS OF MOTION 

The lateral-directional equations of motion consist of the side force, rolling mo- 
ment, and yawing moment equations of motion. The lateral equations of motion 
can be rearranged into the state-space form in the following manner. We start with 
a lateral set of Equations (5.27): 

($ - Yti)  Av - Yp Ap + (uo - Y,) Ar - g cos $ A, = Y8, AS, 

- L. Av + - - L, Ap - -I + L. Ar = 4 AS, + L ,  AS, (5.27) 
t ) ( L d t  ) 

- N. Av - (t + N p )  Ap + ($ - N,)  Ar = N8" AS. + N8, AS. 
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Rearranging and collecting terms, this equation can be written in the state variable 
form: 

i = Ax + B-q (5.28) 

The matrices A and B are defined as follows: 

11, L: + LN:. L'; + -N'; 

A = 
1, Ix 
Ix - N: + -L: N,' + h,' 
1: 1; 

Av 

x =  I:] and -q = [s] 
A 4  

The starred derivatives are defined as follows: 

L,* = 
L, N: = 

N,> 
and the like. (5.32) 

[l - ( ~ ~ z / ( ~ x ~ J ) l  [l - ( ~ ~ J ( ~ . , 4 ) ) 1  

If the product of intertia Irz  = 0, the equations of motion reduce to the following 
form: 

It sometimes is convenient to use the sideslip angle AP instead of the side 
velocity Av. These two quantities are related to each other in the following way: 
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Using this relationship, Equation (5.33) can be expressed in terms of Ap: 

The solution of Equation (5.35) is obtained in the same manner as we solved the 
state equations in Chapter 4. The characteristic equation is obtained by expanding 
the following determinant: 

Ih,I - A1 = 0 (5.36) 

where I and A are the identity and lateral stability matrices, respectively. The 
characteristic equation determined from the stability matrix A yields a quartic 
equation: 

where A, B, C, D, and E are functions of the stability derivatives, mass, and inertia 
characteristics of the airplane. 

In general, we will find the roots to the lateral-directional characteristic equa- 
tion to be composed of two real roots and a pair of complex roots. The roots will 
be such that the airplane response can be characterized by the following motions: 

1. A slowly convergent or divergent motion, called the spiral mode. 
2. A highly convergent motion, called the rolling mode. 
3. A lightly damped oscillatory motion having a low frequency, called the Dutch 

roll mode. 

Figures 5.1 1,5.12, and 5.13 illustrate the spiral, roll, and Dutch roll motions. An 
unstable spiral mode results in a turning flight trajectory. The airplane's bank angle 
increases slowly and it flies in an ever-tightening spiral dive. The rolling motion 
usually is highly damped and will reach a steady state in a very short time. The 
combination of the yawing and rolling oscillations is called the Dutch roll motion 
because it reminded someone of the weaving motion of a Dutch ice skater. 

5.4.1 Spiral Approximation 

As indicated in Figure 5.11 the spiral mode is characterized by changes in the bank 
angle 4 and the heading angle +. The sideslip angle usually is quite small but 
cannot be neglected because the aerodynamic moments do not depend on the roll 
angle 4 or the heading angle +but on the sideslip angle P,  roll rate p, and yawing 
rate r. 

The aerodynamic contributions due to P and r usually are on the same order 
of magnitude. Therefore, to obtain an approximation of the spiral mode we shall 
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~irectional/= 
divergence 

Insufficient directional 
stability (CnB) 

Directional stability to large 

Airplane bank angle increases 
slowly, which causes the sideslip 
angle to increase; the 
airplane flies in a tighter and 
tighter spiral. 

Initial 
flight 
path 

_ Slideslip 
disturbance 

Initial 
flight 

FIGURE 5.11 
The spiral motion. 

FIGURE 5.12 
The roll motion. 

neglect the side force equation and A+. With these assumptions, the equations of 
motion for the approximation can be obtained from Equation (5.35): 

L ,  Ap + L, Ar = 0 (5.38) 

Ai. = N,  Ap + N, Ar (5.39)  
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FIGURE 5.13 
The Dutch roll motion. 

The characteristic root for this equation is 

The stability derivatives LP (dihedral effect) and Nr (yaw rate damping) usually are 
negative quantities. On the other hand, NP (directional stability) and L, (roll mo- 
ment due to yaw rate) generally are positive quantities. If the derivatives have the 
usual sign, then the condition for a stable spiral model is 

Increasing the dihedral effect L P  or the yaw damping or both can make the spiral 
mode stable. 



198 CHAPTER 5: Lateral Motion (Stick Fixed) 

5.4.2 Roll Approximation 

This motion can be approximated by the single degree of freedom rolling motion, 
which was analyzed earlier in the chapter: 

T A P  + Ap = 0 

where T is the roll time constant. Therefore, 

The magnitude of the roll damping L,, is dependent on the size of the wing and tail 
surfaces. 

5.4.3 Dutch Roll Approximation 

If we consider the Dutch roll mode to consist primarily of sideslipping and yawing 
motions, then we can neglect the rolling moment equation. With these assump- 
tions, Equation (5.35) reduces to 

Solving for the characteristic equation yields 

From this expression we can determine the undamped natural frequency and the 
damping ratio as follows: 

The approximations developed in this section give, at best, only a rough 
estimate of the spiral and Dutch roll modes. The approximate formulas should, 
therefore, be used with caution. The reason for the poor agreement between the 
approximate and exact solutions is that the Dutch roll motion is truly a three- 
degree-of-freedom motion with strong coupling between the equations. 

EXAMPLE P R O B L E M  5.3. Find the lateral eigenvalues of the general aviation air- 
plane described in Chapter 4 and compare these results with the answers obtained 
using the lateral approximations. A summary of the aerodynamic and geometric data 
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TABLE 5.1 

Summary of lateral directional derivatives 

needed for this analysis is included in Appendix B. The stick fixed lateral equations 
follow: 

Before we can determine the eigenvalues of the stability matrix A, we first must 
calculate the lateral stability derivatives. Table 5.1 is a summary of the lateral stability 
derivative definitions and Table 5.2 gives a summary of the values of these derivatives 
for the general aviation airplane. 

Substituting the lateral stability derivatives into the stick fixed lateral equations 
yields 

or 

The eigenvalues can be determined by finding the eigenvalues of the matrix A: 

I A I - A J  = O  
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TABLE 5.2 

Lateral derivatives for the general 
aviation airplane 

Y,, = -0.254 (SKI) L,, = -0.091 (ft . s)-1 

Yo = -45.72 (ft/s2) L,, = - 16.02 (s-~)  

Yp = 0 L, = -8.4 (s-I) 

Y, = 0 L, = 2.19 (s-') 

Nu = 0.025 (ft . s)- ' 
N,, = 4.49 (s-~)  

N,, = -0.35 (s-I) 

N, = -0.76 (s-I) 

The resulting characteristic equation is 

Solution of the characteristic equation yields the lateral eigenvalues: 

A = -0.00877 (Spiral mode) 

A = -8.435 (Roll mode) 

A = -0.487 2 i(2.335) (Dutch roll mode) 

The estimates for the lateral eigenvalues using the approximate expressions is obtained 
as follows: 

Susbtituting in the numerical values for the derivatives yields 

A,,,,,, = [(-16.02 ~ - ~ ) ( - 0 . 7 6  s-') - (2.19 s-')(4.49 s-2)]/(-16.02 s-') 

= -0.144 s-' 

A,,,, = L, = -8.4 s-' 

The Dutch roll roots are determined from the characteristic equation given by Equa- 
tion (5.44): 

or A 2  + 1.102A + 4.71 = 0 

which yields the following roots 

and 
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TABLE 5 3  

Comparison of exact and approximate roots 

, 
Spiral - - 4.79 - - 
Roll E 8 2  - - 0.082 - - 

Dutch roll ' 1.42 - 2.69 1.35 - 2.98 

Table 5.3 compares the results of the exact and approximate analysis. For this 
example, the roll and Dutch roll roots are in good agreement. On the other hand, the 
spiral root approximation is very poor. 

The relationship between good spiral and Dutch roll characteristics presents a 
challenge to the airplane designer. In Chapter 2 it was stated that an airplane 
should possess static stability in both the directional and roll modes. This implies 
the C > 0 and Clp < 0. However, if we examine the influence of these stability 

"k 
coeffic~ents on the lateral roots by means of a root locus plot, we observe the 
following. As the dihedral effect is increased, that is, Clg becomes more negative, 
the Dutch roll root moves toward the right half-plane, which means the Dutch roll 
root is becoming less stable and the spiral root is moving in the direction of 
increased stability. These observations are clearly shown in Figures 5.14 and 5.15. 

Variation of lateral root with C 
a - C  - 0  '8 

'8 - 
C18 < 0 

3.0 
Dutch 
roll root 

2.0 

1 .o 
/C18 < 0 

I 
Roll root 

Dutch -2.0 
roll root 

-3.0 

-4.0 

-5.0 

FIGURE 5.14 
Variation of lateral roots with C,,. 
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iw FIGURE 5.15 
r 5.0 Variation of lateral roots with C,,. 

Variation of lateral 
roots with CnB 
e-CnB= 0 

Dutch roll root , 1 1 2.0 
Roll root 

I A 1  I 

-8.0 '-3.0 -2.0 - 
Spiral root 

in roll root 

-3.0 

r/S , 

servo dynamics 

FIGURE 5.16 
Block diagram of a yaw damper system. 

Increasing directional stability of the airplarle, that is, Cflp becomes more 
positive, causes the spiral root to become less stable and the frequency of the Dutch 
roll root is increased. Increasing the yaw damping, that is, Cnr becomes more 
negative, will result in better Dutch roll damping. Unfortunately, this is not easy to 
achieve simply by geometric design changes. Increasing the vertical tail size will 
cause an increase in both Cnp and Car. Many airplanes are provided with a rate 
damper to artificially provide adequate damping in Dutch roll. Figure 5.16 is a 
sketch of a simple control system to provide increased yaw damping for the air- 
plane. 
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5.5 
LATERAL FLYING QUALITIES 

In this chapter we examined the lateral direction characteristics of an airplane. The 
relationship between the aerodynamic stability and control derivatives and the 
lateral response was discussed. We have developed the necessary equations and 
analysis procedures to calculate the lateral dynamics. Although these techniques 
allow us to determine whether an airplane design is stable or unstable, by itself the 
analysis does not tell us whether the pilot will judge the airplane to have acceptable 
flying characteristics. To determine this the designer needs to know what dynamic 
characteristics are considered favorable by the pilots who will fly the airplane. This 
information is available through the lateral-directional flying quality specifications. 

The lateral-directional flying quality requirements are listed in Tables 5.4,5.5, 
and 5.6. The definition of class and category were presented in Chapter 4. In 
Example Problem 5.2 the aircraft would be considered a Class 1 vehicle and the 
flight phase as Category B. Using the information from Table 5.4, we find that the 
aircraft studied here has Level 1 flying qualities. 

E X A M P L E  P R O B L E M  5.4. As shown earlier, the Dutch roll motion can be improved 
by increasing the magnitude of the yaw damping term N,. One means of increasing N, 
is by increasing the vertical tail area. Unfortunately, increasing the vertical tail area 
will add additional drag to the airplane as well as increase the directional stability. The 
increase in directional stability will degrade the spiral characteristics of the airplane. 
For most transport and fighter aircraft, increased damping is provided artificially by 
means of a yaw damper. 

In this example we examine the basic idea behind a yaw damper. More detailed 
information on stability augmentation systems and autopilots will be provided in 

TABLE 5.4 
Spiral mode (minimum time to double amplitude) 
flying qualities 

Class Category Level 1 Level 2 Level 3 

I and I V  A 12 s 12 s 4 s 
B and C 20 s 12 s 4 s 

I1 and 111 All 20 s 12 s 4 s 

TABLE 5.5 
Roll mode (maximum roll time constant) flying 
qualities (in seconds) 

Class Category Level 1 Level 2 Level 3 

I, I V  
A 

1 .O 1.4 
11, 111 1.4 3.0 

10 

All B 1.4 3.0 10 
I, I V  C 1 .O 1.4 
11, 111 1.4 3.0 

10 
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TABLE 5.6 

Dutch roll flying qualities 

Min t;w,,* 
Level Category Class Min t;* md/s 

1 A I, IV 0.19 0.35 
11, 111 0.19 0.35 

B All 0.08 0.15 
C I, 11-C 0.08 0.15 

IV 
11-L, 111 0.08 0.15 

2 All All 0.02 0.05 
3 All All 0.02 - 

Min w,, 
rad/s 

Where C and L denote carrier- or land-based aircraft. 
*The governing damping requirement is that yielding the larger value of 5. 

Chapters 7- 10. To examine how a yaw damper can be used to provide damping for an 
airplane, consider the yawing moment equation developed earlier: 

A* - N,  A* + N p  A# = N6, A6, 

Suppose that for a particular airplane the static directional stability, yaw damping, 
and control derivatives were as follows: 

For this airplane the damping ratio and undamped natural frequency would be 

5 = -- Nr = 0.037 w,, = V& = 1.33 radh 
2 v &  

The low damping ratio would result in a free response that would have a large over- 
shoot and poor damping. Such an airplane would be very difficult for the pilot to fly. 
However, we could design a feedback control system such that the rudder deflection is 
proportional to the yaw rate; that is, 

Substituting the control deflection expression into the equation of motion and rearrang- 
ing yields 

By proper selection of k we can provide the airplane whatever damping characteristics 
we desire. For the purpose of this example, consider the simple yawing motion to be an 
approximation of the Dutch roll motion. The flying quality specifications included in 
Table 5.6 state that a Level 1 flying quality rating would be achieved for the landing 
flight phase if 

A damping ratio of 0.2 and a frequency of 1.33 would be considered acceptable by 
pilots. The problem now is to select the unknown gain k so that the airplane has the 
desired damping characteristics. If we compare the yaw moment equation of motion to 
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the standard form for a second-order system, we can establish a relationship for k as 
follows: 

Figure 5.16 is a sketch of a simple yaw damper stability augmentation system. 
Although we designed a feedback system to provide improved damping, it is 

possible to control both the damping and the frequency. This can be accomplished 
by making the rudder deflection proportional to both the yaw rate and yaw angle; 
that is, 

Substituting this expression back into the differential equation yields 

A$ - (N ,  - k ,  N,,) A(), + (Ng  + k2) A$ = 0 

The gains k ,  and k2 then are selected so that the characteristic equation has the desired 
damping ratio and frequency. The use of feedback control to augment the stability 
characteristics of an airplane plays an important role in the design of modern aircraft. 
By using stability augmentation systems, the designer can ensure good flying qualities 
over the entire flight regime. Furthermore, with the addition of a stability augmenta- 
tion system, the designer can reduce the inherent aerodynamic static stability of the 
airplane by reducing the vertical tail size. Thus, the designer can achieve an improve- 
ment in performance without compromising the level of flying qualities. 

5.6 
INERTIAL COUPLING 

In the analysis presented in this and the previous chapter, we treated the longitudi- 
nal and lateral equations separately. In so doing we assumed that there is no 
coupling between the equations. However, slender high-performance fighter air- 
craft can experience significant roll coupling that can result in divergence from the 
desired flight path, causing loss of control or structural failure. 

The mechanisms that cause this undesirable behavior can be due to inertial or 
aerodynamic coupling of the equations of motion. To explain how inertial coupling 
occurs, we examine the nonlinearized moment equations developed in Chapter 3. 
The moment equations are reproduced in Equation (5.49): 

Roll moments = I,p + qr(1, - I,) - ( f  + qp)l,, 

2 Pitching moments = I,q + pr(1, - I,) + ( p 2  - r2)1,, (5 .49)  

2 Yawing moments = I,? + ~ ~ ( 1 ,  - I,) + (qr - p)l,, 

The first cases of inertial coupling started to appear when fighter aircraft 
designs were developed for supersonic flight. These aircraft were designed with 
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low aspect ratio wings and long, slender fuselages. In these designs, more of the 
aircraft's weight was concentrated in the fuselage than in the earlier subsonic 
fighters. With the weight concentrated in the fuselage, the moments of inertia 
around the pitch angle yaw axis increased and the inertia around the roll axis 
decreased in comparison with subsonic fighter aircraft. 

On examining Equation (5.49) we see that the second term in the pitch equa- 
tion could be significant if the difference in the moments of inertia becomes large. 
For the case of a slender high-performance fighter executing a rapid rolling maneu- 
ver the term pr(I, - I:) can become large enough to produce an uncontrollable 
pitching motion. 

A similar argument can be made for the product of inertia terms in the equa- 
tions of motion. The product of inertia I,, is a measure of the uniformity of the 
distribution of mass about the x axis. For modern fighter aircraft I,, typically is not 
0. Again we see that if the airplane is executing a rapid roll maneuver the term 
(p2 - r2)Ix, may be as significant as the other terms in the equation. 

Finally, aerodynamic coupling also must be considered when aircraft are ma- 
neuvering at high angular rates or at high angles of attack. As was discussed in 
Chapter 4 high angle of attack flow asymmetries can cause out-of-plane forces and 
moments even for symmetric flight conditions. Such forces and moments couple 
the longitudinal and lateral equations of motion. 

5.7 
SUMMARY 

In this chapter we examined the lateral modes of motion. The Dutch roll and spiral 
motions were shown to be influenced by static directional stability and dihedral 
effect in an opposing manner. The designer is faced with the dilemma of trying to 
satisfy the flying quality specifications for both the spiral and Dutch roll modes. 
This becomes particularly difficult for airplanes that have extended flight en- 
velopes. One way designers have solved this problem is by incorporating a yaw 
damper in the design. The yaw damper is an automatic system that artificially 
improves the system damping. The increased damping provided by the yaw damper 
improves both the spiral and Dutch roll characteristics. 

PROBLEMS 

Problems that require the use of a computer have a capital C after the problem number. 

5.1. Determine the response of the A-4D to a 5' step change in aileron deflection. Plot 
the roll rate versus time. Assume sea-level standard conditions and that the 
airplane is flying at M = 0.4. What is the steady-state roll rate and time constant 
for this motion? 
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5.2. For the roll response shown in Figure P5.2, estimate the aileron control power L ,  
and the roll damping derivative L,. Information on the characteristics of the 
airplane is in the figure. 

6 - 

V = 224 ft/sec 
4 - 

P (t) 
S = 542 ft2 

[deglsecl b = 5 4 f t  
I, = 42,273 slugIft2 

2 - Ma = 5" 
p = 0.00205 sluglft3 

0 I I I I I I 

0 1 2 3 

Time- sec 

FIGURE P5.2 
Roll rate time history. 

5.3. A wind-tunnel model free to rotate about its x axis is spun up to 10.5 radls by 
means of a motor drive system. When the motor drive is disengaged, the model 
spin will decay as shown in Figure P5.3. From the spin time history determine the 
roll damping derivative L,. 

5.4. A wind-tunnel model is constructed of two small lifting surfaces mounted to an 
axisymmetric body as illustrated in Figure P5.4. The body houses a set of ball 
bearings that permit the model to roll freely about the longitudinal or x axis. The 
right lifting surface (positive y axis) is mounted to the body at a -3" and the left 
lifting surface is set at a +3'. 
(a) Estimate the rolling moment of inertia, I,, of the model. Approximate the 

lifting surfaces as thin flat plates. Neglect the body contribution. 
(b) Estimate the roll torque due to the differential mounting incidence. Express 

your answer as a roll moment coefficient per unit deflection, Cl8. 
(c) Estimate the roll damping coefficient, C,,,. 

12 

10 - 

o 8 -  Roll spin down 
Q ln 

5 6 -  
2 

4 -  

2 - 

0 1 ' 1 ' 1 ~ 1 • ‹ 1 '  

FIGURE P5.3 
Roll rate time history. 

0 2 4 6 8 1 0 1 2  

Time-sec 
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(d) Calculate the response of the model if it is released from the rest. Neglect the 
friction of the bearings. 

t-l 

Free to roll about 
the x-axis Assume the diameter of 

the body is very small. 

Assume surfaces are made 
of aluminum and are 0.1 inches thick. 

FIGURE P5.4 

Suppose the wing segments for the model described in Problem 5.4 are set so that 
there is no differential incidence between the two sections. If the wings are 
mounted in this manner, the roll torque due to the differential incidences will be 
0. Now consider what would happen if a half-span wing were mounted upstream 
of the free-to-roll model as illustrated in Figure P5.5. Assume that the free-to- 
roll wing is centered in the tip vortex. Estimate the maximum roll rate of the 

Y 
Low friction 
bearing 

No differential b=12" 
wing incidence 

Wing tip vortex Assume the diameter of 
the body is very small. 

Assume surfaces are made 
of aluminum and are 0.1 inches thick. 

FIGURE P5.5 
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free-to-roll wing. The strength of the vortex can be shown to be as follows. 

where CL = wing lift coefficient 
V = velocity of the tunnel 
S = wing area of generating wing 
b = span of generating wing. 

Assume the vortex core is 5% of the generating wing span. 

5.6. Assuming the cruciform finned model in Figure P5.6 is mounted in a wind 
tunnel so that it is constrained to a pure yawing motion. The model is displaced 
from its trim position by 10" and then released. Neglect the fuselage and p 
contribution and assume S = .rrD2/4. 
(a) Find the time for the motion to damp to half its initial amplitude. 
(b) What is the period of the motion? 

V = 30 mlsec 

D = Characteristic length 
D = 5.0 cm 

Tail surfaces are 
flat plates 

FIGURE P5.6 
Yawing wind-tunnel model. 

5.7. Figure P5.7. shows the stick fixed lateral roots of a jet transport airplane. Identify 
the roots and determine the time for the amplitude and period to halve or double 
where applicable. 

FIGURE P5.7 
Lateral roots for a jet transport. 
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5.8(C). The Dutch roll motion can be approximated using the following equations: 

Assume the coefficients in the plant matrix have the following numerical values: 

Yp = -7.8 ft/s2 N, = -0.34 l / s  Y& = -5.236 ft/s2 

Y, = 2.47 ft/s u, = 154 ftls Nsr = 0.616 Us2 

Ng = 0.64 l/s2 

(a) Determine the Dutch roll eigenvalues. 
(b) What is the damping ratio and undamped natural frequency? 
(c) What is the period and time to half amplitude of the motion? 
(d) Determine the response of the system if the initial conditions are as follows: 

From the time history plot, estimate the period and time to half amplitude. 
(e) Determine the response of the system to a step input. For this part assume that 

the initial conditions are both 0. 

The last two parts of this problem should be solved by computer. 

5.9(C). Develop a computer code to obtain the stick fixed lateral eigenvalues from the 
lateral stability matrix. Use your computer program to analyze the lateral motion 
of the 747 jet transport. Estimated aerodynamic, mass, and geometric character- 
istics of the 747 are included in Appendix B. The MATLAB Software is suggested 
for this problem. 

5.10(C). Using the program developed in problem 5.9, examine the influence of C,, and Cnr 
on the lateral roots. Use the 747 data, but vary C,, and C,, separately. 

5.11. Using the Dutch roll approximation, determine the state feedback gains so that the 
damping ratio and frequency of the Dutch roll are 0.3 and 1.0 radls, respectively. 
Assume the airplane has the following characteristics: 

Yp = - 19.5 ft/s2 Y, = 1.3 ft/s 

No = 1.5 s - ~  N, = -0.21 s-' 

Ys, = 4.7 ft/s2 Ns, = -0.082 s-' 

u, = 400 ft/s 

REFERENCES 

5.1. Adams, F. D. Aeronautical Dictionary. Washington, DC: National Aeronautics and 
Space Administration, United States Government Printing Office, 1959. 

5.2. Arena, A. S., Jr.; and R. C. Nelson. "Experimental Investigations on Limit Cycle 
Wing Rock of Slender Wings." AIAA Journal of Aircraft 31, no. 5 (September- 
October 1994) pp. 1 148- 1155. 



Problems 211 

5.3. Arena, A. S., Jr.; R. C. Nelson; and L. B. Schiff. "An Experimental Study of the 
Nonlinear Dynamic Phenomenon Known as Wing Rock." AIAA Paper No. 60-2813, 
August 1990. 

5.4. Seckel, E. Stability and Control of Airplanes and Helicopters. New York: Academic 
Press, 1964. 

5.5. Etkin, B. Dynamics of Flight. New York: Wiley, 1972. 
5.6. Hage, R. E.; and C. D. Perkins. Airplane Performance, Stability and Control. New 

York: Wiley, 1949. 
5.7. Roskam, J. night Dynamics of Rigid and Elastic Airplanes. Lawrence: University of 

Kansas Press, 1972. 
5.8. Fung, Y. C. The Theory of Aeroelasticity. New York: Wiley, 1955. 
5.9. Bisplinghoff, R. L.; H. Ashley; and R. L. Halfman. Aeroelasticity. Reading, MA: 

Addison Wesley, 1955. 
5.10. Scanlan, R. H.; and R. Rosenbaum. Introduction to the Study of Aircraft Vibration and 

Flutter. New York: Macrnillan, 195 1. 
5.1 1. Abramson, H. The Dynamics of Airplanes. New York: Ronald Press, 1958. 



C H A P T E R  6 

Aircraft Response to Control 
or Atmospheric Inputs 

6.1 
INTRODUCTION 

In the previous chapters we examined the free response of an airplane as well as 
several simple examples of single degree of freedom motions with step changes in 
control input. Another useful input function is the sinusoidal signal. The step and 
sinusoidal input functions are important for two reasons. First, the input to many 
physical systems takes the form of either a step change or sinusoidal signal. Second, 
an arbitrary function can be represented by a series of step changes or a periodic 
function can be decomposed by means of Fourier analysis into a series of sinusoidal 
waves. If we know the response of a linear system to either a step or sinusoidal 
input, then we can construct the system's response to an arbitrary input by the 
principle of superposition. 

Of particular importance to the study of aircraft response to control or atmo- 
spheric inputs is the steady-state response to a sinusoidal input. If the input to a 
linear stable system is sinusoidal, then after the transients have died out the 
response of the system also will be a sinusoid of the same frequency. The response 
of the system is completely described by the ratio of the output to input amplitude 
and the phase difference over the frequency range from zero to infinity. The 
magnitude and phase relationship between the input and output signals is called the 
frequency response. The frequency response can be obtained readily from the 
system transfer function by replacing the Laplace variable s by iw. The frequency 
response information is usually presented in graphical form using either rectangu- 
lar, polar, log-log or semi-log plots of the magnitude and phase angle versus the 
frequency. At first it might appear that the construction of the magnitude and phase 
plots would be extremely difficult for all but the simplest transfer functions. Fortu- 
nately, this is not the case. Consider the factored form of a transfer function, 
given by 

The transfer function has been factored into first- and second-order terms. 
Replacing the Laplace variable s by iw and rewriting the transfer function in 
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polar form yields 

Now, if we take the logarithm of this equation, we obtain 

log ~ ( w )  = log k + log I I + Taiw) + log I I + ~ , i o I .  - . - m log liwI 

and 

- log 11 + TIiwl - log 11 + ~ , i w l  

L G  (io) = tan-' wT, + tan-' oT, + . - . - m(90•‹) 

By expressing the magnitude in terms of logarithms, the magnitude of the transfer 
function is readily obtained by the addition of the individual factors. The contribu- 
tion of each of the basic factors, that is, gain, pole at the origin, simple poles and 
zeros, and complex poles and zeros, is presented in appendix D at the end of this 
book. In practice, the log magnitude is often expressed in decibels (dB). The 
magnitude in decibels is found by multiplying each term in Equation (6.3) by 20: 

Magnitude in dB = 20 log I G(iw) I (6.5) 

The frequency response information of a transfer function is represented by 
two graphs, one of the magnitude and the other of the phase angle, both versus the 
frequency on a logarithmic scale. When the frequency response data are presented 
in this manner, the plots are referred to as Bode diagrams after H. W. Bode who 
made significant contributions to frequency response analysis. 

We shall now look at the application of the frequency response techniques to 
the longitudinal control transfer functions. As the first example, let us consider the 
longitudinal pitch angle to elevator transfer function that can be shown as indicated 
below, where the coefficients A,, B,, and so forth are functions of the aircraft 
stability derivatives. The longitudinal pitch angle to elevator transfer function is as 
follows: 

which can be written in the factored form: 
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FIGURE 6.1 
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The magnitude and phase angle for the control transfer function is obtained by 
replacing s by iw as follows: 

LO(iw)/G, (iw) = tan-'wTnl + t a n '  wT,, - tan'[255,w,,,pw/(wfp - w2)] 

- tan-'[2[,wnpw/(wE, - w2)] 

The frequency response for the pitch attitude to control deflection for the 
corporate business jet described in Appendix B is shown in Figure 6.1. The ampli- 
tude ratio at both the phugoid and short-period frequencies are of comparable 
magnitude. At very large frequencies the amplitude ratio is very small, which 
indicates that the elevator has a negligible effect on the pitch attitude in this 
frequency range. 

The frequency response for the change in forward speed and angle of attack to 
control input is shown in Figure 6.2 and 6.3 for the same aircraft. For the speed 
elevator transfer function the amplitude ratio is large at the phugoid frequency and 
very small at the short-period frequency. Recall that in Chapter 4 we assumed that 
the short-period motion occurred at essentially constant speed. The frequency 
response plot confirms the validity of this assumption. Figure 6.3 shows the ampli- 
tude ratio of the angle of attack to elevator deflection; here we see that angle of 
attack is constant at the low frequencies. This again is in keeping with the assump- 
tion we made regarding the phugoid approximation. Recall that in the phugoid 
approximation the angle of attack was assumed to be constant. The phase plot 
shows that there is a large phase lag in the response of the speed change to elevator 
inputs. The phase lag for a / S  is much smaller, which means that the angle of attack 
will respond faster than the change in forward speed to an elevator input. 

A similar type of analysis can be conducted for the lateral response to aileron 
or rudder control input. Several problems dealing with the lateral frequency re- 
sponse are presented at the end of this chapter. 

Frequency response techniques also are useful in studying the motion of an 
aircraft encountering atmosphere turbulence. In Chapter 3 the equations of motion 
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were developed for flight in a stationary atmosphere. In the following sections we 
discuss the influence of wind gusts, that is, turbulence, on aircraft response. 

6.2 
EQUATIONS OF MOTION IN A NONUNIFORM ATMOSPHERE 

The atmosphere rarely is calm but usually is characterized by winds, gusts, and 
turbulence. To study the influence of atmospheric disturbances on aircraft motions, 
the equations must be modified. The aerodynamic forces and moments acting on 
the airplane depend on the relative motion of the airplane to the atmosphere and 
not on the inertial velocities. Therefore, to account for atmospheric disturbances 
such as winds, gusts, or turbulence the forces and moments must be related to the 
relative motion with respect to the atmosphere. This is accomplished by expressing 
the velocities used in calculating the aerodynamics in terms of the inertial and gust 
velocities as follows: 

Au, = Au - u, Av, = AV - v, Aw, = AW - W, 

Ap, = AP - P, Aqa = - 4, Ar, = Ar - rR 
(6.9) 
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FIGURE 6.4 
Gust field creating an effective 
rolling gust. 

Equivalent 
distribution 

where the A quantities are the perturbations in the inertial variables and the sub- 
scripted variables are the gust velocities. The aerodynamic forces and moments 
now can be expressed as follows: 

ax ax ax 
AX = - (Au - u,) + - (Aw - w,) + 7 (AW - W,)  

au aw aw 

ax ax + - (Aq - q,) + - A& 
a4 a& 

az az az 
AZ = - (Au - u,) + - (Aw - w,) + - (Aw - w,) + . - .  (6.10) a u aw aw 

aN aN aN 
AN = - (Au - 0,) + - (Ar - r,) + - (AP - P,)  

au dr a P 

The disturbances in the atmosphere can be described by the spatial and temporal 
variations in the gust components. The rotational gusts q,, p,, and so forth included 
in Equations (6.10) arise from the variation of u,, u,, and w, with position and 
time. 

The rotary gusts p,, q,, and r, occur due to the spatial variations of the gust 
components. For example, if the gust field wavelength is large in comparison with 
the airplane, as shown in Figure 6.4, the vertical gust produces a spanwise variation 
of velocity along the span of the wing. The linear variation of velocity across the 
span is the same as that produced on a rolling wing. The velocity normal to the wing 
at some point along the span is given by 

Using this analogy, we can express the rotary gust velocity in terms of the gradient 
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Equivalent to velocity created 
by a pitching motion 

FIGURE 6.5 
Gust field creating an effective pitching gust. 

in the vertical gust field: 

In a similar manner, the q, can be developed. The variation of the vertical gust 
velocity along the X axis of the airplane is similar to the velocity distribution created 
on a pitching airplane. Figure 6.5 helps to show the origin of rotary gust q,. 

The equations of motion, modified to account for atmospheric disturbances, 
can be written in the state-space form as follows: 

< = Ax + Bq + Cg (6.16) 

where x, q, and are the state, control, and gust disturbance vectors. The longitu- 
dinal equations are 
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and the lateral equations are 

The longitudinal and lateral gust transfer functions can be determined by taking the 
Laplace transform of Equations (6.17) and (6.18) and then dividing by the gust 
function. A linear set of algebraic equations in terms of Aulu, are obtained. These 
equations then can be solved for the transfer functions. 

To provide some insight into the influence of atmospheric disturbances on 
aircraft response, we shall examine the vertical motion of an airplane that encoun- 
ters a vertical gust field. 

6.3 
PURE VERTICAL OR PLUNGING MOTION 

Consider an airplane constrained so that movement is possible only in the vertical 
direction. This type of motion could be simulated in the wind tunnel using a model 
constrained by a vertical rod as illustrated in Figure 6.6. The model is free to move 
up or down along the rod but no other motion is possible. 

Now let us examine the response of this constrained airplane subjected to an 
external disturbance such as a wind gust. The equation of motion for this example 
is obtained by applying Newton's second law; that is 

dw 2 Forces in the vertical direction = m - 
dt 

(6.19) 

where Z is the aerodynamic force in the z direction and W is the weight of the 
airplane model. If we assume the motion of the airplane will be confined to small 
perturbations from an initial unaccelerated flight condition, then the aerodynamic 
force and vertical velocity can be expressed as the sum of the reference flight 
condition plus the perturbation: 

Substituting Equation (6.21) into (6.20) yields 

d 
Z, + A Z  + W = m - (w, + Aw) (6.22) 

dr 
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Arbitrary vertical 
gust profile 

Model is free to 
move in the 
vertical direction 

FIGURE 6.6 
Wind tunnel model constrained to motion in the vertical 
direction. 

This equation can be simplified by recognizing that in unaccelerated flight the 
condition for equilibrium is 

Z , + W = O  (6.23) 

Therefore, Equation (6.22) reduces to 

The aerodynamic force acting on the airplane is a function of the angle of attack 
and time rate of change of the attack and it can be expressed in terms of the stability 
derivatives as follows: 

AZ/m = Z,  Aa + Zd A& (6.25) 

where C,- = -C La C z a = - C  L, 

To simplify our analysis we will assume that the lag in lift term, Zd, A& is negligible 
in comparison to the Z,  A a  term. 

The change in angle of attack experienced by the airplane is due to its motion 
in the vertical direction and also to the vertical wind gust. The angle of attack can 
be written as 
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Substituting Equations (6.25) and (6.27) into (6.24) and rearranging yields 

d Aw 
u,, - - Z, Aw = - Z,w, ( t )  

dt 

Equation (6.29) is a first-order differential equation with constant coefficients. 
Systems characterized by first-order differential equations are referred to as first- 
order systems. We rewrite Equation (6.29) to have the form: 

where 110 7 = -- (6.3 1) z, 
and w,(t) is the gust velocity as a function of time. 

The solution to Equation (6.30) for a sharp-edged or sinusoidal gust will now 
be examined. Figure 6.7 shows an airplane encountering a sharp-edged or step gust 
and a sinusoidal gust profile. The reason for selecting these two types of gust inputs 
is that they occur quite often in nature. Furthermore, as was mentioned earlier both 
the steps function and sinusoidal inputs can be used to construct an arbitrary gust 
profile. For example, Figure 6.8 shows the construction of an arbitrary gust profile 
as a series of step changes. Also in the case of an arbitrary-periodic gust function 
the profile can be decomposed into a series of sine waves by Fourier analysis. 

The transient response of an airplane to an encounter with a sharp-edged gust 
can be modeled by expressing the gust profile as a step function: 

where u(t)  is a unit step change and A, is the magnitude of the gust. The solution 
to Equation (6.30) for a step input can be obtained by taking the Laplace transfor- 
mation of the differential equation 

T S  Aw(s) + Aw(s) = w, (s )  (6.33) 

or solving for the ratio of the output to input yields 

Equation (6.34) is the transfer function of the change in vertical velocity to the 
vertical gust input. When the forcing function or input is a step change in the gust 
velocity, 
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Sinusoidal gust 
w,(t) = A, sin wt 

FIGURE 6.7 
Idealized gust profiles. 

FIGURE 6.8 
Arbitrary gust profiles. 

Time 
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Time 

Expanding Equation (6.36) by the method of partial factions and taking the inverse 
Laplace transformation yields 

The vertical velocity of the airplane grows exponentially from 0 to a final value 
of A,. The initial slope of the curve at t = 0 is given by the derivative 

The parameter   is referred to as the time constant of the system. The time constant 
tells us how fast our system approaches a new steady-state condition after being 
disturbed. If the time constant is small the system will respond very rapidly; if the 
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time constant is large the system will respond very slowly. Figure 6.9 shows the 
response of the airplane to a sharp-edged gust. Notice that the output of the system 
approaches the final value asymptotically; however, the response is within 2 per- 
cent of the final value after only four time constants. 

Additional insight into the vehicle's response can be obtained by looking at the 
maximum acceleration of the airplane. The maximum acceleration occurs at t = 0: 

Dividing Equation (6.39) by the gravitational constant g we obtain an equation for 
the change in load factor due to a sharp-edged gust: 

Equation (6.4 1 ) indicates that airplanes having low wing loading W/S will be much 
more responsive to the influence of vertical wing gust than airplanes with high wing 
loadings. 

The takeoff and landing performance of an airplane can be shown to be a 
function of wing loading W/S, weight per unit of wing area. Airplanes having a low 
wing loading in general will have short takeoff and landing field requirements. 
Airplanes designed for minimum runway requirements, such as short-takeoff-and- 
landing (STOL) aircraft, will have low wing loadings compared with conventional 
transport and fighter airplanes and therefore should be more responsive to atmo- 
spheric disturbances. 

Initial 
Asymptote FIGURE 6.9 
Aw(t - --) Response to a sharp edged gust. 
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If the gust profile encountered by the airplane is sinusoidal the response will 
consist of a transient phase followed by a steady-state sinusoidal oscillation. The 
steady-state response to a sinusoidal gust can be written as 

where 4 = -tan-'(rw) 

The steady-state response of the airplane will have the following characteristics: 

1. The response will have the same frequency as the gust wave. 
2. The amplitude of the response will be 

Amplitude = A, 
v G x 7  

where the amplitude of the gust is A,. 
3. The phase angle of the response is 4 = -tan-'(w); the phase angle of the 

input gust is 0. The response of the airplane lags the gust wave by the angle +. 
Figure 6.10 shows the vertical response of an airplane to a sinusoidal gust encoun- 
tered for values of wr. Remember that w is the frequency of the gust and r is the 
time constant of the airplane. Notice for small values of wr, that is, low-frequency 
gusts or small airplane time constants, the phase angle 4 is very small and the ratio 
of the response to gust input amplitudes is near unity. In this situation, the response 
is in phase with the gust wave and the amplitude of response of the airplane is nearly 
equal to the amplitude of the gust profile. 

For very large values of wr the response amplitude tends to 0; that is, the 
airplane is unaffected by the gust profile. These trends easily are observed in the 
frequency response curve shown in Figure 6.11. This analysis shows us that the 
rigid body motion of the airplane is excited by the low-frequency or long wave- 
length gusts and that the high-frequency or short wavelength gusts have little effect 
on the airplane's motion. Although the high-frequency gusts do not influence the 
rigid body motion they will excite the structural modes of the airplane. 

Although this example gives us some insight into how atmospheric gusts will 
affect an airplane the turbulence in the atmosphere is not deterministic. That is to 

Gust profile 
wg(t) = Agsin 0 7  

Response for 

- - 
W W 

FIGURE 6.10 
Response of a first order 
system to a sinusoidal input. 

- 
for 
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1 .O FIGURE 6.11 
Frequency response information. 
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say, no analytical expressions completely describe atmospheric turbulence. Rather, 
turbulence is a stochastic process or random process and can be described only in 
a statistical manner. 

EXAMPLE PROBLEM 6.1. Determine the response of two different airplanes to an 
encounter with a sharp edge gust of 15 ftls. Assume the airplanes are in final approach 
for landing. Data on the airplanes follows: 

Approach speed Wing area Lift curve 
Aircraft Weight, Ibs. fUs ft2 rad-' 

General aviation 2,750 125 184 4.44 

Jet transport 126,000 225 2,000 4.52 

Solution. The vertical response to a sharp edge gust can be computed using Equa- 
tion (6.37). 

Aw(t) = A,(1 - e-'1') 

where A, is the magnitude of the vertical gust and r is the airplane time constant 
defined as 

The derivative Z, can be computed from the formula 

Z, = CZ, Q s h  
but Cza = -C L ,  

therefore Z, = -C L, Qslm 
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FIGURE 6.12 
Response of light general aviation and jet transport to a vertical gust 
encounter. 

Substituting the expression for Z, into the equation for the time constant and rearrang- 
ing yields 

For the general aviation airplane, 

For the jet transport r i s  found to be 1.61 s. Figure 6.12 shows the response of the two 
airplanes to the vertical gust encounter. The general aviation airplane is much more 
responsive to the vertical gust than the jet transport. This is due primarily to the 
difference in wing loading for the two aircraft. 

6.4 
ATMOSPHERIC TURBULENCE 

The atmosphere is in a continuous state of motion. The winds and wind gusts 
created by the movement of atmospheric air masses can degrade the performance 
and flying qualities of an airplane. In addition, the atmospheric gusts impose 
structural loads that must be accounted for in the structural design of an airplane. 
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The movement of atmospheric air masses is driven by solar heating, the Earth's 
rotation, and various chemical, thermodynamic, and electromagnetic processes. 

The velocity field within the atmosphere varies in both space and time in a 
random manner. This random velocity field is called atmospheric turbulence. The 
velocity variations in a turbulent flow can be decomposed into a mean part and a 
fluctuating part. Figure 6.13 shows a typical atmospheric turbulence profile. The 
size or scale of the fluctuations vary from small wavelengths on the order of 
centimeters to wavelengths on the order of kilometers. Because atmospheric turbu- 
lence is a random phenomenon it can be described only in a statistical way. 

To predict the effect of atmospheric disturbances on aircraft response, flying 
qualities, autopilot performance, and structural loads requires a mathematical 
model. In the following sections the discussion will include a description of statis- 
tical functions used in describing atmospheric turbulence, a mathematical model of 
turbulence, and finally an indication of how the turbulence model can be used to 
determine the response of an airplane to atmospheric disturbances. 

Before presenting the mathematical model of turbulence, it is necessary to 
review some of the basic concepts used to describe turbulence. The discussion at 
best will be only a cursory review of an extremely complicated subject. The reader 
is referred to [6.2] and [6.3] for a more informative treatment of the subject. 

FIGURE 6.13 
Atmospheric gust profiles. 
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6.5 
HARMONIC ANALYSIS 

An arbitrary periodic signal having a period T  can be represented as an infinite 
series of cosine and sine functions as follows: 

where the angular frequency w = 2r /T  and the Fourier coefficients are found 
from the relationship 

f (t) cos(wt) dt 

10+2?r/" 

b, = 2 7-r 6, f (t) sin(nmt) dt 

When the function is not periodic the technique still can be used by allowing the 
period T to go to infinity; then the Fourier series becomes a Fourier integral: 

f (t) = 1 ei"' dw [ f (r) e P r  dr (6.47) 
-m 

If we define the second integral to be 

G(w) = Irn f(r) e-im d o  

then 

where G(w) and f ( t )  are a Fourier transform pair. The integrand G(w) dw gives the 
contribution of the harmonic components of f(t) between the frequencies w and 
w + dw. Unfortunately, this harmonic analysis does not hold for turbulence. For 
the Fourier integral to be applicable the integrals must be convergent. The nonpe- 
riodic turbulence disturbances persist for long periods of time without dying out in 
time. The persistence of turbulence yields integrals that do not converge. 

To obtain a frequency representation for a continuing disturbance requires the 
use of the theory of random processes. A random process is one which is random 
by its nature, so that a deterministic description is not practical. For example, we 
are all familiar with board games. In most of these games we must roll dice to move 
around the board. The rolling of the dice constitutes a random experiment. If we 
denote the sum of the points on the two dice as X, then X is a random variable that 
can assume integer values between 2  and 12. If we roll the dice a sufficient number 
of times, we can determine the probabilities of the random variable X assuming any 
value in the range of X. A function f (X) that yields the probabilities is called the 
probability or frequency function of a random variable. 



228 C H A P T E R  6: Aircraft Response to Control or Atmospheric Inputs 

Atmospheric turbulence also is a random process and the magnitude of the gust 
fields can be described only by statistical parameters. That is, we can conduct 
experiments to determine the magnitude of a gust component and its probability of 
occurrence. The properties of atmospheric turbulence include that it is homoge- 
neous and stationary. The property of homogeneity means that the statistical 
properties of turbulence are the same throughout the region of interest; stationarity 
implies that the statistical properties are independent of time. 

For the case when f (r) is a stationary random process, the mean square f2(t) 
is defined as 

where f2(t) represents a measure of the disturbance intensity. The disturbance 
function f(t) can be thought of as an infinite number of sinusoid~components 
having frequencies ranging from zero to infinity. That portion off ' ( t )  that occurs 
from w to d o  is called the power spectral density and denoted by the symbol @(w). 
The intensity of the random process can be related to the power spectral density. 

The response of a physical system such as an airplane to a random disturbance 
such as atmospheric turbulence can be obtained from the power spectral density of 
the input function and the system transfer function. If G(iw) represents the system 
frequency response function and @,(w) is the power spectral density of the distur- 
bance input function, then the output @,(w) is given by 

@ob> = @, ( 4  I G ( i 4  I2 (6.5 1) 

With Equation (6.5 1) we can determine the response of an airplane at atmospheric 
disturbances. The transfer function G is the system gust transfer function described 
earlier. All that remains now is to describe cD,(w) for the gust input. 

6.5.1 Turbulence Models 

Two spectral forms of random continuous turbulence are used to model atmo- 
spheric turbulence for aircraft response studies: the mathematical models named 
after von Karman and Dryden, the scientists who first proposed them. Because the 
von Karman model is more widely used in practice it will be the only one described 
here. The power spectral density for the turbulence velocities is given by 

where cr is the root mean square intensity of the gust component, R is the spatial 
frequency, defined by 2 4 A ,  where A is the wavelength of a sinusoidal component, 
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One dimensional gust 

- 
Two dimensional gust 

FIGURE 6.14 
One and two dimensional gust fields. 

and L is the scale of the turbulence. The subscripts u, v, and w refer to the gust 
components. The scales and intensities of atmospheric turbulence depend on the 
altitude and the type of turbulence; that is, clear air (high or low altitude) and 
thunderstorm turbulences. 

For an airplane passing through a gust field, it is assumed that the turbulence 
encountered is independent of time (i.e., the turbulence is stationary). This as- 
sumption can be visualized by considering the gust field to be frozen in both time 
and space, as illustrated in Figure 6.14. Assuming the frozen-field concept the 
turbulence-induced motion is due only to the motion of the airplane relative to the 
gust field. 

The three power spectral densities presented earlier were a function of a spatial 
frequency; however, as the airplane passes through the frozen turbulent field it 
senses a temporal frequency. The relationship between the spatial and temporal 
frequency is given by 

fl = W/U, (6.55) 

where w is in radls and u, is the velocity of the airplane relative to the air mass it 
is passing through. 

6.6 
WIND SHEAR 

Wind shear is defined as a local variation of the wind vector. The variations in wind 
speed and direction are measured in the vertical and horizontal directions. In a 
vertical wind shear the wind speed and direction vary with changing altitude; in a 
horizontal wind shear, wind variations are along some horizontal distance. 

Wind shears are created by the movement of air masses relative to one an- 
other or to the Earth's surface. Thunderstorms, frontal systems, and the Earth's 
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FIGURE 6.15 
Wind shear created by a down burst. 

H = 4000 tan 3"(m) 

FIGURE 6.16 
Measured wind shear velocity profiles. 

boundary layer all produce wind shear profiles that at times can be hazardous to 
aircraft flying at low altitudes. The strong gust fronts associated with thunder- 
storms are created by downdrafts within the storm system. As the downdrafts 
approach the ground, they turn and move outward along the Earth's surface. The 
wind shear produced by the gust front can be quite severe. 

The wind shear created by a frontal system occurs at the transition zone 
between two different air masses. The wind shear is created by the interaction of 
the winds in the two air masses. If the transition zone is gradual, the wind shear will 
be small. However, if the transition zone is small, the conflicting wind speeds and 
directions of the air masses can produce a very strong wind shear. Figure 6.15 
shows some of the mechanisms that create a wind shear and Figure 6.16 shows an 
experimentally measured shear profile near the ground. 

No simple mathematical formulations characterize the wind shears pro- 
duced by the passage of frontal systems or thunderstorms. Generally, these shears 
are represented in simulation studies by tables of wind speed components with 
altitude. 
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Mean wind FIGURE 6.17 
An aircraft descending into a . 

Flight path horizontal wind shear. 

Glide slope 

The surface boundary layer also produces wind shear. The shape of the profile 
is determined, primarily, by local terrain and atmospheric conditions. Additional 
problems arise when there is an abrupt change in surface roughness (which can be 
expected near airports), resulting in additional internal boundary layers, and when 
the direction of the wind varies with altitude. 

To analyze the influence of wind shear on aircraft motion, the characteristics 
of wind shear must be known. The magnitude of the shear can be expressed in terms 
of the change in wind speed with respect to altitude, du/dh, where a positive wind 
shear increases with increasing altitude. The qualitative criteria for judging the 
severity of wind shear were proposed to the International Civil Aviation Organiza- 
tion (ICAO). It was suggested that shear be considered light if duldh ranges from 
0 to 0.08 s-', moderate for 0.08-0.15 s-', strong for 0.15-0.20 s-', and severe if 
greater than 0.2 s-I. These criteria are useful in giving an idea of the magnitude of 
wind shear but the ICAO did not accept them. A shear that is moderate for an 
airplane with a high stall speed may be strong for one with a low stall speed, so 
universal criteria are impossible owing to differences among aircraft types. 

E X A M P L E  PROBLEM 6.2. Consider an airplane on a final approach encountering a 
vertical wind shear; that is, the variation of horizontal wind velocity with altitude. 
Figure 6.17 shows an airplane flying into a wind shear. To analyze this problem we can 
use Equation (6.17). The change in wind velocity is represented by 

where duldh is the velocity gradient and dh is the change in altitude. If we assume that 
the controls are fixed, Equation (6.17) reduces to 

But u, is a function of altitude and therefore we must add other equations to the system. 
The vertical velocity of the airplane can be expressed as the time rate of change of 
altitude as follows: 
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FIGURE 6.18 
Influence of wind shear on longitudinal roots. 

Adding this equation to the state equations and substituting for u, yields 

The solution to this system of equations yields five eigenvalues: two complex pairs 
representing the phugoid and short-period modes and a fifth, real, root indicating a 
nonoscillatory motion. These equations were solved in [6.6] for STOL aircraft for 
various magnitudes of the velocity gradient. The results showed that wind shear had 
very little affect on the short-period motion; however, the phugoid motion was found 
to be quite sensitive to du/dh. Figure 6.18 shows a root locus plot of the phugoid roots 
for variations in du/dh. For very large gradients the phugoid mode can become un- 
stable. An unstable phugoid mode would make the landing approach very difficult for 
the pilot to control. Therefore, strong wind shears must be avoided for flight safety. 

6.7 
SUMMARY 

In this chapter we  examined some of the analytical techniques available to flight 
control engineers to study the dynamic response of a n  airplane to control deflection 
o r  atmospheric disturbances. Apart  f rom the uncomfortable ride they create for the 
pilot and  passengers, the loads imposed on  the airframe structure by the gust fields 
must be  calculated s o  that the structure can be  properly designed. 

Wind shear recently has been shown to b e  a greater hazard to commer-  
cial aviation than had been appreciated. Wind shears created by thunderstorm 
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systems have been identified a s  the major  contributor to  several airline crashes. T h e  
techniques outlined in this chapter can b e  used by stability and  control engineers 
to  study the  effects of atmospheric disturbances o n  aircraft flight characteristics. 
Such studies can b e  used to improve flight safety. 

PROBLEMS 

6.1. For the business jet aircraft whose details are included in Appendix B determine the 
lateral response curves for an aileron input. Present your results in the form of 
frequency response curves. 

6.2. The vertical motion of an airplane subjected to a sharp-edged gust is described by the 
equation 

Aw(t) = A,(1 - e-'1') 

where Aw is in the vertical velocity, A, is the magnitude of the gust, and T is the time 
constant of the airplane. Using the information in Figure P6.2 determine the maxi- 
mum vertical acceleration and the time constant of the airplane. 

FIGURE P6.2 
Vertical velocity response. 

6.3. For the general aviation airplane whose details are included in Appendix B determine 
the vertical response to a sinusoidal gust field. Assume the problem can be modeled 
by a single degree of freedom vertical equation of motion. Present your results in the 
form of frequency response curves. 

6.4. Discuss how changes in the aerodynamic stability characteristics would effect the 
response curves obtained in Problem 6.3. 

6.5. Assume that an airplane is on final approach and encounters a wind shear that can be 
represented as 

where duldh is the wind gradient. Assume that the pitch attitude of the airplane is 
maintained by an automatic control system. Develop the equations of motion govern- 
ing the vertical and horizontal velocity of the airplane. How does the wind gradient 
effect the two-dimensional response? 
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CHAPTER 7 

Automatic Control Theory- 
The Classical Approach 

"The transport aircraft of the future may well be on automatic control from the 
moment of take-off to the automatic landing at its destination." 

William Bollay, 14th Wright Brothers Lecture, 1950 

7.1 
INTRODUCTION 

Control theory deals with the analysis and synthesis of logic for the control of a 
system. In the broadest sense, a system can be thought of as a collection of compo- 
nents or parts that work together to perform a particular function. The airplane is 
an example of a complex system designed to transport people and cargo. 

What today we call control theory developed along two different analytical 
approaches. The first approach was based on frequency response methods, the root 
locus technique, transfer functions, and Laplace transforms. It had its beginning in 
the late 1930s. This approach to control theory is sometimes called classical or 
conventional control theory. A major feature of these analysis methods was their 
adaptability to simple graphical procedures, which was particularly important 
during this time period because computers were not available. Analysis techniques 
had to be suitable for calculations made without computers. The analysis tools, 
based upon the work of Bode, Nyquist, and Evans, form the foundation of 
"classical" control theory. To apply classical control theory to the design of a 
control system one needs to understand Laplace transforms and the concept of a 
transfer function. 

With the advent of high-speed digital computers, control system analysis 
methods were developed based on the state-space formulation of the system. These 
analysis techniques, developed since the 1960s, are commonly called modern con- 
trol theory. To understand modern control methods one must understand matrix 
algebra and the state-space concept of representing a system of governing equa- 
tions. The selection of the names classical and modern is somewhat unfortunate in 
that it seems to relegate the classical approach to a lesser status when this is not the 
case. A control system designer needs to know both the classical and modern 
control approaches. In this and the next three chapters we divide control theory into 
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FIGURE 7.1 
Examples of open-loop and closed-loop control systems. 

- 
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the two categories, classical and modern, for convenience. Both approaches have 
their strengths and weaknesses and find wide acceptance and use by control system 
designers. 

It is not possible to cover all aspects of control theory approach in just four 
chapters. Therefore, it has been assumed that the reader has had an undergraduate 
course in control theory. Chapters 7 and 9 provide a brief review of some of the 
theoretical aspects of the classical and the modern control; Chapters 8 and 10 apply 
the techniques to the design of simple airplane autopilots. 

In each chapter we provide simple examples of the control analysis techniques 
that one can do readily with a simple pocket calculator. Once the theoretical basis 
of these techniques is understood more complicated problems can be attempted. A 
number of software packages are available for control system analysis and design. 
We have found the software package MATLAB* to be quite useful and used it in 
developing problems and examples for these chapters. Readers are encouraged to 
use whatever control software is available at their university or company to help 
them with the problems at the end of the chapters. 

Before discussing control system design, a review of some of the basic concepts 
of control theory will be presented. Control systems can be classified as either 
open-loop or closed-loop systems, as illustrated in Figure 7.1. An open-loop con- 
trol system is the simplest and least complex of all control devices. In the open-loop 
system the control action is independent of the output. In closed-loop system the 
control action depends on the output of the system. Closed-loop control systems are 
called feedback control systems. The advantage of the closed-loop system is its 
accuracy. 

To obtain a more accurate control system, some form of feedback between the 
output and input must be established. This can be accomplished by comparing the 
controlled signal (output) with the commanded or reference input. In a feedback 
system one or more feedback loops are used to compare the controlled signal with 
the command signal to generate an error signal. The error signal then is used to 

*MATLAB is a registered trademark of The Math Works, Inc 
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FIGURE 7.2 
A feedback control system. 

drive the output signal into agreement with the desired input signal. The typical 
closed-loop feedback system shown in Figure 7.2 is composed of a forward path, 
a feedback path, and an error-detection device called a comparator. Each compo- 
nent of the control system is defined in terms of its transfer function. The transfer 
function, T.F., is defined as the ratio of the Laplace transform of the output to the 
Laplace transform of the input where the initial conditions are assumed to be 0: 

Laplace transform of the output 
T.F. = 

Laplace transform of the input 

The transfer function of each element of the control system can be determined from 
the equations that govern the dynamic characteristics of the element. The aircraft 
transfer functions are developed in Chapter 8 from the equations of motion. 

The closed-loop transfer function for the feedback control system shown in 
Figure 7.2 can be developed from the block diagram. The symbols used in the block 
diagram are defined as follows: 

reference input 
output signal (variable to be controlled) 
feedback signal 
error or actuating signal 
C(s)/E(s) forward path or open-loop transfer function 
C(s)/R(s) the closed-loop transfer function 
feedback transfer function 
loop transfer function 

The closed-loop transter function, C(s)/R(s), can be obtained by simple algebraic 
manipulation of the block diagram. The actuating or error signal is the difference 
between the input and feedback signals: 

The feedback signal B(s) can be expressed in terms of the feedback transfer func- 
tion and the output signal: 
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and the output signal C ( s )  is related to the error signal and forward path transfer 
function in the following manner: 

Substituting Equations (7.2) and (7.3) into 7.4 yields 

Equation (7.5) can be solved for the closed-loop transfer function C(s)/R(s):  

C(s) - 
- -  a s )  
R(s) 1 + G(s)H(s) 

which is the ratio of the system output to the input. Most control systems are much 
more complex than the one shown in Figure 7.2. However, theoretically the more 
complex control systems consisting of many feedback elements can be reduced to 
the simple form just described. 

The feedback systems described here can be designed to control accurately the 
output to some desired tolerance. However, feedback in itself does not ensure that 
the system will be stable. Therefore, to design a feedback control system one needs 
analysis tools that allow the designer to select system parameters so that the system 
will be stable. In addition to determining the absolute stability, the relative stability 
of the control system also must be determined. A system that is stable in the 
absolute sense may not be a satisfactory control system. For example, if the system 
damping is too low the output will be characterized by large amplitude oscillations 
about the desired output. The large overshooting of the response may make the 
system unacceptable. 

Autopilots can be designed using either frequency- or time-domain methods 
developed from servomechanism theory or by time-domain analysis using state 
feedback design. In this chapter the techniques from servomechanism theory will 
be discussed and several simple applications of the design techniques will be dem- 
onstrated by applying the techniques to the design of autopilots. 

The servomechanism design techniques include the Routh criterion, root locus, 
Bode, and Nyquist methods. A brief description of these techniques is presented 
either in the following sections or in the appendices at the end of this book. For a 
more rigorous treatment of this material, the reader is referred to [7.2-7.51. 

7.2 
ROUTH'S CRITERION 

As noted earlier, the roots of the characteristic equation tell us whether or not the 
system is dynamically stable. If all the roots of the characteristic equation have 
negative real parts the system will be dynamically stable. On the other hand, if 
any root of the characteristic equation has a positive real part the system will be 
unstable. The system is considered to be marginally stable if one or more of the 
roots is a pure imaginary number. The marginally stable system represents the 
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boundary between a dynamically stable or unstable system. For a closed-loop 
control system the denominator of Equation (7.6) is the characteristic equation. 

A simple means of determining the absolute stability of a system can be ob- 
tained by the Routh stability criterion. The method allows us to determine whether 
any of the roots of the characteristic equation have positive real parts, without 
actually solving for the roots. Consider the characteristic equation 

So that no roots of Equation (7.7) have positive real parts the necessary but not 
sufficient conditions are that 

1. All the coefficients of the characteristic equation must have the same sign. 
2. All the coefficients must exist. 

To apply the Routh criterion, we must first define the Routh array as in 
Table 7.1. The Routh array is continued horizontally and vertically until only zeros 
are obtained. The last step is to investigate the signs of the numbers in the first 
column of the Routh table. The Routh stability criterion states 

1. If all the numbers of the first column have the same sign then the roots of the 
characteristic polynorninal have negative real parts. The system therefore is 
stable. 

2. If the numbers in the first column change sign then the number of sign changes 
indicates the number of roots of the characteristic equation having positive real 
parts. Therefore, if there is a sign change in the first column the system will be 
unstable. 

When developing the Routh array, several difficulties may occur. For example, 
the first number in one of the rows may be 0, but the other numbers in the row may 
not be. Obviously, if 0 appears in the first position of a row, the elements in the 
following row will be infinite. In this case, the Routh test breaks down. Another 

TABLE 7.1 
Definition of Routh array: Routh table 

A" a, an-2 an-4 . . . 
An-! a,-[ an-3 an-, . . . 
*"- I  bl b2 b, . . . 

C 1 C? C3 . . . 
where an, a,-,,  . . . , a, are the coefficients of the characteristic equation 
and the coefficients b , ,  b,, b,, e l ,  c,, and so on are given by 

and so forth 

dl  = c,b2 - C?bl and so forth 
Cl 
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possibility is that  all the numbers in a row are  0. Methods for handling these special 
cases can  be found in most textbooks o n  automatic control theory. 

Several examples of applying the Routh stability criterion a re  shown in Exam- 
ple Problem 7.1. 

EXAMPLE PROBLEM 7.1. Determine whether the characteristic equations given 
below have stable or unstable roots. 

(a) A' + 6A2 + 12A + 8 = 0 

(b) 2~~ + 4A2 + 4A + 12 = 0 

(c) ,4A4 + BA' + CA2 + DA + E = 0 

Solution. The first two rows of the array are written down by inspection and the 
succeeding rows are obtained by using the relationship for each row element as pre- 
sented previously: 

There are no sign changes in column 1; therefore, the system is stable. The Routh array 
for the second characteristic equation is as follows: 

Note that there are two sign changes in column 1; therefore, the characteristic equation 
has two roots with positive real parts. The system in unstable. 

The Routh stability criterion can be applied to the quartic characteristic equation 
that describes either the longitudinal or lateral motion of an airplane. The quartic 
characteristic equation for either the longitudinal or lateral equation of motion is given 
in part c of this problem where A, B, C, D, and E are functions of the longitudinal or 
lateral stability derivatives. Forming the Routh array from the characteristic equation 
yields 

[D(BC - AC)/B] - BE 
(BC - AD)/B 
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For the airplane to be stable requires that 

A, B, C ,  D, E > 0 

BC - AC > 0 

D(BC - AD) - B ~ E  > o 
The last two inequalities were obtained by inspection of the first column of the Routh 
array. 

If the first number in a row is 0 and the remaining elements of that row are 
nonzero, the Routh method breaks down. To overcome this problem the lead 
element that is 0 is replaced by a small positive number, E.  With the substitution 
of E as the first element, the Routh array can be completed. After completing the 
Routh array we can examine the first column to determine whether there are any 
sign changes in the first column as E approaches 0. 

The other potential difficulty occurs when a complete row of the Routh array 
is 0. Again the Routh method breaks down. When this condition occurs it means 
that there are symmetrically located roots in the s plane. The roots may be real with 
opposite sign or complex conjugate roots. The polynomial formed by the 
coefficient of the first row just above the row of zeroes is called the auxiliary 
polynomial. The roots of the auxiliary polynomial are symmetrical roots of the 
characteristic equation. The situation can be overcome by replacing the row of 
zeroes by the coefficients of the polynomial obtained by taking the derivative of the 
auxiliary polynomial. These exceptions to the Routh method are illustrated by way 
of example problems. 

E X A M P L E  P R O B L E M  7.2. In this example we will examine the two potential cases 
where the Routh method breaks down. The two characteristic equations are as follows: 

(a) A 5  + A4 + 3~' + 3A2 + 4A + 6 = 0 

(b) A6 + 3A5 + 6A4 + 12A3 + llA2 + 9A + 6 = 0 

For equation a, the lead element of the third row of the Routh table is 0 which prevents 
us from completing the table. This difficulty is avoided by replacing the lead element 
0 in the third row by a small positive values E .  With the 0 removed and replaced by E 

the Routh table can be completed as follows: 

1 3 4 

1 3 6 

E - 2 

Now as E goes to 0 the sign of the first elements in rows 3 and 4 are positive. However, 
in row 5 the lead element goes to -2 as E goes to 0. We note two sign changes in the 
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first column of the Routh tables; therefore, the system has two roots with positive real 
parts, which means it is unstable. 

The second difficulty that can cause a problem with the Routh method is a 
complete row of the Routh table being zeroes. This difficulty is illustrated by the Routh 
table for equation b. 

The Routh table can be constructed as follows: 

Note that the fourth row of the Routh table is all zeroes. The auxiliary equation is 
formed from the coefficients in the row just above the row of zeroes. For this example 
the auxiliary equation is 

Taking the derivative of the auxiliary equation yields 

8A3 + 16A = 0 

The row of zeroes in the fourth row is replaced by the coefficients 8  and 16. The Routh 
table now can be completed. 

The auxiliary equation can also be solved to determine the symmetric roots, 

A4 + 4A2 + 3 = 0 

which can be factored as follows: 

(A2 + l)(h2 + 3) = 0 

A =  - + i  and A = ? G i  

If we examine column 1 of the Routh table we conclude that there are no roots with 
positive real parts. However, solution of the auxiliary equations reveals that we have 
two pairs of complex roots lying on the imaginary axis. The purely imaginary roots lead 
to undamped oscillatory motions. In the absolute sense, the system is stable; that is, no 
part of the motion is growing with time. However, the purely oscillatory motions would 
be unacceptable for a control system. 
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Even though the method developed by Routh provides an easy way of assessing 
the absolute stability, it gives us no indication of the relative stability of the system. 
To assess the relative stability requires another analysis tool such as the root locus 
technique. 

7.3 
ROOT LOCUS TECHNIQUE 

In designing a control system, it is desirable to be able to investigate the perfor- 
mance of the control system when one or more parameters of the system are varied. 
As has been shown repeatedly, the characteristic equation plays an important role 
in the dynamic behavior of aircraft motions. The same is true for linear control 
systems. In control system design, a powerful tool for analyzing the performance of 
a system is the root locus technique. Basically, the technique provides graphical 
information in the s plane on the trajectory of the roots of the characteristic 
equation for variations in one or more of the system parameters. Typically, most 
root locus plots consist of only one parametric variation. The control system 
designer can use the root locus method to obtain accurate time-domain response 
and frequency response information on a closed-loop control system. 

The root locus technique was introduced by W. R. Evans in 1949. He developed 
a series of rules that allow the control systems engineer to quickly draw the root 
locus diagram. Although many software packages are available for accurately 
determining the root locus plots, the graphical rules remain important. They 
provide the control systems engineer a valuable tool to assessing system changes. 
With Evans's technique one can sketch a root locus plot in several minutes. The 
rules for constructing a root locus plot are presented later in this section. 

The transfer function was described earlier as the ratio of the output to the 
input. On examining a transfer function we note that the denominator is the 
characteristic equation of the system. The roots of the denominator are the eigen- 
values that describe the free response of the system, where the free response is the 
solution to the homogeneous equation. In controls terminology the characteristic 
roots are called the poles of the transfer function. The numerator of the transfer 
function governs the particular solution and the roots of the numerator are called 
zeros. 

As was noted earlier in Chapters 4 and 5 the roots of the characteristic equation 
(or poles) must have negative real parts if the system is to be stable. In control 
system design the location of the poles of the closed-loop transfer function allows 
the designer to predict the time-domain performance of the system. 

However, in designing a control system the designer typically will have a 
number of system parameters unspecified. The root locus technique permits the 
designer to view the movement of the poles of the closed-loop transfer functic I as 
one or more unknown system parameters are varied. 

Before describing the root locus technique it would be helpful to examine he 
significance of the root placement in the complex plane and the type of respor ;e 
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FIGURE 7.3 
Impulse response as a function of the pole location in the complex s plane. 

that can be expected to occur. Figure 7.3 illustrates some of the important features 
of pole location. First we note that any pole lying in the left half portion of the 
complex plane is stable; that is, the response decays with time. Any pole in the right 
half plane leads to a response that grows with time, which will result in an unstable 
system. The farther the root is to the left of the imaginary axis, the faster the 
response decays. All poles lying along a particular vertical line will have the same 
time to half amplitude. Poles lying along the same horizontal line have the same 
damped frequency, w, and period. The farther the pole is from the real axis, the 
higher the frequency of the response will be. Poles lying along a radial line through 
the origin have the same damping ratio, 5, and roots lying on the same circular arc 
around the origin will have the same undamped natural frequency. Finally, some 
comments must be made about the poles lying on the imaginary axis. Poles of the 
order 1 on the imaginary axis lead to undamped oscillations; however, multiple 
order poles result in responses that grow with time. 

The closed-loop transfer function was shown earlier to be 

M (s) = 
a s )  

1 + G(s)H(s) 
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The characteristic equation of the closed loop system is given by the denominator 
of equation (7.8): 

The transfer function G(s)H(s) can be expressed in factored form as follows: 

G(s)H(s) = 
k(s + zd(s  + ~ 2 ) .  . . (S + 2,) 

(s  + P I N S  + p2) . . . (s + p,) 

where n > m and k is an unknown system parameter. Substituting this equation 
into the characteristic equation yields. 

The characteristic equation is complex and can be written in terms of a magnitude 
and angle as follows: 

where q = 0, 1,2,  . . . , n - m - 1. Solution of these equations yields the move- 
ment of the roots as a function of the unknown system parameter, k. These equa- 
tions can be solved on the computer to determine the root locus contours. However, 
a simple graphical technique developed by W. R. Evans can be used to rapidly 
sketch a root locus plot. This graphical procedure is presented in the next section. 

It can be shown easily that the root locus contours start at the poles of transfer 
function, G(s)H(s) and end at the zeroes of the transfer function as k is varied from 
0 to infinity. For example, if we rearrange the magnitude criteria in the following 
manner, 

then as k goes to 0 the function becomes infinite. This implies that the roots 
approach the poles as k goes to 0. On the other hand, as k goes to infinity the 
function goes to 0, which implies that the roots are at the transfer function zeros. 
Therefore, the root locus plot of the closed-loop system starts with a plot of the 
poles and zeros of the transfer function, G(s)H(s). Evans developed a series of rules 
based on the magnitude and angle criteria for rapidly sketching the root locus 
branches on a pole zero map. A proof of these rules can be found in most control 
textbooks and will not be presented here. Table 7.2 is a summary of the rules for 
constructing a root locus contour. 
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TABLE 7.2 
Rules for graphical construction of the root locus plot 
mm*Lsyl.+*--**%4*% i - * ~ $ ~ x ? ~ ~ ~ i " " + V 2 ~ J : * ~ Y - r i - r i - r i * * ~ ~ * ~ * l i * P +  w * = - e r r - . - * v  

I. The root locus contours are symmetrical about the real axis. 
2. The number of separate branches of the root locus plot is equal to the number of poles of the transfer 

function C(s)H(s). Branches of the root locus originate at the poles of G(s)H(s) for k = 0 and 
terminate at either the open-loop zeroes or at infinity for k = x .  The number of branches that 
terminate at infinity is equal to the difference between the number of poles and zeroes of the 
transfer function G(s)H(s), where n = number of poles and m = number of zeros. 

3. Segments of the real axis that are part of the root locus can be found in the following manner: Points 
on the real axis that have an odd number of poles and zeroes to their right are part of the real axis 
portion of the root locus. 

4. The root locus branches that approach the open-loop zeroes at infinity do so along straight-line 
asymptotes that intersect the real axis at the center of gravity of the finite poles and zeroes. 
Mathematically this can be expressed as 

m = (2 Real parts of the poles - Real parts of the zeroes]/(n - m) 

where n is the number of poles and m is the number of finite zeroes. 
5. The angle that the asymptotes make with the real axis is given by 

forq  = 0, 1 . 2 , .  . . , ( n  - m  - 1) 
6. The angle of departure of the root locus from a pole of G(s)H(s) can be found by the following 

expression: 

where 4 is the net angle contribution at the pole of interest due to all other poles and zeroes of 
G(s)H(s). The arrival angle at a zero is given by a similar expression: 

The angle 4 is determined by drawing straight lines from all the poles and zeroes to the pole or zero 
of interest and then summing the angles made by these lines. 

7. If a portion of the real axis is part of the root locus and a branch is between two poles, the branch 
must break away from the real axis so that the locus ends on a zero as k approaches infinity. The 
breakaway points on the real axis are determined by solving 

for k and then finding the roots of the equation dklds = 0. Only roots that lie on a branch of 
the locus are of interest. 

The root locus technique discussed in this chapter provides the analyst or 
designer a convenient method for assessing the absolute and relative stability of a 
control system. In terms of the root locus diagram, if any of the roots of the 
characteristic equation of the closed-loop system lie in the right half plane the 
system is unstable. On the other hand, if all the roots lie in the left half plane the 
system is stable. Complex roots lying on the imaginary axis yield constant ampli- 
tude oscillations. Repeated roots on the imaginary axis result in unstable behavior. 

For roots lying in the left side of the root locus plot the question becomes one 
of determining the relative stability of the system. A system that is stable in the 
absolute sense may not be a very useful control system. We need to know more 
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about the relative stability of the system. Relative stability deals with how fast the 
system responds to control input and how fast disturbances are suppressed. The 
relative stability of the control system is measured by various performance indices 
such as time to half amplitude, percent over shoot, rise time, or  settling time. These 
concepts will be discussed in the next section. 

EXAMPLE PROBLEM 7.3. Sketch the root locus plot for the transfer function 

Solution. This transfer function has one finite zero (m = 1) and four poles (n = 4): 

zero: s = -3 
poles: s = 0, s = -10, s = -4 2 2i 

The poles and zeroes of the transfer function can be plotted on the root locus diagram. 
The poles and zeroes of G(s)H(s) are denoted by a small x or 0, respectively, on the root 
locus plot. Using rule 3 from Table 7.2 we observe that the portion of the real axis that 
is part of the locus lies between s = 0 and -3 and from - 10 to -m. 

The number of branches of the root locus that terminate at a zero at infinity is 
equal to the difference between the number of poles (n) and the number of zeroes (m) 
of the transfer function (rule 2). In this case we have four poles and one zero; therefore, 
we have three branches of the locus going to zeroes at infinity. 

The branches of the locus that go to a zero at infinity do so along straight-line 
asymptotes. The intersection of the asymptotes with the real axis and the angle of the 
asymptotes follows (see rules 4 and 5 of Table 7.2): 

Z real parts of the poles - C real parts of the zero 
u = 

rn - ml 

and +A = 
180•‹[2q + 11 

n - r n  

and q = 0, 1 , .  

The pole at the origin approaches zero at s = -3, the pole at s = - 10 goes to -a, on 
the real axis, and the complex poles go to zeroes along asymptotes making an angle of 
60" and 300" with the real axis as k goes from 0 to m. Figure 7.4 is a sketch of the root 
locus plot. 

7.3.1 Addition of Poles and Zeroes 

The root locus method gives a graphic picture of the movement of the poles of the 
closed-loop system with the variation of one of the system parameters that needs 
to be selected by the designer. Later in this chapter we discuss how the relative 
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FIGURE 7.4 
Root locus plot for Example Problem 7.3 

stability of the system and its performance can be obtained from the root locus 
diagram. 

In many cases it is not possible to satisfy all the performance specifications 
using a single parameter such as the system gain. This requires the designer to add 
some form of compensation to the basic control system. The compensators may be 
electrical circuits, mechanical devices, or electromechanical devices that are added 
to the system to improve its performance. The compensators may be added to either 
the forward or feedback path. The compensator has a transfer function composed 
of poles and zeroes. Before discussing various methods of providing compensation 
to a control system it would be useful to examine the influence of the addition of 
poles and zeroes to the loop transfer function G(s)H(s). We will do this by way of 
a simple example. 

E X A M P L E  P R O B L E M  7.4. Construct a root locus plot from the transfer function 
G(s)H(s) given by 

then examine how the locus is affected by the addition of one of the following to the 
original transfer function. 

i. simple pole ii. multiple pole iii. simple zero. 
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k (a) G(s) = - 

s(s + Pl) 

Real axis 
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(b) G(s) = S(S + pl)(s + p2) 
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k(s + z,) (f) G(s) = - 
s(s + p,) 

FIGURE 7.5 
Sketch of root locus plot for Example Problem 7.4. 

Solution. The root locus plot can be easily constructed by the rules outlined in this 
chapter. A sketch of the root locus is shown in Figure 7.5. For this particular transfer 
function the system is stable for 0 < k < m. Now if we add a simple pole, s + p2, to 
G(s)H(s) the root locus will bend into the right half plane, which limits the range of k for 
which the system is stable. Notice that the plots for p ,  > p2 or p2 > p ,  have the same 
shape (see Figure 7.5(b) and (c)). The addition of yet another pole adds another branch 
of the locus that goes to zero at infinity, and the system can still become unstable if the 
system gain exceeds a certain value as shown in Figure 7.5(d). From this simple analysis 
we can conclude that the addition of a pole to a given transfer function causes the root 
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locus plot to bend toward the right half portion of the complex plane. Thus, the additon 
of a simple pole tends to destabilize the system. 

The addition of a simple zero, s + z,, to the original transfer function, G(s)H(s) ,  
will cause the root locus plot to bend further into the left half portion of the complex 
plane as illustrated in Figure 7.5(e) and (f ). By adding a zero to G(s)H(s) ,  the system 
will be more stable than the original system. 

The importance of this example is to show that the root locus plot of a control 
system can be altered by the addition of poles or zeroes. In practice a designer can use 
this idea to reshape the root locus contour so that the desired performance can be 
achieved. The compensator basically is a device that provides a transfer function 
consisting of poles or zeroes or both that can be chosen to move the root locus contour 
of the compensated system to the desired closed-loop pole configuration. Note that the 
addition of a compensator in general increases the order of the system. 

7.4 
FREQUENCY DOMAIN TECHNIQUES 

T h e  frequency response of a dynamic system was discussed in Chapter  6. The same 
techniques can be  applied to the design of feedback control systems. The transfer 
function for a closed-loop feedback system can be  written a s  

If we excite the system with a sinusoidal input such as  

the steady-state output of the system will have the form 

T h e  magnitude and  phase relationship between the input and output signals is 
called the frequency response of the system. The ratio of output to  input for a 
sinusoidal steady state can be  obtained by replacing the Laplace transform variable 
s with iw: 

Expressing the previous equation in terms of its magnitude and phase angle yields 

where 

and  
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FIGURE 7.6 
Various graphical ways of presenting frequency response data. 

The frequency response information can be plotted in rectangular, polar, or loga- 
rithmic (Bode) plots. Figure 7.6 is a sketch of the various ways of presenting the 
frequency response data. The relationship between the frequency- and time- 
domain performance of a control system is discussed in the next section. 

7.5 
TIME-DOMAIN AND FREQUENCY-DOMAIN SPECIFICATIONS 

The first step in the design of a feedback control system is to determine a set of 
specifications for the desired system performance. In the following section we shall 
present both time- and frequency-domain specifications and their relationship to 
one another for a second-order system. The transfer function of a second-order 
system can be expressed as 

where 5 is the damping ratio and w,, is the undamped natural frequency of the 
system. Figure 7.7 shows the response to a step input of an underdamped second- 
order system. The performance of the second-order system is characterized by 
the overshoot, delay time, rise time, and settling time of the transient response to 
a unit step. The time response of a second-order system to a step input for an 
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FIGURE 7.7 
Time response of a second-order system. 

underdamped system; that is, l < 1, is given by Equations (7.24) and (7.25): 

The delay and rise time give a measure of how fast the system responds to a step 
input. Delay time t, is the time it takes for the response to reach for the first time 
50 percent of the final value of the response. The rise time t, is the time required 
for the response to rise from 10 to 90 percent of the final value. The other two 
parameters of interest are the settling time and peak overshoot. Settling time t,r is 
the time it takes for the response to stay within a specified tolerance band of 5 
percent of the final value. The peak overshoot is a measure of the oscillations about 
the final output. From the standpoint of control system design, we would like to 
have a system that responds rapidly with minimum overshoot. Equations (7.24) 
and (7.25) can be used to determine the relationships between the time-domain 
specifications t,, t,, and the like and the damping ratio l and undamped natural 
frequency on. Table 7.3 is a summary of these relationships. 

Figure 7.8 is a sketch of the typical magnitude and phase characteristics of a 
feedback control system. As in the time-domain analysis it is desirable to have a set 
of specifications to describe the control system performance in the frequency 
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TABLE 7.3 

Time domain specifications 

Delay time t, Rise time, t, 

Time to peak amplitude, tp Settling time, t, 

?I 
t,, = 

W" 

Peak overshoot, Mp 

For a unit step 

Percent maximum overshoot = 100 exp(-7r5/-) 

FIGURE 7.8 
Frequency response of a 
closed-loop control system. 

domain. In the frequency domain the design specifications are given in terms of the 
response peak M,, the resonant frequency w,, the system bandwidth w,, and the 
gain and phase margins. The maximum value of M(w), called the resonance peak, 
is an indication of the relative stability of the control system. If M, is large the 
system will have a large peak overshoot to a step input. The resonant frequency, w,, 
is the frequency at which the resonance peak occurs. It is related to the frequency 
of the oscillations and speed of the transient response. The bandwidth w, is the 
band of frequencies from 0 to the frequency at which the magnitude M(w) drops 
to 70 percent of the zero-frequency magnitude. The bandwidth gives an indication 
of the transient response of the system. If the bandwidth is large, the system will 
respond rapidly, whereas a small bandwidth will result in a sluggish control system. 

The gain and phase margins are measures of the relative stability of the system 
and are related to the closeness of the poles of the closed-loop system to the iw axis. 

For a second-order system the frequency domain characteristics M,, or, and w, 
can be related to the system damping ratio and the undamped natural frequency w,. 
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The relationships will be presented here without proof: 

The peak response and the peak overshoot of the transient response in the time 
domain is given by the following approximation: 

The phase margin of a second-order system can be related to the system 
damping ratio as follows: 

This very formidable equation can be approximated by the simple relationship 

3 = 0.014 for 5 5 0.7 (7.31) 

The phase margin 4 is in degrees. 
From the preceding relationships developed for the second-order system the 

following observations can be made: 

The maximum overshoot for a unit step in the time domain is a function of 
only 5. 
The resonance peak of the closed-loop system is a function of only 5. 
The maximum peak overshoot and resonance peak are related through the 
damping ratio. 
The rise time increases while the bandwidth decreases for increases in system 
damping for a fixed w,,. The bandwidth and rise time are inversely proportional 
to one another. 
The bandwidth is directly proportional to w,. 
The higher the bandwidth, the larger is the resonance peak. 

7.5.1. Gain and Phase Margin from Root Locus 

The gain and phase margin used to determine the relative stability of a control 
system using frequency response techniques also can be determined from the root 
locus plot. The gain margin can be estimated by taking the ratio of the gain when 
the locus crosses the imaginary axis to the gain selected for the system: 

Gain margin 

- - Value of system gain k when locus crosses the imaginary axis 
(7.32) 

Selected value of system gain k 
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Root locus 
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FIGURE 7.9 
k 

Root locus plot for the transfer function G(s)H(s) = s(s + 3 )  (s + 10)' 

The value of o at the intersection on the root locus is the phase crossover frequency. 
If the root locus plot has no branches that cross over the imaginary axis the gain 
margin is infinite. 

The phase margin can be determined for the selected gain by estimating the 
frequency on the imaginary axis that satisfies the relationship 

I G(iog)H(iog) 1 = 1 (7 .33 )  

The frequency can be determined by trial and error. The frequency that  satisfies 
this relationship is called the gain crossover frequency. The phase margin can be 
calculated from the equation 

&, = 180" + arg G(iw,)H(io,). (7 .34)  

EXAMPLE PROBLEM 7 5 .  The root locus plot for a system having the following 
transfer function is given in Figure 7.9: 

Determine the following information: 

(a) Select the system gain so that the dominant roots have a damping ratio, 6 = 0.6. 
(b) Estimate the settling time. 
(c) Find the gain and phase margin for the gain selected in part (a). 
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Solution. To estimate the gain for a damping ratio, 5 = 0.6, the value of s on the root 
locus that intersects the line of constant damping ratio of 0.6 needs to be determined. 
As was shown earlier the damping ratio is constant along radial lines drawn from the 
origin of the root locus diagram. The magnitude of the damping ratio is related to the 
angle 8 as follows: 

Solving for theta yields 

The intersection of the line of constant damping ratio (8 = 53" 3 6 = 0.6) with the 
root locus occurs at s = - 1.2 + 1.65. The magnitude of the system gain at this point 
can be determined using the magnitude criteria: 

Substituting in the value of s = - 1.2 + 1.6% yields 

The settling time t, can be estimated from the approximate formula given in Table 7.3: 

where 5% is the magnitude of the real part of the complex root, 

Therefore 

To determine the gain margin from the root locus plot we can use Equation (7.33). We 
need to determine the gain for the system when the root locus crosses the imaginary 
axis. From the root locus plot we can determine that s = +5Si  at the crossover point. 
The gain is determined from the magnitude criteria 

where s = +5Si  and 

or k = 393. 
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The gain margin can be calculated from Equation (7.33): 

Value of system gain k when locus crosses imaginary axis 
Gain margin = 

Selected value of system gain k 

The phase margin can be determined by finding the frequency w,, the gain crossover 
frequency, so that I G(iw,)H(iw,) 1 = 1 .O. 

Solving this equation by trial and error yields w, = 1.3. 
The phase margin now can be estimated from Equation (7.34) where the arg 

G(iw,) H(iw,) is found in the following way: 

arg G(iw,)H(iw,) = - Liw, - L (iw, + 3) - L (iw, + 10) 

A, = 180" - arg G(io,)H(iw,) 

7.5.2 Higher-Order Systems 

Most feedback control systems are usually of a higher order than the second-order 
system discussed in the previous sections. However, many higher-order control 
systems can be analyzed by approximating the system by a second-order system. 
Obviously, when this can be accomplished, the design and analysis of the equivalent 
system is greatly simplified. 

For a higher-order system to be replaced by an equivalent second-order system, 
the transient response of the higher-order system must be dominated by a pair of 
complex conjugate poles. These poles, called the dominant poles or roots, are 
located closest to the origin in a pole-zero plot. The other poles must be located far 
to the left of the dominant poles or near a zero of the system. The transient response 
caused by the poles located to the far left of the dominant poles will diminish rapidly 
in comparison with the dominant root response. On the other hand, if the pole is 
not located to the far left of the dominant poles, then the poles must be near a zero 
of the system transfer function. The transient response of a pole located near a zero 
is characterized by a very small amplitude motion, which can readily be neglected. 

The transfer function of a second-order system can be expressed in terms of the 
system damping ratio, 3, and the undamped natural frequency, a,,, as follows: 
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Consider the case where the system is underdamped; that is, 0 < 5 < 1. This 
implies that the second-order roots are complex. If the input is a unit step, that is, 
R(s) = Us, then the output is 

which can be inverted to the time domain as 

where $ = tan-' (-/-5). (7.38) 

The response is a damped sinusoidal motion. 
Now, if we add a simple pole in the form 1/(1 + Ts) to Equation (7.35), the 

response to a step input would be given by 

and 4 = tan-' + tan-' 
TO& 

-5 1 - Ttw, 

The pole is located at s = - 1 /Tand the smaller Tis the farther the pole is from 
the imaginary axis. As the simple pole is moved farther to the left of the complex 
root the response of Equation (7.39) will approach that of Equation (7.37). This 
would occur when T is small and 1/T % 5%. If we examine Equation (7.39) the 
second term vanishes much more quickly than the third term. The mathematical 
expression defining the third term approaches that of the second-order expression 
when T is small. A similar argument can be made for higher-order systems. 

7.6 
STEADY-STATE ERROR 

The accuracy of a control system is measured by how well it tracks a given 
command input. Even if a system has good overall transient response it also must 
have good steady-state behavior. The accuracy of the control system is expressed 
in terms of the steady-state error to a given commanded input. The usual input 
signals used to evaluate the steady-state error are step, ramp, and parabolic input. 
Figure 7.10 shows a typical step, ramp, and parabolic input signal. 

If we examine Figure 7.2 at the beginning of this chapter, an expression for the 
error signal can be developed. The error signal E(s) can be shown to be 

where R(s) is the input signal and G(s)H(s) is the loop transfer function. The 
steady-state error e,, is the tracking error as time approaches a large value for a 
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(b) Ramp input (c) Parabolic input 

FIGURE 7.10 
Typical input signals. 

particular input command. Rather than inverting E(s) back into the time domain 
and evaluating e(t) as t goes to infinity we can use the final value theorem. This 
theorem states that if the Laplace transform of a function f ( t )  is F(s) and if the 
function s F(s) is analytic on the imaginary axis and right half plane then 

Limit f ( t )  = Limit sF(s) 
%+(I 

(7.42) 
1-0 

The steady-state error can be found by applying the final value theorem: 

e,, = Limit e(t) = Limit sE(s) 
r-m s+O 

(7.43) 

The steady-state error will depend on the input command R(s) and the loop transfer 
function G(s)H(s). The steady-state error for the three stipulated input signals is 
expressed in terms of error coefficients, which will be defined shortly. First we need 
to classify the open-loop transfer function. This is done by determining the order 
of the pole in G(s)H(s) at the origin; that is s = 0. The loop transfer function 
G(s)H(s) can be written in the pole-zero form as 

An alternate form of this expression is 

which is referred to as the time-constant form of the transfer function. The time 
constants are simply 

1 
Tzc = - i = 1 t om 

2; 

1 T = -  j = 1 t o n  
PJ P, 

and 
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It is convenient to define the error constants in terms of the time constant form of 
the loop transfer function. The loop transfer function is classified in terms of the 
order of the pole at the origin. The system is referred to as a type 0, type 1, type 2, 
and so on depending on the value of the exponent of the pole at the origin, 1; that 
is, 1 = 0, I ,  2, and so on. 

Now let us return to defining the error constants. We first examine the tracking 
error to a step input. The step input can be expressed as 

where A is the amplitude of the step and u(t) is a unit step. The Laplace transform 
of the step input is given by R(s) = A/s.  The steady-state error can be found using 
Equations (7.41) and (7.45) and the final value theorem: 

e,, = Limit e( t )  = Limit sE(s) 
I - =  F-0 

e,, = Limit s(A/s)  
s-0 1 + G(s)H(s) 

e,, = Limit 
A - - A 

<-o 1 + G(s)H(s) 1 + LimitG(s)H(s) 
s-0 

or finally 

where K,, called the positional error constant, is defined as 

K, = Limit G(s)H(s) 
F'O 

When the input signal is a ramp r(t)  = At. The Laplace transform of a ramp input 
is R(s) = A/s2.  The steady-state error can be found as previously: 

e,, = Limit sE(s) = Limit s(A/s 2, 

r-o .Y-O 1 + G(s)H(s) 

e,, = Limit 
A 

1-0 s + sG(s)H(s) 

where K ,  is called the velocity error constant, is defined as 

Kt, = Limit sC(s)H(s) 
s-0 

The final input signal is that of a parabolic input or acceleration. The input signal 
is given as 

or in the Laplace domain 

where A is acceleration amplitude. The steady-state error for an acceleration input 
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TABLE 7.4 
Steady-state errors 

System type Step input Ramp input Parabolic input 
r ( t ) = A u ( t )  r ( t ) = A t  r(t)  = At2/2 

is as follows: 

sA/s 
e,, = Limit sE(s) = Limit 

S-o s-o 1 + G(s)H(s) 

e,, = Limit 
A - A -- 

S-o s z  + sZG(s)H(s) K, 

where K, is the acceleration error constant, defined as 

K, = Limit sZG(s)H(s) 
s-0 

The steady-state error depends on the system type and input function. A summary 
of the steady-state error is given in Table 7.4. 

EXAMPLE PROBLEM 7.6. Given the following transfer function, determine the 
steady-state error of the system to unit step, ramp, and parabolic inputs: 

Solution. The transfer function G(s)H(s) is in the pole-zero form. Rewriting the trans- 
fer function in the time constant from yields 

where K = k/10. 
This transfer function is a type 1 system because of the first-order pole at the 

origin. From Table 7.4 we see that the steady error is 0 for a step input, 1/K,, for the 
ramp input, and m for the parabolic input. The velocity error constant KO can be found 
as follows: 

K, = Limit sG(s)H(s) 
s-0 

K(l - 0.5s) 
K, = Limit 

J-o (1 + s)(l + 0.25s)(l + 0.2s) 
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FIGURE 7.11 

Root locus plot of G(s) H(s) = 
k(s + 2 )  

S ( S  + l ) ( s  + 4)(s  + 5 ) '  

The steady-state error for the ramp input is 

As the system gain is increased, the steady-state error will decrease. However, for this 
particular example, the system gain is limited because too large a gain will cause the 
system to be unstable. Figure 7.11 shows the root locus plot for this system. 

7.7 
CONTROL SYSTEM DESIGN 

In this section we will try to provide a simple overview of the design process in 
developing a new control system. Figure 7.12 is a simple flow chart indicating the 
basic elements in the design of a new product. Design often is divided into three 
phases: conceptual design, preliminary design, and detailed design. In conceptual 
design, the designer attempts to develop one or more concepts that can provide the 
overall system performance required by the customer. In the next phase, the pre- 
liminary design phase, additional analysis is performed to optimize the system. In 
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FIGURE 7.12 
Flowchart of conceptual design process. 

the final design phase the engineering team develops the detailed engineering 
drawings and stipulates the manufacturing details. 

The design process begins with the recognition of a need for a new control 
system. This need may originate within the engineering department but is just as 
likely to come from the marketing or sales department through feedback from the 
company's customers. Regardless of how or where the idea originates, the recogni- 
tion of the need for a new control system starts the engineering design process. 
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Once a product need is established this provides a definition of the purpose or func- 
tion of the control system. 

Having defined the purpose of the control system, the designer needs to identify 
its requirements and specifications. These consist of items such as control system 
performance, cost, reliability, maintainability, and other constraints. The perfor- 
mance of the system usually is given in terms of time or frequency domain charac- 
teristics or a combination of both. Time domain performance specifications include 
rise time, setting time, peak overshoot, steady-state error, and the like. On the other 
hand, the frequency domain specifications are given in terms of phase margin, gain 
margin, and so forth. Additional constraints may be weight and volume require- 
ments, which might be critical in an aerospace application. 

With the purpose and specifications defined the designer must develop one or 
more concepts to achieve the desired control function. The control system concepts 
in large part are based on the designer's creativity and experience. The concepts 
are simply ideas of how to implement the desired control function, which can be 
presented in the form of a simple block diagram. For example, if one were inter- 
ested in designing a simple autopilot to maintain a wing's level attitude the control 
concept could be presented as shown in Figure 7.13. 

The next phase of the design process is to evaluate the performance of each 
concept against the specifications. This requires the designer to develop the appro- 
priate mathematical models for each of the design components, such as controller, 
actuators, plant, and sensor. The challenge at this point is to keep the mathematical 
model as simple as possible but accurate enough to retain the essential dynamic 
characteristics of each component. 

Once the mathematical formulation is completed the control system can be 
analyzed using the techniques presented in this chapter or the state-space design 
methods presented in Chapter 9. These analysis methods allow the designer to 
evaluate the control system performance as a function of various control system 
design parameters. The performance of the control system concepts now can be 
compared with the desired performance. In practice, the designer often is faced 
with the problem that the concept does not meet all of the performance 
specifications. The designer basically has three options: One is to try to convince 
the potential customer that a particular performance specification is unrelated and 
not essential for the overall performance of the system if this indeed is the case. The 
second option is to select another control concept that can satisfy the specification. 
The third is to add some form of compensation to the concept to improve the system 
performance so that the specifications are satisfied. 

Controller Aileron Aircraft 4 
servo dynamics 

FIGURE 7.13 
Wing-leveling autopilot. 
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7.7.1 Compensation 

As stated in the previous section the ultimate test of a design concept is whether it 
meets the desired performance specifications. The control system performance is 
specified in terms of the transient behavior and the steady-state error. The transient 
performance in the time domain can be described in terms of the damping ratio, 5, 
the peak overshoot, and the speed of the response as measured by the rise and 
settling time. The relative stability also can be specified in terms of frequency- 
domain performance indices such as the resonant peak, M,, and gain and phase 
margins. The speed of response is measured by the resonant frequency, w,, and the 
system bandwidth, w,. 

In general the designer on analyzing a control system concept finds that some 
but not all of the performance specifications are met by a particular control con- 
cept. Using the root locus analysis technique discussed earlier the designer can 
adjust the system gain to vary the control system performance; however, in most 
cases the designer cannot meet all the design performance objectives by gain 
adjustment alone. When the performance cannot be satisfied the designer can add 
an additional component to the control system, called a compensator. The purpose 
of the compensator is to improve the overall performance of the control system 
concept. Recall that when discussing the root locus techniques we examined the 
influence of the addition of either a simple pole, zero, or combination pole and zero 
to the root locus plot. We found that the addition of poles and zeroes allowed us to 
contour or change the shape of the root locus plot. The addition of some combina- 
tion of poles and zeroes to a given control system transfer function represents a 
compensator. By selecting the parameter in the compensator the designer can 
change the shape of the root locus plot so that the overall performance specification 
can be met. 

The compensators can be thought of as an additional transfer function G,(s) 
that can be added to either the forward or feedback path of the control system. As 
illustrated in Figure 7.14, when the compensator is added to the forward path it is 
called a cascade or series compensator and when it is placed in the feedback path 
it is called feedback or parallel compensator. In general, the compensators are 
electrical circuits or mechanical subsystems that provide the designer parameters 
that can be adjusted to improve the overall system performance. 

7.7.2 Forward-Path Compensation 

To examine how a compensator can be used to improve the performance of a 
control system we consider the simple control system shown in Figure 7.15. Sup- 
pose that the performance requirements are given in terms of the damping ratio 
and settling time as follows: 
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FIGURE 7.14 
Series and parallel compensation. 

FIGURE 7.15 
Control system with a forward-path compensator. 

From the root locus plot shown in Figure 7.16 we can achieve the desired damping 
ratio by finding the gain for the point on the locus that interesects the radial line 
from the origin that makes an angle of 45" with respect to the negative real axis. 
The undamped natural frequency a,, is the distance along the radial line of constant 
J from the origin to the root locus. For this case w, = 0.5 radls. 

The settling time which can be estimated by 

for an w, = 0.5 radls-the settling time is not less than 3 s. If the root locus plot 
could be made to intersect the J = 0.707 line at a larger value of w,, the settling 
time constraint could be met. As we noted earlier in this chapter a simple zero 
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FIGURE 7.16 
k 

Root locus plot of G(s)H(s) = 
s(s + 1)(s + 3) '  

added to an open-loop transfer function G(s)H(s) causes the locus to bend more 
toward the left in the complex plane. Figure 7.17 is a root locus plot with the 
addition of a zero as s = - 1 . 1 .  With the addition of the zero, the root locus plot 
bends toward the left. The value of on for the damping ratio of 0.707 is now 1.98 
radls, which yields a settling time less than 3 s. 

Unfortunately a simple zero is not very practical. In practice we add a transfer 
function of the form 

where z,/p, < 1, or the compensator poles is located to the left of the compen- 
sator zero. Such a compensator is called a lead compensator. The designer can 
adjust the pole and zero location of the compensator to shape the root locus so that 
both the damping ratio and settling time specifications can be met. The movement 
of the compensator pole and zero is achieved by proper selection of the compo- 
nents in the electrical circuit. In summary the lead compensator can be used to 
improve the transient response characteristics of the control system. 

It is possible to have a control system design with good transient character- 
istics but a large steady-state error. When the steady-state error is large a lag 
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Root locus plot of C ( s ) H ( s )  = 
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(a) Lead circuit (b) Lag circuit 

FIGURE 7.18 
Electrical circuits used as a 
compensator. 

(c) Lag-lead circuit 
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FIGURE 7.19 
s(s + 2 ~ 0 , )  A second-order control system. 

compensator can be used to improve the steady-state error. The lag compensator 
has the following form: 

( S  + zc) G,(s) = ---- 
( S  + PC) 

where the compensator pole near the origin is located to the right of the compensa- 
tor zero (z,/p, > 1 ). 

For the case where both the transient and steady response are unsatisfactory a 
combination of a lag and lead compensator can be used. An example of a lag-lead 
compensator follows: 

Figure 7.18 shows electrical circuits that could be used to create a lead, lag, or 
lag-lead compensator. 

7.7.3 Feedback-Path Compensation 

Feedback compensation can be used to improve the damping of the system by 
incorporating an inner rate feedback loop. The stabilizing effect of the inner loop 
rate feedback can be demonstrated by a simple example. Suppose we have the 
second-order system shown in Figure 7.19. The amplifier gain can be adjusted to 
vary the system response as shown in the accompanying root locus plot presented 
in Figure 7.20. The closed-loop transfer function for this system is given by 

Now if we add an inner rate feedback loop as shown in Figure 7.21, the closed-loop 
transfer function can be obtained as follows. The inner loop transfer functions are 

which can be combined as 
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Root locus is stable for all 
values of the gain k,. 

0 

Real axis 

FIGURE 7.20 
Root locus for second order system. 

C(S) FIGURE 7.21 
* Control system with the 

addition of an inner rate 
feedback loop. 

The closed-loop transfer function can be obtained by letting 

which can be combined as 

If we compare the closed-loop transfer function for the cases with and without rate 
feedback we observe that in the closed-loop characteristic equation the damping 
term has been increased by k,w!. The gain k, can be used to increase the system 
damping. 
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7.8 
PID CONTROLLER 

We have shown examples of various kinds of control concepts. The simplest feed- 
back controller is one for which the controller output is proportional to the error 
signal. Such a controller is called a proportional control. Obviously the controller's 
main advantage is its simplicity. It has the disadvantage that there may be a 
steady-state error. 

The steady-state error can be eliminated by using an integral controller 

where k, is the integral gain. The advantage of the integral controller is that the 
output is proportional to the accumulated error. The disadvantage of the integral 
controller is that we make the system less stable by adding the pole at the origin. 
Recall that the addition of a pole to the forward-path transfer function was shown 
to bend the root locus toward the right half plane. 

It is also possible to use a derivative controller defined as follows: 

The advantage of the derivative controller is that the controller will provide large 
corrections before the error becomes large. The major disadvantage of the deriva- 
tive controller is that it will not produce a control output if the error is constant. 
Another difficulty of the derivative controller is its susceptibility to noise. The 
derivative controller in its present form would have difficulty with noise problems. 
This can be avoided by using a derivative controller of the form 

The term l / (n  + 1) attentuates the high-frequency components in the error sig- 
nal, that is, noise, thus avoiding the noise problems. 

Each of the controllers-providing proportional, integral, and derivative 
control-has its advantages and disadvantages. The disadvanatages of each con- 
troller can be eliminated by combining all three controllers into a single PID 
controller, or proportional, integral, and derivative, controller. 

The selection of the gains for the PID controller can be determined by a 
method developed by Ziegler and Nichols, who studied the performance of PID 
controllers by examining the integral of the absolute error (IAE): 

IAE = 1 le(r)l dt (7.56) 

From their analysis they observed that when the error index was a minimum the 
control system responded to a step input as shown in Figure 7.22. Note that the 
second overshoot is one quarter of the magnitude of the maximum overshoot. They 
called this the quarter decay criterion. Based on their analysis they derived a set of 
rules for selecting the PID gains. The gains k,, k,,  and k, are determined in terms 
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- 
Time (s) 

FIGURE 7.22 
The quarter-decay response. 

of two parameters, kPu, called the ultimate gain, and T,, the period of the oscillation 
that occurs at the ultimate gain. Table 7.5 gives the values for the gains for propor- 
tional (P), proportional-integral (PI), and the proportional-integral-derivative 
(PID) controllers. 

To apply this technique the root locus plot for the control system with the 
integral and derivative gains set to 0 must become marginally stable. That is, as 
the proportional gain is increased the locus must intersect the imaginary axis. The 
proportional gain, k,, for which this occurs is called the ultimate gain, kpu. The 
purely imaginary roots, A = Liw, determine the value of T,: 

One additional restriction must be met: All other roots of the system must have 
negative real parts; that is, they must be in the left-hand portion of the complex s 
plane. If these restrictions are satisfied the P, PI, or PID gains easily can be deter- 
mined. 

E X A M P L E  P R O B L E M  7.7. Design a PID controller for the control system shown in 
Figure 7.23. 

TABLE 7.5 

Gains for P, PI, and PID controllers 

Type of controller k~ 

P (proportional controller) k,, = 0.5k,,u 

PI (proportional-integral 
controller) k, = 0.45kPu k, = 0.45k,,,,/(0.83Tu) 

PID (proportional-integral- k, = 0.6kPu k, = 0.6k,,,,/(0.5Tu) k, = 0.6kP,,(0. 125TJ 
derivative controller) 
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PID 0.2 C(S) 
controller 

FIGURE 7.23 
PID controller. 

Root locus G(s) = O.ZIK,/(s(s + 1)*(s + 1.5) 

Real axis 

FIGURE 7.24 
Root locus plot. 

Solution. The gains of the PID controller can be estimated using the Ziegler-Nichols 
method provided the root locus for the plant becomes marginally stable for some value 
of the proportional gain kp when the integral and derivative control gains have been set 
to 0. The root locus plot for 

is shown in Figure 7.24. The root locus plot meets the requirements for the Ziegler- 
Nichols method. Two branches of the locus cross the imaginary axis and all other roots 
lie in the left half plane. The ultimate gain kpu is found by finding the gain when the root 
locus intersects the imaginary axis. The locus intersects the imaginary axis at s = 

+ 1.25. The gain at the crossover point can be estimated from the magnitude criteria: 
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Closed loop response to a step input, G(s)H(s) = (k, + k,/s + k,*s)/(s(s + l (s  + 1.5)), k,, = 19.8 

0 2 4 6 8 10 12 14 16 18 20 

Time (s) 

FIGURE 7.25 
Transient response to a step input. 

Substituting s = 1.25  into the magnitude criteria yields 

kPu = 19.8 

The period of the undamped oscillation T, is obtained as follows: 

Knowing kpu and T, the proportional, integral, and derivative gains k,, k, ,  and k ,  can be 
evaluated: 

k,, = 0 .6  kPu = (0.6)(19.8) = 11.88 

k ,  = 0.6 kp,,/(0.5T,) = (0.6)(11.88)/[(0.5)(19.8)] = 0.72 

k, = 0.6 k,,u (0.125TJ = (0.6)(19.8)(0.125)(5.03) = 7.47 

The response of control system to a step input is given in Figure 7.25. 

7.9 
SUMMARY 

In this chapter we examined some of the analytical tools available to the control 
system designer. The root locus technique allows the designer to examine the 
movement of the closed-loop poles of the control system as a function of one or 
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more of the design variables. We also examined the relationship between the root 
location in the root locus diagram and the time and frequency domain performance 
of the system. 

The conceptual design of a control system was presented. Once the control 
function has been identified, the designer must develop one or more concepts to 
meet the performance objectives of the control system. This phase of the design 
relies heavily on the designer's creativity and experience. Having developed some 
control system concepts the designer must evaluate the system performance. This 
requires mathematically modeling the various elements in the control system and 
selecting system parameters and analyzing the system performance using, for ex- 
ample, the root locus technique. In general, the designer usually will find that one 
or more of the concepts comes close to meeting the design objectives but that some 
of the requirements are not satisfied. In this case the designer must consider adding 
some form of compensating elements to the control system. We examined a number 
of compensators commonly used to improve control system performance. The type 
of compensation that needs to be added to a control system depends on what system 
performance specification needs to be improved. 

PROBLEMS 

Problems that require the use of a computer have a capital letter C after the 
problem number. 

Given the characteristic equation 

~ ~ + 3 A ~ + 3 A + l  + k = O  

find the range of values of k for which the system is stable. 

Given the fourth-order characteristic equation 

h4 + 6A3 + l l A 2  + 6A + k = 0 

for what values of k will the system be stable? 

Given the following characteristic equation determine the stability of the system 
using the Routh criterion. If the system is unstable determine the number of roots 
lying in the left portion of the complex plane. 

The characteristic equations for several feedback control systems follow. Deter- 
mine the range of values of k for which the following systems are stable: 
(a) s 3  + 3ks2 + (k + 2)s + 4 = 0 
(b) s4  + 4s3 + 13s2 + 36s + k = 0 

The loop transfer function G(s)H(s) is 
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Sketch the root locus plot for variations of k, 0 5 k 5 m, for each transfer func- 
tion. Check your results by using an appropriate root locus program. 

7.6. Given the loop transfer function 

(a) Sketch the root locus plot for G(s)H(s) .  
(b) Add a simple pole, (s + 21, to G(s )H(s )  and examine the resulting root 

locus. 
(c) Add a simple zero, ( s  + 2), to G(s )H(s )  and examine the resulting root 

locus. 

7.7. The root locus plot for the transfer function 

is shown in Figure P7.7. 
(a) Estimate the system gain, k,  when the system is critically damped. 
(b) What is the value of the system gain, k, for which the system neutrally stable? 

Root locus 

Real axis 

FIGURE P7.7 
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7.8. The single degree of freedom pitching motion of an airplane was shown to be 
represented by a second-order differential equation. If the equation is given as 

where the 0 and 6, are in radians, estimate the rise time, peak overshoot, and 
settling time for step input of the elevator angle of 0.10 rad. 

7.9. Determine the frequency domain characteristic for Problem 7.8. In particular 
estimate the resonance peak, M,, resonant frequency, or, bandwidth, o,, and the 
phase margin. 

7.10(C). The root locus plot for the loop transfer function 

is shown in Figure P7.10. 
(a) Find the system gain when the damping ratio is 5 = 0.707. 
(b) Estimate the time-domain characteristic for the dominant roots for the gain 

determined in part (a). 
(c) Estimate the frequency response characteristics, that is, gain and phase mar- 

gin, from the root locus plot for the gain selected in part (a). 

Root locus 

-15 - 10 - 5 0 5 10 15 

Real axis 

FIGURE P7.10 
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7.11. Calculate the position, velocity, and acceleration error constants K,, K , ,  and KO 
for the loop transfer function G ( s ) H ( s )  that follows: 

7.12. The lead compensator can be constructed from a simple electrical circuit shown 
in Figure P7.12. Show that the transfer function for this circuit can be written as 

where a = R 2 / R ,  + R2 and TI = R , C .  

FIGURE P7.12 
Lead circuit. 

7.13. The lag compensator also can be constructed from a simple electrical circuit as 
shown in Figure P7.13. Show that the transfer function for this circuit can be 
written as 

where b = R , / ( R ,  + R,) 

T2 = R2C 

FIGURE P7.13 
Lag circuit. 

7.14(C). The control system shown in Figure P7.14 must meet the following performance 
specifications: 
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Damping ratio, 5 = 0.6 
Settling time, t, 5 2.0 s 
Positional error constant, K, 2 10 

(a) Assume that no compensation is used and estimate the system performance. 
(b) Design a lead compensator to achieve this system performance. 

FIGURE P7.14 

7.15. In the control system shown in Figure P7.15 rate feedback is to be used to increase 
the system damping. Estimate the gains k,  and k, so that the system meets the 
following performance specifications: 

Damping ratio, 5 = 0.7 
Settling time, 5 3.0 s 

FIGURE P7.15 

7.16(C). Given the control system shown in Figure P7.16 where the plant transfer function 
G(s) is given by 

design a PID controller for this system. 

1 PID controller Plant I 
FIGURE P7.16 

7.17(C). If the plant transfer function for Problem 7.16 is changed to 

design a PID controller for this system. 



280 CHAPTER 7: Automatic Control Theory-The Classical Approach 

REFERENCES 

7.1. Bollay W. "Aerodynamic Stability and Automatic Control." Journal of the Aeronauti- 
cal Sciences 18, no. 9 (1951), pp. 569-617. 

7.2. Raven, F. H. Automatic Control Engineering. New York: McGraw-Hill, 1995. 
7.3. Kuo, B. C. Automatic Control Systems. Englewood Cliffs, NJ: Prentice-Hall, 1975. 
7.4. Shinners, S. M. Modern Control System Theory and Application. Reading, MA: Addi- 

son Wesley, 1978. 
7.5. D'Souza, A. F. Design of Control Systems. Englewood Cliffs, NJ: Prentice-Hall, 1988. 
7.6. Hale, F. J. Introduction to Control System Analysis and Design. Englewood Cliffs, NJ: 

Prentice-Hall, 1988. 
7.7. Nagrath, I. J.; and M. Gopal. Control Systems Engineering. New York: John Wiley and 

Sons, 1975. 



C H A P T E R  8 

-- 

Application of Classical Control Theory 
to Aircraft Autopilot Design 

"The application of automatic control systems to aircraft promises to bring 
about the most important new advances in aeronautics in the future." 

William Bollay, 14th Wright Brothers Lecture, 1950 

8.1 
INTRODUCTION 

The rapid advancement of aircraft design from the very limited capabilities of the 
Wright brothers' first successful airplane to today's high performance military, 
commercial, and general aviation aircraft required the development of many tech- 
nologies: aerodynamics, structures, materials, propulsion, and flight controls. To- 
day's aircraft designs rely heavily on automatic control systems to monitor and 
control many of the aircraft's subsystems. 

The development of automatic control systems has played an important role in 
the growth of civil and military aviation. Modern aircraft include a variety of 
automatic control systems that aid the flight crew in navigation, flight management, 
and augmenting the stability characteristics of the airplane. In this chapter we use 
control theory to design simple autopilots that can be used by the flight crew to 
lessen their workload during cruising and help them land their aircraft during 
adverse weather conditions. In addition, we also discuss how automatic control 
systems can be used to provide artificial stability to improve the flying qualities of 
an airplane. 

Table 8.1 lists some of the functions that automatic control systems provide for 
flight control. In addition to the automatic flight control system, modern aircraft 
use control systems to aid in the navigation of the aircraft. 

The development of autopilots closely followed the successful development of 
a powered, human-carrying airplane by the Wright brothers. In 1914 the Sperry 
brothers demonstrated the first successful autopilot. The autopilot was capable of 
maintaining pitch, roll, and heading angles. To demonstrate the effectiveness of 
their design, Lawrence Sperry trimmed his airplane for straight and level flight and 
then engaged the autopilot. He then proceeded to stand in the cockpit with his 
hands raised above his head while his mechanic walked out along the wings in an 
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TABLE 8.1 

Automatic flight control system 

Flight control system to reduce pilot workload 
Attitude control systems to maintain pitch, roll, or heading 

Altitude hold control system to maintain a desired altitude 

Speed control system to maintain a constant speed or Mach number 

Stability augmentation systems 
If an airplane is marginally stable or unstable, automatic control systems can provide 
proper flight vehicle stability 

Automatic control can be used to ensure an airplane has the appropriate handling qualities; 
additional damping is incorporated by using a roll, pitch, or yaw damper 

Landing aids 
A glide slope control system to guide the airplane down an electronic beam to the runway 

A localizer to align the aircraft in the lateral direction with the runway centerline as the 
airplane descends down the glide slope 

A flare control system that helps the aircraft make the transition from the glide slope 
to the runway 

FIGURE 8.1 
Sperry's flight demonstration of a three-axis automatic control system (from [8.1]). 
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attempt to upset the airplane's equilibrium. Figure 8.1 shows a photograph of the 
remarkable flight. The autopilot provided aileron, rudder, and elevator commands 
so that the airplane remained in a wings-level attitude. 

8.2 
AIRCRAFT TRANSFER FUNCTIONS 

The longitudinal and lateral equations of motion were described by a set of linear 
differential equations in Chapter 3. A very useful concept in the analysis and design 
of control systems is the transfer function. The transfer function gives the relation- 
ship between the output of and input to a system. In the case of aircraft dynamics 
it specifies the relationship between the motion variables and the control input. The 
transfer function is defined as the ratio of the Laplace transform of the output to the 
Laplace transform of the input with all the initial conditions set to 0. (i.e., the 
system is assumed to be initially in equilibrium). For the reader who is not familiar 
with theory of Laplace transformations, a brief review of the basic concepts of 
Laplace transformation theory is included in Appendix C at the end of this book. 
In the following sections we develop the transfer function based on the longitudinal 
and lateral approximations developed in Chapters 4 and 5. We develop these 
simpler mathematical models so that we can examine the idea behind various 
autopilots without undue mathematical complexity. 

8.2.1 Short-Period Dynamics 

In Chapter 4 the equations for the short-period motions were developed for the case 
where the control was held fixed. The equation with control input from the elevator 
in state space form can be written as 

The control due to the propulsion system is neglected here for simplicity. Taking the 
Laplace transform of this equation yields 

If we divide these equations by A6,(s) we obtain a set of algebraic equations in 
terms of the transfer functions Aa(s)/AS,(s) and Aq(s)/AS,(s): 
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A q b )  2% Aa(s) + [ S  - (M,  + M J ]  - = M ,  + MA- (8.5) - ( M ,  + M, L l u o )  - 
A& (s) Aa,(s) uo 

Solving for Aa(s)/AS,(s) and Aq(s)/Aa,(s) by Cramer's rule yields 

When expanded, the numerator and denominator are polynomials in the Laplace 
variable s .  The coefficients of the polynomials are a function of the stabil- 
ity derivatives. McRuer, Ashkenas, and Graham [8.2] use a shorthand notation 
to express the transfer function polynomials. We will use this convenient nota- 
tion to present the transfer function developed here. An example of the notation 
follows: 

where the coefficients in the numerator and denominator are given in Table 8.2. 
The transfer function for the change in pitch rate to the change in elevator angle can 
be shown to be 

Again the coefficients of the polynomials are defined in Table 8.2. 

TABLE 8.2 
Short-period transfer function approximations 
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8.2.2 Long-Period or Phugoid Dynamics 

The state-space equation for the long period or phugoid approximation are as 
follows: 

The Laplace transformation of the approximate equations for the long period are 

The transfer function Au(s)/AS,(s) and AO(s)/AS,(s) can be found by setting AsT(s) 
to 0 and solving for the appropriate transfer function as follows: 

The equations of motion have been reduced to a set of algebraic equations in terms 
of the desired transfer function. These equations can be solved to yield the transfer 
functions 

In a similar manner AO(s)/AS(s) can be shown to be 
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TABLE 8.3 

Long-period transfer function approximations 

The transfer functions can be written in a symbolic form in the following manner: 

where A,, B,, and so forth are defined in Table 8.3. The transfer functions for the 
propulsive control, that is, Au(s)/AS,(s) and AO(s)/48,(s), have the same form 
except that the derivatives with respect to 6, are replaced by derivatives with 
respect to 6,. Therefore, Table 8.3 can be used for both aerodynamic and propul- 
sive control transfer functions provided that the appropriate control derivatives are 
used. 

8.2.3 Roll Dynamics 

The equation of motion for a pure rolling motion, developed in Chapter 5, is 

The transfer function 4p(s)/6,(s)  and 44( s ) /46 , ( s )  can be obtained by taking the 
Laplace transform of the roll equation: 

P1lt the roll rate Ap is defined as 44; therefore, 

4 p ( 4  = s 4 4 ( s )  
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8.2.4 Dutch Roll Approximation 

The final simplified transfer function we will develop is for the Dutch roll motion. 
The approximate equations can be shown to be 

Taking the Laplace transform and rearranging yields 

The transfer functions AP(s)/AG,(s), Ar(s)/AS,(s), AP(s)/AG,(s), and Ar(s)/Ai?,(s) 
can be obtained by setting A6,(s) to 0 and solving for AP(s)/AG,(s) and Ar(s)/AS,(s). 
Next set AS,(s) equal to 0 and solve for Ap(s)/AS,(s) and Ar (s)/AiS,(s). The transfer 
functions AP(s)/As,(s) and Ar(s)/As,(s) are obtained as follows: 

Solving for the transfer function yields 

In a similar manner the aileron transfer function can be shown to be 
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The coefficients of the polynomials in the Dutch roll transfer functions are included 
in Table 8.4. The denominator coefficients are in the first row and the numerator 
coefficients are defined for each transfer function in the subsequent rows. 

In the previous section, transfer functions were derived for both longitudinal 
and lateral dynamics based on the approximations to these motions. For a prelim- 
inary autopilot design these approximations are appropriate. However, as the au- 
topilot concept is refined and developed it is necessary to examine the autopilot 
performance using transfer functions based on the complete set of either the 
longitudinal or lateral equations. This is particularly important for the lateral 
equations. As we showed in Chapter 5 the lateral approximations do not generally 
give a very accurate representation of the Dutch roll motion. 

The longitudinal and lateral transfer functions for the complete set of equations 
are determined in the same manner as the approximate transfer functions derived 
here. The transfer functions for the complete set of rigid body equations are given 
in Tables 8.5 and 8.6. 

8.3 
CONTROL SURFACE ACTUATOR 

In addition to the various transfer functions that represent the aircraft dynamics, 
we need to develop the transfer functions for the other elements that make up the 
control system. This would include the servo actuators to deflect the aerodynamic 
control surfaces as well as the transfer function for any sensors in the control loop; 
for example, an attitude gyro, rate gyro, altimeter, or velocity sensor. The transfer 
functions for most sensors can be approximated by a gain, k. In this section we 
develop an expression for the transfer function of a simple position control servo 
that is used to accurately deflect the aerodynamic control surfaces in an automatic 
system. 

Control surface servo actuators can be either electrical, hydraulic, pneumatic, 
or some combination of the three. The transfer function is similar for each type. We 
will develop the control surface servo actuator transfer function for a servo based 
on an electric motor. 



TABLE 8.5 
Longitudinal control transfer functions 
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motor FIGURE 8.2 
Motor with rate feedback. 

rate feedback t --+T+ 
The torque produced by an electric motor is proportional to the control voltage 

as follows: 

Tm = k,v, (8.36) 

where km is a constant. The angular position of the motor shaft can be determined 
from the equation 

14 = T, (8.37) 

The relationship between the angular position of the motion shaft (output) and the 
motor control voltage (input) is given by the transfer function 

In general, the motor will incorporate a rate feedback loop as illustrated in Fig- 
ure 8.2. The transfer function for the system with rate feedback can be shown to be 

where 
I 

7, = - 1 
and k = - (8.40) 

kmBm B m  

The motor time constant 7, is a measure of how fast the motor responds to a change 
in control voltage. If 7, is small, the motor responds rapidly and the transfer 
function of the motor with rate feedback can be approximated as 

A simple position control servo system can be developed from the control diagram 
shown in Figure 8.3. The motor shaft angle, 8, can be replaced by the flap angle, 

Servo motor 6f Amplifier t 

- ka 
- 1 

Bms 

FIGURE 8.3 
Simple position control servo for control surface 
deflection. 
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af, of the control surface. For the positional feedback system the closed loop 
transfer function can be shown to have the following form: 

where k and  are defined in terms of characteristics of the servo, 

The time constant of the control surface servo is typical of the order of 0.1 s. In the 
problems that follow we assume this value as representative of typical control 
surface servo time constants. 

8.4 
DISPLACEMENT AUTOPILOT 

One of the earliest autopilots to be used for aircraft control is the so-called dis- 
placement autopilot. A displacement type autopilot can be used to control the 
angular orientation of the airplane. Conceptually, the displacement autopilot works 
in the following manner. In a pitch attitude displacement autopilot, the pitch angle 
is sensed by a vertical gyro and compared with the desired pitch angle to create an 
error angle. The difference or error in pitch attitude is used to produce proportional 
displacements of the elevator so that the error signal is reduced. Figure 8.4 is a 
block diagram of either a pitch or roll angle displacement autopilot. 

The heading angle of the airplane also can be controlled using a similar 
scheme. The heading angle is sensed by a directional gyro and the error signal is 
used to displace the rudder to reduce the error signal. A displacement heading 
autopilot also is shown in Figure 8.5. 

In practice, the displacement autopilot is engaged once the airplane has been 
trimmed in straight and level flight. To maneuver the airplane while the autopilot 

+rEpy$&Zl j6* FIGURE 8.4 
dynamics A roll or pitch displacement 

I autopilot. 

FIGURE 8.5 
A heading displacement autopilot. 
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is engaged, the pilot must adjust the commanded signals. For example, the airplane 
can be made to climb or descend by changing the pitch command. Turns can be 
achieved by introducing the desired bank angle while simultaneously changing the 
heading command. In the following sections we examine several displacement 
autopilot concepts. 

8.4.1 Pitch Displacement Autopilot 

The basic components of a pitch attitude control system are shown in Figure 8.4. 
For this design the reference pitch angle is compared with the actual angle mea- 
sured by a gyro to produce an error signal to activate the control servo. In general 
the error signal is amplified and sent to the control surface actuator to deflect the 
control surface. Movement of the control surface causes the aircraft to achieve a 
new pitch orientation, which is fed back to close the loop. 

To illustrate how such an autopilot would be designed, we will examine this 
particular pitch displacement autopilot concept for a business jet aircraft. Once we 
have decided on a control concept, our next step must be to evaluate the perfor- 
mance of the control system. To accomplish this we must define the transfer 
functions for each of the elements in the block diagram describing the system. For 
this discussion we assume that the transfer functions of both the gyro and amplifier 
can be represented by simple gains. The elevator servo transfer function can be 
represented as a first-order system: 

where S,, v, k,, and r a r e  the elevator deflection angle, input voltage, elevator servo 
gain, and servomotor time constant. Time constants for typical servomotors fall in 
a range 0.05-0.25 s. For our discussion we assume a time constant of 0.1 s. Finally, 
we need to specify the transfer function for the airplane. The transfer function 
relating the pitch attitude to elevator deflection was developed earlier. To keep the 
description of this design as simple as possible, we represent the aircraft dynamics 
by using the short-period approximation. The short-period transfer function for the 
business jet in Appendix B can be shown to be 

Figure 8.6 is the block diagram representation of the autopilot. The problem 
now is one of determining the gain ka so that the control system will have the desired 
performance. Selection of the gain k, can be determined using a root locus plot of 
the loop transfer function. Figure 8.7 is the root locus plot for the business jet pitch 
autopilot. As the gain is increased from 0, the system damping decreases rapidly 
and the system becomes unstable. Even for low values of k,, the system damping 
would be too low for satisfactory dynamic performance. The reason for the poor 
performance of this design is that the airplane has very little natural damping. To 
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FIGURE 8.6 
A pitch displacement autopilot for a business jet. 
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FIGURE 8.7 
Root locus pilot of the system gain for a pitch 
displacement autopilot. 
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FIGURE 8.8 
A pitch attitude control system employing pitch rate feedback 
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improve the design we could increase the damping of the short-period mode by 
adding an inner feedback loop. Figure 8.8 is a block diagram of a displacement 
autopilot with pitch rate feedback for improved damping. In the inner loop the pitch 
rate is measured by a rate gyro and fed back to be added with the error signal 
generated by the difference in pitch attitude. Figure 8.9 is a block diagram for the 
business jet when pitch rate is incorporated into the design. For this problem we 
now have two parameters to select; namely, the gains k ,  and k,,. The root locus 
method can be used to pick both parameters. The procedure essentially is by trial 
and error. First, the root locus diagram is determined for the inner loop, a gyro gain 
is selected, and then the outer root locus plot is constructed. Several iterations may 
be required until the desired overall system performance is achieved. 

o 
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FIGURE 8.9 
A business jet pitch attitude control system with pitch rate feedback. 

FIGURE 8.10 
Pitch attitude autopilot with a PID controller. 

EXAMPLE PROBLEM 8.1. Use the PID controller for a pitch attitude autopilot as 
illustrated in Figure 8.10. The transfer functions for each component are given in 
Table 8.7. 

Solution. Using the Ziegler and Nichols method discussed in Section 7.8, the PID 
gains can be estimated from the ultimate gain k,,,, which is the gain for which the sys- 
tem is marginally stable when only the proportional control is being used. Figure 8.1 1 
is the root locus sketch of the transfer function: 

The root locus crosses the imaginary axis at s = ?5.13i. The gain of the system can 
be found from the magnitude criteria to be kpu = 88.7. The period, T, = 27r/w = 1.22. 
Table 8.8 gives the gains for the proportional, proportional-integral and proportional- 
integral-derivative controllers. Figure 8.12 shows the response of the pitch attitude 

TABLE 8.7 
Data for Example Problem 8.1 

Control element Parameters Transfer function 

PID k, = ? 
k, = ? 8, - = k; k,, + - + kds 
kd = ? e s 

Elevator servo A = -0.1 8, - A 
T = 0.1 6, TS + 1 
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FIGURE 8.11 
Root locus plot of G(s)H(s). 

TABLE 8.8 

Gains for P, PI, and PID controllers 

P control k, = 0.5kp,, = 44.35 

PI control k,, = 0.45kr,, = 39.92 
k, = 0.45kp,/(0.83T,) = 39.42 

PID control k,, = 0.6kr,  = 53.22 
k, = 0.6k,/(0.5TU) = 87.24 
k, = 0.6k,,(0.125Tu) = 8.12 

autopilot for the three different controllers to a step input. Notice that the proportional 
controller has a steady-state error; that is, it does not go to 1 but converges to a value 
of approximately 0.7. The magnitude of the steady-state error can be predicted using 
the steady-state error constants in Chapter 7: 

where 3.0kp 
K, = Limit G(s)H(s) = Limit - 

S-o S-o s' + 12s' + 25s + 50 



Time (secs) 

(b) Proportional plus integral control 

FIGURE 8.12 
Response to a step input of a pitch autopilot with either a P, PI, or PID controller. 
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(c) Proportional, integral, and  derivative control 

FIGURE 8.12 
Concluded. 

for a proportional gain k, = 44.35 

K,, = 2.66 

The steady-state error e,, can then be calculated: 

1 - 1 
- 0.27 " " = i T - K , - -  

Therefore tk e response will go to 0.73 instead of 1 due to the steady-state error. 

8.4.2 Roll Attitude Autopilot 

The roll attitude of an airplane can be controlled by a simple bank angle autopilot 
as illustrated in Figure 8.13. Conceptually the roll angle of the airplane can be 
maintained at whatever angle one desires. In practice we would typically design the 
autopilot to maintain a wings level attitude or 4 = 0. The autopilot is composed of 
a comparator, aileron actuator, aircraft equation of motion (i.e., transfer function), 
and an attitude gyro to measure the airplane's roll angle. 
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Error FIGURE 8.13 
L@f signali7;qyl actuator dynamics 1 + Simple roll attitude control 

system. 

Attitude 

E X A M P L E  P R O B L E M  8.2.  Design a roll attitude control system to maintain a wings 
level attitude for a vehicle having the following characteristics: 

L ,  = 2.0/s2 L, = -0.51s 

The system performance is to have a damping ratio, 5 = 0.707, and an undamped 
natural frequency, w,, = 10 radls. A potential concept of a roll attitude control system 
is shown in the block diagram in Figure 8.14. 

Solution. Once we have decided on one or more concepts our next step is to evaluate 
the performance of the proposed control system. To accomplish this we need to develop 
the appropriate mathematical model for each system component. For this example we 
assume that the servo actuator and sensor can be represented by gains k, and k,, for the 
actuator and sensor, respectively. The equation of motion for an airplane constrained 
to a pure rolling motion was developed in Chapter 5 and transfer function A4(s)/A&(s) 
was developed earlier in this chapter. The roll angle to aileron input transfer function 
for an airplane can be shown to be 

For this example we consider the sensor to be a perfect device; the feedback path 
then can be represented as a unity feedback (see Figure 8.15). The forward path 
transfer function is obtained by combining the elements in the forward path: 

FIGURE 8.14 

dynamics Roll attitude control concept. 

Sensor 

&+@ ,+ FKURE 8-15 
Simplified roll control system. 
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The feedback transfer function is idealized as a perfect sensor: 

Finally the loop transfer function, G(s)H(s), can be determined by combining the 
forward and feedback path transfer functions: 

G(s)H(s) = 
k 

s(s - L,) 

where 

The desired damping ratio of 5 = 0.707 can be achieved with the present control 
system. The gain for the system is determined by drawing a line from the origin at 45' 
as indicated in the root locus plot. Recall that the damping ratio was shown to be equal 
to the following expression: 

where 0 is measured from the positive real axis in the counterclockwise direction. Any 
root intersecting this line has a damping ratio of 0.707. The gain at this point can be 
determined from the magnitude criteria as follows: 

I k l  
= 1 

Is1 Is+ 0.51 

where s = -0.25 + 0.25i. 
Substituting s into the magnitude equation and determining the magnitude of each 

component yields a value for k: 

For this example we see that it is possible to select a gain so that the damping ratio 
requirement is satisfied; however, the undamped natural frequency is much lower than 
specified: 

w, = 0.35 radls 

Recall that the undamped natural frequency is equal to the radial distance from the 
origin to the point on the locus as illustrated in the root locus sketch. The problem with 
this system is the low roll damping. If the roll root, L,, were greater in the negative 
sense, the vertical asymptotes of the root locus would shift to the left. This is noted in 
the root locus sketch (Figure 8.16) by the dotted root locus contour. 

L,, the roll damping root, was shown to be a function of the wing span; therefore, 
we could make L, more negative by increasing the wing span of the vehicle. This may 
be impractical and so we need to look at providing increased damping by means of a 
stability augmentation system. This can be accomplished by incorporating a rate 
feedback loop as illustrated in Figure 8.17. 

The inner loop transfer function can be expressed as follows: 
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FIGURE 8.16 
Root locus plot of G(s)H(s) = k/s(s + 0.5). 
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eaa Aileron S~ Airplane P 
servo - dynamics 

kas PIS, 

Rate gyro 

Gyro - 
k, 

FIGURE 8.17 
Rate feedback block diagram. 

for the aircraft dynamics, k,, for the aileron servo, and k ,  = 1 for the rate gyro. The 
inner loop transfer functions are 

where ~ I L  = k,.& 

H(d1L = 1 

The inner loop can be replaced by the transfer function 

The inner loop gain can be selected to move the augmented roll root farther out along 
the negative real axis. If the inner loop root is located at s = - 14.14 the root locus will 
be shifted to the left so that both the desired damping and undamped natural frequency, 
w,, can be achieved. This means that the inner loop gain klL must equal 13.64. The loop 
transfer function G(s)H(s) , ,  for the outer loop can be expressed as 

with the augmentation, provided by the inner loop damping the specifications for w, 
and care  both satisfied. The amplifier gain k, can be shown to equal 7.33. Figure 8.18 
shows the time history response of the control system with rate feedback to an initial 
disturbance in the bank angle of 15". The control system rapidly brings the vehicle back 
to a wings level attitude. This simple example illustrates the challenges the designer 
must face in satisfying all the design specifications. In this particular case we needed 
to add a compensator to the initial concept in the form of a rate feedback loop to meet 
both the damping ratio and undamped natural frequency specifications. 

8.4.3 Altitude Hold Control System 

T h e  altitude of a n  airplane can  be maintained by a n  altitude hold autopilot. A 
simplified altitude hold autopilot is shown in Figure 8.19. Basically the autopilot is 
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Roll response 
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Time (secs) 

FIGURE 8.18 
Time response of roll attitude control system to an initial disturbance in the roll angle. 

FIGURE 8.19 
Altitude hold control system. 

constructed to minimize the deviation between the actual altitude and the desired 
altitude. 

To analyze how such an autopilot would function we examine an idealized 
case. We make the following assumptions: First, the airplane's speed will be con- 
trolled by a separate control system; second, we neglect any lateral dynamic 
effects. With these restrictions we are assuming that the only motion possible is in 
the vertical plane. The transfer functions necessary for performing this analysis are 
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the elevator servo and aircraft dynamics. The elevator transfer function can be 
represented as a first-order lag as used previously: 

The aircraft dynamics will be represented by the short period approximation 
developed in Section 8.3. 

To examine the altitude hold control system we need to find the transfer 
function AhlA6,. This can be obtained by examining Figure 8.20, which shows the 
kinematic relationship between the airplane's rate of climb, pitch angle, and angle 
of attack. From Figure 8.20 we can write the following relationship: 

For small angles this can be reduced to 

Ah = uo(AO - Acu) 

Now we can find AhlA8, as follows: 

FIGURE 8.20 
Kinematic relationship for determining vertical rate of climb. 
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and on dividing by AS, we obtain the desired transfer function relationship: 

The transfer function AO(s)/AS,(s) can be obtained from Aq(s)/AS,(s) in the follow- 
ing way: 

therefore, Aq(s) = s Ad(s) 

W )  - 1 A d s )  - - -- 
A s h )  s ASAS) 

The transfer function Aa(s)/AS,(s) was developed earlier as 

where the coefficients in both the transfer function AO(s)/AS,(s) and Aa(s)/AS,(s) 
are given the Table 8.3. 

EXAMPLE PROBLEM 8.3. A STOL transport has been modified to include direct-lift 
control surfaces. Unlike conventional high-lift flaps, the direct-lift flaps can be rotated 
up and down to increase or decrease the lift force on the wing. In this example, we are 
going to design an altitude hold control system that uses the direct-lift control surfaces. 
To simplify our analysis we assume that the airplane's velocity and pitch attitude are 
controlled by separate autopilots. The aerodynamic characteristics of the STOL air- 
plane and the desired performance expected of the altitude autopilot follow: 

Autopilot performance specifications are a settling time, t, < 2.5 s, and a damping 
ratio, 5 = 0.6. 

Solution. One potential concept for controlling the altitude of the airplane is given in 
Figure 8.21. The transfer functions for each element of the control system is described 
next. The amplifier transfer function is a gain, k,, the direct-lift servo is modeled as a 
first-order lag, and the altitude sensor is assumed to be a perfect sensor, which gives 
us a unity feedback system: 

The transfer function for the aircraft dynamics can be obtained from the equation of 
motion in the vertical direction. Recall that we have assumed that the speed and pitch 
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-1 - Amplifier dynamics Aircraft 

1 Altitude sensor 

FIGURE 8.21 
Altitude control concept. 

attitude of the airplane are held at some desired values by separate autopilots. The 
equation of motion in the vertical direction is given by 

dw 
Forces in vertical direction = rn - 

dt 

Expressing the variables in terms of a reference value and a perturbation yields 

d 
W + Z,, + AZ = rn - (w,  + Aw) 

dt 

but W + Zo = 0 and w, = 0; for level equilibrium flight therefore, 

The change in the aerodynamic force AZ is assumed to be only a function of Aw and 
AS,, that is, 

az a z 
AZ = - Aw + - AS, 

aw as, 
Substituting into the differential equation yields 

where 

Recall that Z, and Z, are related in the following manner: 

The transfer function Ah/ASf now can be obtained: 

but h = -Aw; therefore, 
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Root locus 
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FIGURE 8.22 
Root locus plot of G(s)H(s), altitude hold control system. 

Substituting the aerodynamic data for the STOL transport yields 

The forward path transfer function is 

where k = k,(- lo)(-50) = 500 k,. 
The root locus plot of G(s)H(s) is shown in Figure 8.22. Although the desired 

damping ratio 5 = 0.6 can be achieved, the settling time is greater than 2.5 s. The 
closed-loop system response to a unit step change in altitude is shown in Figure 8.23. 
To improve the system performance we need to include some form of compensation. 
A lead circuit in the forward path can be used to improve the system performance. 
Figure 8.24 shows the root locus plot of G(s)H(s) with the addition of a lead circuit 

The zero of the lead circuit was positioned just to the left of the pole at s = - 1.4. With 
the addition of the lead circuit the root locus plot is shifted to the left compared to the 
uncompensated system. For the compensated system we can meet both the damping 
ratio and settling time specification (Figure 8.25). 
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FIGURE 8.23 
Closed-loop response to a step input altitude hold control system. 
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FIGURE 8.24 
Root locus plot of compensated altitude hold control system. 
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FIGURE 8.25 
Closed-loop response to a step input for an altitude hold control system with a 
compensator. 

8.4.4 Velocity Hold Control System 

The forward speed of an airplane can be controlled by changing the thrust pro- 
duced by the propulsion system. The function of the speed control system is to 
maintain some desired flight speed. This is accomplished by changing the engine 
throttle setting to increase or decrease the engine thrust. Figure 8.26 is a simplified 
concept for a speed control system described in [8.3]. The components that make 
up the system include a compensator, engine throttle, aircraft dynamics, and a 
feedback path consisting of the velocity and acceleration feedback. 

t 
Feedback 
elements 

FIGURE 8.26 
A block diagram for a speed control system. 
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E X A M P L E  P R O B L E M  8.4. Examine the performance characteristics of a speed con- 
trol autopilot similar to the one shown in Figure 8.26 for the STOL transport included 
in Appendix B. The transfer functions for the throttle servo, engine lag, forward path 
compensation, and feedback elements follow: 

H(s) = 10s + I 

Solution. The aircraft dynamics can be approximated by using the long-period or 
phugoid approximation developed earlier in this chapter: 

Substituting these values into the aircraft transfer function yields 

Root locus 

-1 5 -1 0 -5 0 5 10 15 

Real axis 

FIGURE 8.27 
3.8k,(s + 0.1) 

Root locus plot G(s)H(s) = 
(s + 10)(s2 + 0.039s + 0.053). 
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FIGURE 8.28 
Response of speed control system to a unit step command for 
different gains. 311 
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For this autopilot both the change in velocity and the acceleration are used in the 
feedback path. The feedback path transfer function is assumed to be of the form that 
follows: 

The loop transfer function, G(s)H(s), follows: 

The root locus plot of the loop transfer function is shown in Figure 8.27. 
Figure 8.28 shows the response of the speed control system to a unit step for 

several different values of the amplifier gain, k,. The three gains are indicated on 
Figure 8.27. Note that for a gain corresponding to a damping ratio of 0.707 the 
response is very fast but there is a steady-state error. On the other hand, the steady- 
state error can be reduced by increasing the gain. However, larger gains mean a lower 
damping ratio and the response has a larger overshoot. To improve the performance of 
this system an additional compensator should be considered. 

8.5 
STABILITY AUGMENTATION 

Another application of automatic devices is to provide artificial stability for an 
airplane that has undesirable flying characteristics. Such control systems are com- 
monly called stability augmentation systems (SAS). 

As we showed earlier, the inherent stability of an airplane depends on the 
aerodynamic stability derivatives. The magnitude of the derivatives affects both the 
damping and frequency of the longitudinal and lateral motions of an airplane. 
Furthermore, it was shown that the stability derivatives were a function of the 
airplane's aerodynamic and geometric characteristics. For a particular flight 
regime it would be possible to design an airplane to possess desirable flying quali- 
ties. For example, we know that the longitudinal stability coefficients are a function 
of the horizontal tail volume ratio. Therefore we could select a tail size and or 
location so that Cmn and Cmq provide the proper damping and frequency for the 
short-period mode. However, for an airplane that will fly throughout an extended 
flight envelope, one can expect the stability to vary significantly, owing primarily 
to changes in the vehicle's configuration (lowering of flaps and landing gear) or 
Mach and Reynolds number effects on the stability coefficients. Because the stabil- 
ity derivatives vary over the flight envelope, the handling qualities also will change. 
Obviously, we would like to provide the flight crew with an airplane that has 
desirable handling qualities over its entire operational envelope. This is accom- 
plished by employing stability augmentation systems. 

E X A M P L E  P R O B L E M  8.5. To help understand how a stability augmentation system 
works, we shall consider the case of an airplane having poor short-period dynamic 
characteristics. In our analysis we assume that the aircraft has only one degree of 
freedom-a pitching motion about the center of gravity. The equation of motion for a 
constrained pitching motion as developed in Chapter 4 is 
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The damping ratio and undamped natural frequency are given by 

If the aerodynamic and inertial characteristics of a business jet during cruise are such 
that the preceding equations have the numerical values 

9 + 0.0716+ 5.490= -6.718, 

then the damping ratio and frequency are given by 

kp = 0.015 onSp = 2.34 radls 

For these short-period characteristics the airplane has poor flying qualities. On exam- 
ining the flying quality specification, we see that to provide level 1 flying qualities the 
short-period damping must be increased so that &, > 0.3. 

One means of improving the damping of the system is to provide rate feedback, as 
illustrated in Figure 8.29. This type of system is called a pitch rate damper. The 
stability augmentation system provides artificial damping without interfering with the 
pilot's control input. This is accomplished by producing an elevator deflection in 
proportion to the pitch rate and adding it to the pilot's control input: 

8, = Sep + ke 

where 8, is that part of the elevator deflection created by the pilot. A rate gyro is used 
to measure the pitch rate and creates an electrical signal that is used to provide elevator 
deflections. If we substitute the expression for the elevator angle back into the equation 
of motion, we obtain 

e + (0.071 + 6.7ik)o + s.490 = -6.718, 

Comparing this equation with the standard form of a second-order system yields 

25% = (0.071 + 6.71k) and w: = 5.49 

The short-period damping ratio is now a function of the gyro gain k and can be 
selected so that the damping ratio will provide level 1 handling qualities. For example, 
if k is chosen to be 0.2, then the damping ratio 5 = 0. 

" 

Pilot 

I Stability augmentation system ; 
I --------------------J 

FIGURE 8.29 
Stability augmentation system using pitch rate feedback. 
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8.6 
INSTRUMENT LANDING 

With the advent of the instrument landing system (ILS), aircraft became able to 
operate safely in weather conditions with restricted visibility. The instrument land- 
ing system is composed of ground-based signal transmitters and onboard receiving 
equipment. The ground-based equipment includes radio transmitters for the local- 
izer, glide path, and marker beacons. The equipment on the airplane consists of 
receivers for detecting the signals and indicators to display the information. 

The basic function of the ILS is to provide pilots with information that will 
permit them to guide the airplane down through the clouds to a point where the pilot 
re-establishes visual sighting of the runway. In a completely automatic landing, the 
autopilot guides the airplane all the way down to touchdown and roll out. 

Before addressing the autoland system, we briefly review the basic ideas behind 
the ILS equipment. To guide the airplane down toward the runway, the guidance 
must be lateral and vertical. The localizer beam is used to position the aircraft on 
a trajectory so that it will intercept the centerline of the runway. The transmitter 
radiates at a frequency in a band of 108- 112 MHz. The purpose of this beam is to 
locate the airplane relative to a centerline of the runway. This is accomplished by 
creating azimuth guidance signals that are detected by the onboard localizer re- 
ceiver. The azimuth guidance signal is created by superimposing a 90-Hz signal 
directed toward the left and a 150-Hz signal directed to the right on the carrier 
signal. Figure 8.30 shows an instrument landing localizer signal. When the aircraft 
is flying directly along the projected extension of the runway centerline, both 
superimposed signals are detected with equal strength. However, when the aircraft 
deviates say to the right of centerline, the 150-Hz signal is stronger. The receiver 
in the cockpit detects the difference and directs the pilot to fly the aircraft to the left 
by way of a vertical bar on the ILS indicator that shows the airplane to the right of 
the runway. If the airplane deviates to the left, the indicator will deflect the bar to 
the left of the runway marker. 

The glide path or glide slope beam is located near the runway threshold and 
radiates at a frequency in the range 329.3-335.0 MHz. Its purpose is to guide the 
aircraft down a predetermined descent path. The glide slope is typically an angle 

Localizer centerline 

FIGURE 8.30 
A localizer beam system. 
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of 2.5-3" to the horizontal. Figure 8.3 1 shows a schematic of the glide path beam. 
Note that the glide path angle has been exaggerated in this sketch. As in the case 
of the localizer, two signals are superimposed on the carrier frequency to create an 
error signal if the aircraft is either high or low with respect to the glide path. This 
usually is indicated by a horizontal bar on the ILS indicator that moves up or down 
with respect to the glide path indicator. The marker beacons are used to locate the 
aircraft relative to the runway. Two markers are used. One, located 4 nautical miles 
from the runway, is called the outer marker. The second, or inner, marker is located 
3500 ft from the runway threshold. The beams are directed vertically into the 
descent path at a frequency of 75 MHz. The signals are coded, and when the 
airplane flies overhead the signals are detected by an onboard receiver. The pilot 
is alerted to the passage over a marker beacon by both an audio signal and visual 
signal. The audio signal is heard over the aircraft's communication system and the 
visual signal is presented by way of a colored indicator light on the instrument 
panel. 

In flying the airplane in poor visibility, the pilot uses the ILS equipment in the 
following manner. The pilot descends from cruise altitude under direction of 
ground control to an altitude of approximately 1200 ft above the ground. The pilot 
then is vectored so that the aircraft intercepts the localizer at a distance of at least 
6 nautical miles from the runway. The pilot positions the airplane using the localizer 
display so that it is on a heading toward the runway centerline. When the aircraft 
approaches the outer marker, the glide path signal is intercepted. The aircraft is 
placed in its final approach configuration and the pilot flies down the glide path 
slope. The pilot follows the beams by maneuvering the airplane so that the vertical 
and horizontal bars on the ILS indicator show no deviation from the desired flight 
path. The ILS system does not guide the aircraft all the way to touchdown. At some 
point during the approach the pilot must look away from the instruments and 
outside the window to establish a visual reference for the final portion of the 

Outer marker Inner marker 

FIGURE 8.31 
A glide slope beam system. 
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FIGURE 8.32 
An airplane displaced from the glide path. 

landing. The pilot may take 5 or 6 seconds to establish an outside visual reference. 
Obviously the pilot must do this at sufficient altitude and distance from the runway 
so that if the runway is not visible the pilot can abort the landing. This gives rise 
to a "decision height," which is a predetermined height above the runway that the 
pilot cannot go beyond without visually sighting the runway. 

The ILS as outlined in the previous paragraphs is an integral part of a fully 
automatic landing system. To be able to land an airplane with no visual reference 
to the runway requires an automatic landing system that can intercept the localizer 
and glide path signals, then guide the airplane down the glide path to some pre- 
selected altitude at which the aircraft's descent rate is reduced and the airplane 
executes a flare maneuver so that it touches down with an acceptable sink rate. The 
autoland system comprises a number of automatic control systems, which include 
a localizer and glide path coupler, attitude and airspeed control, and an automatic 
flare control system. 

Figure 8.32 shows an airplane descending toward the runway. The airplane 
shown is below the intended glide path. The deviation d of the airplane from the 
glide path is the normal distance of the airplane above or below the desired glide 
path. The angle r is the difference between the actual and desired glide path angle 
and R is the radial distance of the airplane from the glide slope transmitter. To 
maintain the airplane along the glide path, one must make r equal 0. Figure 8.33 
is a conceptual design of an autopilot that will keep the airplane on the glide path. 
The transfer functions ford and I- are obtained from the geometry and are noted 
in Figure 8.32. 

As the airplane descends along the glide path, its pitch attitude and speed must 
be controlled. This again is accomplished by means of a pitch displacement and 
speed control autopilot. The pitch displacement autopilot would be conceptually 
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1 Glide path angle I 
FIGURE 8.33 
An automatic glide path control system. 

Glide path 
coupler 

the same as the one discussed earlier in this chapter. Figure 8.34 shows an auto- 
matic control system that could be used to maintain a constant speed along the 
flight path. The difference in flight speed is used to produce a proportional dis- 
placement of the engine throttle so that the speed difference is reduced. The 
component of the system labeled compensation is a device incorporated into the 
design so that the closed-loop system can meet the desired performance speci- 
fications. Finally, as the airplane gets very close to the runway threshold, the glide 
path control system is disengaged and a flare maneuver is executed. Figure 8.35 
illustrates the flare maneuver just prior to touchdown. The flare maneuver is needed 

I -  

2 Attitude autopilot 
aircraft pitch 

1 u, 
0 57.3s 

dc 57.3 
R 

Compensation 

FIGURE 8.34 
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FIGURE 8.35 
A flare maneuver. 
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Coupler 

FIGURE 8.36 
An automatic flare control system. 

to decrease the vertical descent rate to a level consistent with the ability of the 
landing gear to dissipate the energy of the impact at landing. An automatic flare 
control system is shown in Figure 8.36. A detailed discussion of the autoland system 
is provided by Blakelock 18.31. 

8.7 
SUMMARY 

In this chapter we examined briefly the use of an automatic control system that can 
be used to reduce the pilot's workload, guide the airplane to a safe landing in poor 
visibility, and provide stability augmentation to improve the flying qualities of 
airplanes with poor stability characteristics. Additional applications of automatic 
control technology include load alleviation and flutter suppression. 

Load alleviation can be achieved by using active wing controls to reduce the 
wing-bending moments. By reducing the wing design loads through active controls, 
the designer can increase the wing span or reduce the structural weight of the wing. 
Increasing the span for a given wing area improves the aerodynamic efficiency of 
the wing; that is, it increases the lift-to-drag ratio. The improvement in aerody- 
namic efficiency and the potential for lower wing weight result in better cruise fuel 
efficiency. 

Stability augmentation systems also can be used to improve airplane perfor- 
mance without degrading the vehicle's flying qualities. If the horizontal and vertical 
tail control surfaces are used in an active control system, the tail area can be 
reduced. Reducing the static stability results in smaller trim drag forces. The 
combination of smaller tail areas and reduced static stability yields a lower drag 
contribution from the tail surfaces, which will improve the performance character- 
istics of the airplane. 

Another area in which active control can play an important role is in suppress- 
ing flutter. Flutter is an unstable structural motion that can lead to structural failure 
of any of the major components of an airplane: wing, tail, fuselage, or control 
surfaces. Flutter is caused by the interaction between structural vibration and the 
aerodynamic forces acting on the surface undergoing flutter. During flutter the 
aerodynamic surface extracts energy from the airstream to feed this undesirable 
motion. An automatic control system incorporating active controls can be designed 
to prevent flutter from occurring by controlling the structural vibration. 



Problems 319 

PROBLEMS 

Problems that require the use of a computer have the capital letter C after the problem 
number. 

8.1(C). A roll control system is shown in Figure P8.1. Sketch the root locus diagram for this 
system. 
(a) Determine the value of the gain, k, so that control system has a damping ratio 

of ( = 0.707. 
(b) What is the steady-state error for a step and ramp input? 
(c) Sketch the response of the control system to a 5' step change in bank angle 

command. 
(d) Repeat this problem using control synthesis software such as MATLAB. 

FIGURE P8.1 

8.2(C). Use a rate feedback inner loop to improve the transient response of the control 
system in Problem 8.1. The system damping ratio is to remain at ( = 0.707. 

8.3(C). For the pitch rate feedback control system shown in Figure P8.3, determine the gain 
necessary to improve the system characteristics so that the control system has the 
following performance: 5 = 0.3, 6.1, = 2.0 radls. Assume that the aircraft charac- 
teristics are the same as given in Figure 8.9 in Section 8.4. 

2 Aircraft 
A 

Servo dynamics 
- 

FIGURE P8.3 

8.4(C). A simplified pitch control system is shown in Figure P8.4. Design a PID controller 
for this system and plot the response of the system to a 5' step change in the 
commanded pitch attitude. 

L I 

FIGURE P8.4 
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8.5(C). The Wright Flyer was statically and dynamically unstable. However, because the 
Wright brothers incorporated sufficient control authority into their design they 
were able to fly their airplane successfully. Although the airplane was difficult to fly, 
the combination of the pilot and airplane could be a stable system. In [8.5] the 
closed-loop pilot is represented as a pure gain, k,, and the pitch attitude to canard 
deflection is given as follows: 

Determine the root locus plot of the closed-loop system shown in Figure P8.5. For 
what range of pilot gain is the system stable? 

Pilot Airframe 

0 

1 Visual feedback I 
FIGURE P8.5 

8.6(C). The block diagram for a pitch attitude control system for a spacecraft is shown in 
Figure P8.6a. Control of the spacecraft is achieved through thrusters located on the 
side of the spacecraft as illustrated in Figure P8.6b. 
(a)  Determine the root locus plot for the control system if the rate loop is discon- 

nected. Comment on the potential performance of this system for controlling 
the pitch attitude. 

(b) Determine the rate gain k,, and the outer loop gyro gain k, so that the system 
has a damping ratio = 0.707 and a settling time, t, = 1.5 s. 

FIGURE P8.6 
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FIGURE P8.6 (continued) 

8.7(C). A wind-tunnel model is constrained so that it can rotate only about the z axis; that 
is, pure yawing motion. The equation of motion for a constrained yawing motion 
was shown in Chapter 5 to be as follows: 

A$ - N, A$ + Np A+ = N8 AS, 

where N p  = 2.0 s - ~ ,  N, = -0.5 s-' and Nar = - 10 s - ~ .  Design a heading control 
system so that the model has the following closed-loop performance characteristics: 

Assume that the rudder servo transfer function can be represented as 

8.8(C). Every pilot or airline passenger has encountered a rough flight due to atmospheric 
turbulence. The bumpy ride is due to the airplane encountering a vertical gust field. 
When an airplane encounters a vertical gust the effective angle of attack of the wing 
is changed, causing the airplane to accelerate in the vertical direction. This un- 
wanted motion can be eliminated by means of a gust alleviation system. If the wing 
lift can be controlled, the acceleration due to the gust can be attenuated. One means 
of controlling the wing lift is by using direct lift controls. Basically, direct lift 
control surfaces are wing flaps that can be rotated up or down to either decrease or 
increase the wing lift. Consider a wind-tunnel model constrained to motion in only 
the vertical direction; that is, pure plunging motion. Also assume that the model is 
equipped with direct lift flaps. See Example Problem 8.3. Design a control system 
for the wind-tunnel model so that the vertical velocity is held near 0. Assume the 
direct lift actuator can be represented by the transfer function 

8.9(C). Design a control system for the wind tunnel model of Problem 8.8 to maintain a 
constant vertical position in the wind tunnel. 
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CHAPTER 9 

Modern Control Theory 

9.1 
INTRODUCTION 

In Chapters 7 and 8, the design of feedback control systems was accomplished using 
the root locus technique and Bode methods developed by Evans and Bode, respec- 
tively. These techniques are very useful in designing many practical control 
systems. However, the design of a control system using either of the techniques 
essentially is by trial and error. The major advantage of these design procedures is 
their simplicity and ease of use. This advantage disappears quickly as the complex- 
ity of the system increases. 

With the rapid development of high-speed computers during the recent 
decades, a new approach to control system design has evolved. This new approach, 
commonly called modern control theory, permits a more systematic approach to 
control system design. In modern control theory, the control system is specified as 
a system of first-order differential equations. By formulating the problem in this 
manner, the control system designer can fully exploit the digital computer for 
solving complex control problems. Another advantage of modern control theory is 
that optimization techniques can be applied to design optimal control systems. To 
comprehend this theory fully one needs to have a good understanding of matrix 
algebra; a brief discussion of matrix algebra is included in Appendix C. 

It is not possible in a single chapter to present a thorough discussion of modern 
control theory. Our purpose is to expose the reader to some of the concepts of 
modern control theory and then apply the procedures to the design of aircraft 
autopilots. It is hoped that this brief discussion will provide the reader with an 
appreciation of modern control theory and its application to the design of aircraft 
flight control systems. Additional background material on modern control theory 
can be found in the references included at the end of this chapter [9.1-9.51. 
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9.2 
STATE-SPACE MODELING 

The state-space approach to control system analysis and design is a time-domain 
method. As was shown in Chapters 4 and 5 ,  the equations of motion can be written 
easily in the state-space form. The application of state variable techniques to 
control problems is called modern control theory. The state equations are simply 
first-order differential equations that govern the dynamics of the system being 
analyzed. It should be noted that any higher-order differential equation can be 
decomposed into a set of first-order differential equations. This will be shown later 
by an illustration. 

In the mathematical sense, the state variables and state equation completely 
describe the system. The definition of state variables is as follows. The state vari- 
ables of a system are a minimum set of variables x,(t) . . . x,(t) that, when known 
at time to and along with the input, are sufficient to determine the state of the system 
at any other time t > t,,.  State variables should not be confused with the output of 
the system. An output variable is one that can be measured, but state variables do 
not always satisfy this condition. The output, as we will see shortly, is defined as 
a function of the state variables. 

Once a physical system has been reduced to a set of differential equations, the 
equation can be rewritten in a convenient matrix form: 

The output of the system is expressed in terms of the state and control inputs as 
follows: 

y = Cx + Dq (9.2) 

The state, control, and output vectors are defined as follows: 

r l =  Control or input vector (p X 1) (9.4) 

Y =  Output vector (q X 1) 
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The matrices A, B, C, and D are defined in the following manner: 

B = Control or input matrix (n X p) (9.7) 

Figure 9.1 is a block diagram representation of the state equation given by Equa- 
tions (9.1) and (9.2). 

The state equations are a set of first-order differential equations. The matrices 
A and B may be either constant or functions of time. For the application we are 
considering, namely, aircraft equations of motion, the matrices are composed of an 
array of constants. The constants making up either the A or B matrix are the 
stability and control derivatives of the airplane. It should be noted that if the 
governing differential equations are of higher order they can be reduced to a system 
of first-order differential equations. 

I 
FIGURE 9.1 
The linear state equations. 
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For example, suppose that the physical system being modeled can be described 
by an nth-order differential equation: 

The variables c(t) and r(t)  are the output and input variables, respectively. This 
differential equation can be reduced to a set of first-order differential equations by 
defining the state variables as follows: 

The state equations can now be written as 

The last equation is obtained by solving for the highest-order derivative in the 
original differential equation. Rewriting the equation in the state vector form yields 

where A 
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and the output equation is 

where C = [ l  0 0 . . .  01 (9.17) 

For this particular differential equation the output vector is not a function of 
the control vector, therefore, the D matrix is a null matrix; that is, a matrix 
consisting of only zeroes. For the problems we consider in this chapter the D matrix 
will be a null matrix. 

In most cases the physical system being analyzed is described by a number 
of differential equations. The state-space formulation can be applied to a set of 
equations and will be illustrated by an example. 

EXAMPLE PROBLEM 9.1. Rewrite the following differential equations in state-space 
form: 

Solution. Let the states be 

Taking the derivative of the states yields 

These equations can now be put into the state-space form, R = Ax + Bq: 
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where the plant and control matrices are 

and the state and control vectors are 

The output equation 

can be expressed as follows: 

where D is a null matrix. It also should be noted that a transfer function can be 
rewritten in the state variable form. 

The solution of the state equations will be discussed in the next several sections. 
Both analytical and numerical solutions of the state equations will be presented. 

9.2.1 State Transition Matrix 

The  state transition matrix is defined a s  a matrix that satisfies the linear homoge- 
neous state equation; that  is, 

t = Ax Homogeneous state equation (9.18) 

x(t) = @(t) x(0) 

where @(t) is the state transition matrix. 

State transition matrix by the Laplace transformation technique 

We begin with 

t = Ax and  x(0) = 
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Talung the Laplace transformation of this equation yields 

SX(S) - ~ ( 0 )  = Ax(s) (9.22) 

or X(S) = [sI - A]-'x(0) (9.23) 

The term [sI - A]-', called the resolvent, is the Laplace transform of the state 
transition matrix: 

@(s) = [sI - A]-' (9.24) 

The state transition matrix is obtained by taking the inverse Laplace transform of 
@(s) : 

Once the state transition matrix, @(t), is known the homogenous solution can be 
found using Equation (9.20). 

State Transition Matrix by the Matrix Exponential Method 
An alternate definition of the state transition matrix can be determined by 

expressing the solution of the homogeneous equation in terms of an infinite series 
with undetermined coefficients. The solution of 

G(t) = Ax(t) (9.26) 

is given as x(t) = @(t)x(O) (9.27) 

where @(t) = I + a,t + a2t2 + . + antn + . . . (9.28) 

and x(0) is the initial value of the state vector at time t = 0. Substituting the 
solution into the homogeneous equation yields 

d 
- [@(t)x(O)] = (a, + 2a,t + 3a3t2 + . . . + nantn- + . . .)x(O) 
dt 

= (A + Aalt + Aa2t2 + Aa3t3 + . - 
+ Aa,tn-' + . . -)x(O) 

Equating the coefficients of like powers of t yields 
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The matrix series is similar to the scalar series representation of an exponential and 
is called a matrix exponential: 

The matrix exponential is defined in terms of the plant matrix A. 

Properties of the state transition matrix 

Some of the properties of the state transition matrix follow: 

1 .  @(0) = eAO = I. (9.34) 
2. [*(t)]-' = [@(-t)]. (9.35) 
3. @(tl + t2) = eA('l+'2) = eAtleAr2 = @(tl)@(t2) = @(t2)@(tl). (9.36) 
4. [@(t)lk = @(kt), where k is an integer. (9.37) 

Once the state transition matrix has been found, the solution to the nonhomoge- 
neous equation can be determined as follows: 

Taking the Laplace transform of the above equation yields 

solving for xis) yields 

~ ( t )  = @(t)x(O) + @(t - r)Bq(r) dr I,' 
E X A M P L E  P R O B L E M  9.2. Given the following state equations, 

The initial conditions for the system are 

Determine the response of the system if u is a unit step function. 
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Solution. First we will need to determine the state transition matrix @(t). The Laplace 
transform of the state transition matrix yields 

Using partial fraction expansion, the elements of the transition matrix can be written 
as 

The state transition matrix now can be obtained by taking the inverse Laplace trans- 
form of @(s): 

Knowing the state transition matrix we now can determine the response from the 
equation 

~ ( t )  =@(t)x(O)+ @(t - r ) B u d r  I' 
25; (e-(1-7) - e-2(1-~) 

2s; (2e-2('-7) - e-(t-')) dT 

The integrals in the second term can be solved as follows. Consider the integral 

The other integral can be shown to have the following solution: 
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Substituting the integral solution back into x(t) and combining terms yields 

The output of the system is given by 

y = Cx 

9.2.2 Numerical Solution of State Equations 

The complete solution of the state equations was shown to be 

x(t) = @(t)x(O) + @(t  - 7) Bq(r) dr  I,' 
The solution of Equation (9.43) can be obtained numerically by replacing the 
continuous system by a discrete time system. Takahashi, Rabins, and Auslander 
[9.4] present a numerical algorithm based on a technique developed by Paynter 
[9.6]. For this example a sampling interval At is specified so that 

The Equation (9.43) can be rewritten as 

x ~ + ~  = eAAr xk + eAAr 10 e-ATBq(~)  dr  (9.44) 

If we assume the control input q ( r )  is constant over the time interval At then the 
integral can be evaluated. 

Substituting the solution of the integral back into Equation (9.44) yields 

This equation can be simplified further by letting 

The solution vector can now be expressed as 
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Equation (9.49) can be used to determine the time domain solution; for example, 

x,  = Mxo + Nq, 

x2 = MxI + Nql 

x, = Mx, + Nq2 

On combining these equations one obtains 
k-1  

Once a satisfactory time interval is selected the matrices M and N need be calcu- 
lated only one time. These matrices can be evaluated by the matrix expansion 

The number of terms required in the series expansion depends on the time interval 
At. An algorithm developed by Paynter [9.6] can be used to determine the number 
of terms in the series expansion. This algorithm is presented in Table 9.1. 

E X A M P L E  PROBLEM 9.3. Use the numerical algorithm described in this section to 
determine the solution to the state equation given in Example Problem 9.2. The equa- 
tions follow: 

Solution. Assume that u is a unit step input. 
In this example we assume that At = 0.05 s. Having specified the time increment 

we must determine the number of terms needed in the M and N matrices. The parame- 
ter q is found using the equation 

starting with p = 2 we see if the inequality 



334 CHAPTER 9: Modern Control Theory 

TABLE 9.1 

1. Select a time interval, At. 
2. Estimate the parameter, q, from the equation 

q = max 1 A,, At I 
where A,, are the elements of the plant matrix A. 

3. Determine the integer value of p, the number of terms in the M and N matrix expansion, from 
the equation 

where n is the order of the system. This equation is solved by trial and error. Starting with a value 
~f p = 2, keep selecting a higher value of p until this equation is satisfied. 
-I. Once D is known. calculate M and N from Eauation (9.52) and (9.531. 

is satisfied. For example, for p = 2 

which does not satisfy the inequality. A new value of p is selected and the process is 
continued until a value of p is found that meets the inequality relationship. For this 
example p = 4 was found to meet the requirement. Next we evaluate the matrices M 
and N by retaining only the first four terms in each series: 

1 1 
M = I + A A t  + - A 2 A t 2  + - A 3 A t 3  

2! 3! 

Evaluating the M and N matrices for the selected At yields 

The matrices M and N are fixed and the solution can be calculated by using the 
equations 

x [ ( k  + 1) At] = Mx(k At) + Nu(k At) 

in a recursive manner for k = 0 to nk where nk At is the final time selected for the 
solution. Figure 9.2 is a plot of the output vector for the exact and numerical solution: 

and the exact solution is given by 

y = 3 - 2e-' 

The exact and numerical so!utions are indistinguishable from one another. 
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FIGURE 9.2 
Numerical solution of state-space equation. 

9 3  
CANONICAL TRANSFORMATIONS 

In formulating a physical system into the state-space representation we must select 
a set of state variables to describe the system. The set of state variables we select 
may not be the most convenient from the standpoint of the mathematical opera- 
tions we need to perform to determine the solution of the state equations. It is 
possible to define a transformation matrix, P, that will transform the original state 
equations into a more convenient form. 

To examine the characteristics of a given state equation it is useful to have the 
state equations in a canonical form where the plant matrix is a diagonal matrix. 
Consider a system that can be modeled by this state equation: 

where the plant matrix A is not a diagonal matrix. Defining a new state vector z so 
that x and z are related by way of a transformation matrix P, 
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Rewriting the state equation in terms of the new state vector z yields 

i = P-'APz + P- 'Bq (9.57) 

which can be written as 

i = A z + h  

y = Cz 

where A is a diagonal or nearly diagonal matrix. The matrices A, B, and C are 
defined as 

A = P-IAP (9.60) 

= p - - l ~  (9.6 1 ) 

C = CP (9.62) 

The transformed state equation has the same form as the original equation. If the 
transformation matrix P is chosen so that A  is a diagonalized matrix then the 
equations are in the canonical form. 

The transformation matrix P is determined from the eigenvectors of the plant 
matrix A. As has been shown earlier the eigenvalues of A are determined by solving 
the following equation: 

which yields the characteristic equation 

A"-2 A n  + a , , A "  ' + a , , - ,  + . . .  + a2A + a l  = O  (9.64) 

The roots of the characteristic equation are the eigenvalues of the system. The 
eigenvectors can be determined by solving the equations 

( A , I  - A)P, = 0 where i = 1 , 2 , 3 , .  . . , n  (9.65) 

The transformation matrix P is formed from the eigenvectors of the plant matrix. 
The eigenvectors form the columns of the transformation matrix as 

P = [P, PZ Pi . . . P,,] (9.66) 

9.3.1 Real Distinct Eigenvalues 

For these nonrepeated real eigenvalues, the transformation matrix P depends on 
the eigenvalues of the plant matrix A. If the eigenvalues of A are real and distinct, 
the transformation matrix P is made up of the eigenvectors of A as follows: 

P = [PI P2 P3 . . . P,,] (9.67) 

We illustrate how the transformation is determined by the following example 
problem. 
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EXAMPLE PROBLEM 9.4. Given the following state equations, determine the trans- 
formation matrix P so that the new state equations are in the state canonical form: 

Solution. First find the eigenvalues of A: 

or A 2 + 3 A + 2 = O ~ A = - 2  and A = - 1  

The eigenvector for A = - 1 is found using Equation (9.65): 

Both equations yield the same relationship between PI , and P,,. We will arbitrarily 
select 

then 

P , ,  = 1 

P2, = -I 

The eigenvector for A = - 1 is 

In a similar manner we can obtain the eigenvector for A = -2. Solving Equation (9.65) 
yields the following equations: 
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Again we will specify P I ,  = I and then solve for P,,. The eigenvector P2 becomes 

The transformation matrix P now can be constructed by stacking the eigenvectors as 

follows: 

To determine the new state equation we need the inverse of P: 

The diagonal matrix A is defined in terms of P and A: 

where the eigenvalues are on the diagonal. 

In a similar manner B and C can be computed 

The new state equations are 
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This example demonstrates an important property of eigenvalues; namely, that the 
eigenvalues and the corresponding characteristic equations are invariant under a non- 
singular transformation. The eigenvalues of the A matrix and A are the same. 

In this example the transformed plant matrix is a purely diagonal matrix having the 
eigenvalues of the original A matrix along the diagonal. For this particular case, the 
state transition matrix can be shown to be the following: 

The solution of the transformed state equations would be similar to Equation (9.42): 

The output of the system is given by 

9.3.2 Repeated Eigenvalues 

Where the eigenvalues are repeated, the procedure outlined for the distinct eigen- 
values produces a singular transformation matrix. The eigenvectors for the repeated 
roots are the same; therefore, two or more columns of the transformation matrix 
are identical, which results in a nonsingular matrix. For repeated eigenvalues 
an almost diagonal matrix, called a Jordan matrix, can be obtained. The Jordan 
matrix is 

1 0 0 0  

(9.68) 

Notice that the diagonal immediately above the repeated eigenvalues is composed 
of ones. The eigenvectors associated with the distinct eigenvalues are determined 
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a s  before. F o r  the  repeated eigenvalues the eigenvectors a re  determined using the 
following relationships: 

( A , I  - A)P, = 0 

( A , I  - A)P2 = -PI (9.69) 

(A , I  - A)P, = -P,-, 

E X A M P L E  P R O B L E M  9.5. Given the state-space equations 

where 

determine the transformation matrix P so that the new state equations are in the Jordan 
canonical form. 

The roots of the characteristic equation are A = -2, A = - 1, and A = - I .  We have 
a repeated eigenvalue A = - I .  The eigenvectors for the repeated roots are determined 
using equation (9.69): 

Sohtion. The transformation matrix P is determined from the eigenvectors of the A 
matrix: 

( A 1  - A (  = 0 

The eigenvector PI is determined from the following equations: 

1 [i' - 5  ;I i][":] = 0 

p3 1 

-P I ,  + P?, + 3P,, = 0 

A 1  3 
6 A 2 

-5 2 A + 4  

From the first two equations we can eliminate P,,: 

= A ' + 4 A 2 + 5 A + 2  

5Pl l  + 5P3! = 0 

Let P I ,  = I then P3! = - 1 .  
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From the first equation 

or P2] = P I ,  - 3P31 = 4 

The eigenvector PI  is as follows: 

The second eigenvector for A = - 1 is determined from the equation ( A i r  - A)P2 
= -P,: 

Eliminating PZ2 from the first two equations yields 

Let PI2  = 1, therefore P3, = -2. Substituting PI2  and P32 into the first equation yields 
p22: 

P2, = - 1  + P I ,  - 3P32 = 6 

The second eigenvector is 

The eigenvector for the distinct eigenvalue A = -2 is found in the usual way: 

The transformation matrix P is formed by stacking the eigenvectors: 

9.3.3 Complex Eigenvalues 

In many engineering problems the eigenvalues may be complex. If the complex 
eigenvalues are not of multiple order then the procedure outlined earlier for distinct 
eigenvalues can be used to determine the transformation matrix, P. This however, 
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will result in a complex matrix. An alternate way of treating the complex eigen- 
values is to define the diagonal matrix as follows: 

where A,, A2, and A, are real distinct eigenvalues and A, ,  A2, and A, are the 

complex eigenvalues. The matrices A, = [z, has the real part of the 

eigenvalue on the diagonal and the imaginary part on the off-diagonal. The matrix 
for two distinct eigenvalues and two pairs of distinct complex eigenvalues follows: 

A , O  0  0 0  

(9.71) 

0  0 
0  0 -@2 g 2  

E X A M P L E  PROBLEM 9.6. Given the state equation 

where 

find the transformation x = Pz that transforms A into a canonical form. 

Solution. The eigenvalues of A are complex: 
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The roots of the characteristic equation are 

The eigenvectors can be found by solving the equation 

(AiI - A)Pi = 0 

For A = - 1  

-PI, - P2, = 0 

-P2, - P,, = 0  

5Pll  + 7P2, + 2P3, = 0 

If in the first equation we let P I ,  = 1, we find that P2, = - 1. From the second 
equation we can determine P,, = -P2, = 1. Therefore the first eigenvector is 

The third equation can be used to check if an error has been made. 
The eigenvector for the complex root A = - I  + 2i can be found in a similar 

manner. The equations are 

(-I + 2i)PI2 - PZ2 = 0 

Again we let the first element of the eigenvector be 1, PI, = 1, then P 2 ~  = - 1 + 2i. 
From the second equation 

P32 = (- 1 + 2i) PZ2 

Therefore, the eigenvector for A = - 1 + 2i is 

The eigenvector for the complex conjugate eigenvalue A = .- 1 - 2i will be the com- 
plex conjugate of P2: 

Now the new plant matrix can be determined 

A = P-IAP 

-1.0 0 

0 0 -1 - 2i 
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When the eigenvalues are complex an alternate way to express the A  matrix is as 
follows: 

where u, is the real part and w, is the imaginary part of the complex root. The elements 
of transformation matrix P  for the complex eigenvalues can be expressed as 

The complex eigenvector can be expressed in terms of the real and imaginary parts as 
follows: 

For this example we have one real eigenvector and one complex eigenvector and its 
conjugate. The transformation matrix can be expressed for this example as 

where P,  is the eigenvector for the real root and a and 8 are determined from the 
complex eigenvector as follows: 

Therefore 

The diagonalized matrix A is 

0 
A = P I A P =  [j' -1 '1 

- 2  - 1  

9.4 
CONTROLLABILITY AND OBSERVABILITY 

In the following sections we examine the application of state feedback design and 
optimal control theory to aircraft control problems. Two concepts that play an 
important role in modern control theory are controllability and observability. 
Controllability is concerned with whether the states of the dynamic system are 
affected by the control input. A system is said to be completely controllable if some 
control transfers any initial state x , ( t )  to any final state xf(t) in some finite time. If 
one or  more of the states are unaffected by the control, the system is not completely 
controllable. 
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A mathematical definition of controllability for a linear dynamical system can 
be expressed as follows. If the dynamic system can be described by the state 
equation 

ir = Ax + Bq (9.75) 

where x and q are the state and control vectors of order n and m, respectively, then 
the necessary and sufficient condition for the system to be completely controllable 
is that the rank of the controllability matrix V is equal to the number of states. The 
matrix V is constructed from the A and B matrices in the following way: 

V = [B, AB, A2B, . . ., A'-'B] (9.76) 

The rank of a matrix is defined as the largest nonzero determinant. Although this 
definition is abstract, the test for controllability easily can be applied. 

Observability deals with whether the states of the system can be identified from 
the output of the system. A system is said to be completely observable if every state 
x can be determined by the measurement of the output y(t) over a finite time 
interval. If one or more states cannot be identified from the output of the system, 
the system is not observable. A mathematical test for observability of an n th-order 
dynamic system governed by the equations 

ir = Ax + Bq (9.77) 

y = Cx + Dq (9.78) 

is given as follows. The necessary and sufficient condition for a system to be 
completely observable is that the observability matrix U, defined as 

U = [CT, ATCT, . . ., (AT)"-'CT] (9.79) 

is of the rank n. 
The mathematical definitions of controllability and observability easily are 

calculated but are somewhat abstract. An alternate way of looking at either control- 
lability or observability is to transform the state equations to a canonical form. If 
the state equations are transformed so that the new plant matrix is a diagonal 
matrix the equations governing the system have been decoupled. The control ma- 
trix for the modified state system can be examined to determine if the system is 
completely state controllable. Because the equations have been decoupled, if any 
row of the control matrix, B, is all zeroes then that particular state is uncontrol- 
lable. In a similar manner one can determine whether the system is observable by 
examining the new output matrix, C. If any column of the output matrix is all 
zeroes then the corresponding state is not observable in the output vector. 

EXAMPLE PROBLEM 9.7. Determine whether the system that follows is state control- 
lable and observable. The A, B, and C matrices of the state and output equation are 
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Solution. The controllability matrix, V, is defined for this problem as 

V = [B AB] 

The rank of V is of the same as the order of the system. Therefore the system is 
state controllable. 

The observability matrix, U, for this example is 

U = [CT ATCT] 

The rank of the observability matrix also is of the same as the order of the system. 
Therefore the system is state observable. 

An alternate way of examining the concept of controllability and observability is 
to transform the equation to a new state as shown in Example Problem 9.4. The new 
state equations are decoupled, and if a row of the new control matrix is 0 then that 
particular state is not controllable. For this example the new state equations were found 
to be 

The control matrix B of the decoupled state system has no zero rows, therefore each 
state is completely controllable. On the other hand, if the output matrix has a column 
of zeroes then that particular state is not observable in the output vector. Again for this 
example both zl and z2 are observed in the output, therefore the system is completely 
state observable. 

E X A M P L E  P R O B L E M  9.8. Consider the system represented by the following equa- 
tions: 

Determine whether the system is state controllable. 

Solution. For a second-order system the controllability matrix is defined as 

V = [B AB] 
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The matrix product AB follows: 

The controllability matrix now can be expressed as 

The determinant of V is 0, which means the rank of the matrix is less than the order 
of the system. Therefore the system is not state controllable. 

If we select a new state variable so that the plant matrix is diagonalized we can 
determine if the system is controllable by inspection. Using the methods discussed 
earlier the state equation can be transformed to the following: 

The new state equations are decoupled. Notice that state 2,  can not be controlled, 
therefore the system is not state controllable. 

9.5 
STATE FEEDBACK DESIGN 

State feedback can be used to design a control system with a specific eigenvalue 
structure. Consider the system represented by the state equations 

It can be shown that if the system is state controllable, then it is possible to define 
a linear control law to achieve any closed loop eigenvalue structure. For the case of 
a single input system the control law is given by 

where 77' is the control input without state feedback and k is a column matrix or 
vector of the feedback gains. Figure 9.3 shows a block diagram representation of 
the system. 

FIGURE 9.3 
A linear system with state feedback. 
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If we combine Equations (9.80) and (9.82) the closed-loop system is given by 

% = (A - BkT)x + Bq' (9.83) 

% = A*x + Bq' 

where A* is the augmented matrix. For the case in which the A matrix may have 
had undesirable eigenvalues the augmented matrix A* can be made to have specific 
eigenvalues by properly selecting the feedback gains. Application of this technique 
to multiple input systems is discussed later in this section. 

The application of state feedback as presented here requires that the states be 
state controllable. As stated earlier, a system is said to be completely controllable 
if the control can be used to move the system from its initial state at t = to to the 
desired state at t = t, .  Another way of stating this concept is to say that every state 
is affected by the control input signal. 

E X A M P L E  PROBLEM 9.9. The state equations for a system follow: 

where 

Use state feedback so that the closed-loop system has the following characteristics: 

Solution. First we must test to see if the system is state controllable. This is accom- 
plished by examining the controllability matrix, V. If the controllability matrix, V, has 
a rank that is on the same order as the system then the system is state controllable. The 
controllability matrix, V, for this problem follows: 

V = [B AB] 

det [V] = -128 

The rank of V is 2, 
state controllable. 

which is on the same order as the system, therefore, the system is 
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The desired characteristic equation for the closed-loop system can be written as 

A 2  + 25w,,A + w i  = 0 

which yields upon substitution of the numerical values of 5 and w,, for this problem the 
following equation: 

The augmented matrix with state feedback A* follows: 

Substituting the matrices A and B and the gain vector k into the preceding equation 
and expanding yields 

The eigenvalues of the augment matrix can be determined in the usual manner: 

The augmented system can be made to have the desired performance by adjusting the 
gains k l  and k2 so that the augmented characteristic equation is as desired. The two 
characteristic equations are the same if the coefficient of like powers of A are the same. 
Equating coefficients of the polynomial yields 

Solving these equations yields the state feedback gains for the closed loop system. 

Figure 9.4 shows the response of the closed loop system to an initial displacement from 
the equilibrium state. With state feedback the system quickly returns to the equilibrium 
state. 

9.5.1 Numerical Method for Determining Feedback Gains 

As shown in the previous section, it is possible to use state feedback to locate the 
eigenvalues so that the system has the desired performance. In this section we 
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FIGURE 9.4 
Response of augmented system to initial condition disturbance. 

examine an analytical technique for determining the gains for a given eigenvalue 
structure. Friedland [9.5] presents a numerical algorithm developed by Bass and 
Gura [9.7] to find the state feedback gains. This method will be discussed here. The 
method will be demonstrated for placement of the eigenvalues for a single input- 
output system. For this particular case the state equations take the form 

where B is a column matrix 

and the control law is expressed as follows 

q = -krx 

where k is a vector of the unknown gains for a single input-output system. 
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If the original system is in what is called the companion form the plant matrix 
will look like this: 

-a,  -a2 -a, - . . 

A = [: ' ' : : : -:l (9.88) 

. . . 

where the terms ai are the coefficients in the differential equation. The control 
matrix in the companion form reduces to the simplified form that follows. Note that 
several arrangements are called the companion form: 

If we substitute the control law into the state equations we obtain the following: 

where A* is the matrix of the system with the desired eigenvalues. 
The eigenvalues of the derived system can be expressed as follows: 

where a, and the like are the coefficients of the desired characteristic equation. The 
augmented matrix A* can be found by performing the following matrix operations. 

The coefficients of the augmented matrix can be adjusted by way of the gains 
to give the desired plant matrix. 

and 



352 CHAPTER 9: Modern Control Theory 

where a and Z are the coefficients of the companion form of the plant matrix and 
desired characteristic equation, respectively. The Bass-Gura method easily can be 
used to determine the gains for a particular eigenvalue structure. The plant matrix 
in general may not be in the companion form. In the next section we will examine 
how the Bass-Gura method can be extended to plant matrices not in the companion 
form. 

If the system is not in the companion form we can find a transformation to 
accomplish this: 

where V = controllability test matrix 
W = a triangular matrix 

- 
a = coefficients of desired closed-loop characteristic equation 
a = coefficients of open-loop plant matrix characteristic equation. 

EXAMPLE PROBLEM 9.10. Given the open-loop system having the following plant 
and control matrix 

-1 1 

use state feedback to locate the closed loop eigenvalues at A = -3,  -2 -C 2i using the 
Bass-Gura method. 

Solution. The characteristic equation for the plant matrix 

( A 1  - A (  = 0 =+ A3 + l l A 2  + 39A + 29 = 0 

where the coefficients a,  = 11, a, = 39, and a, = 29. The characteristic equation for 
the desired closed-loop system is given by 

A' + 7A2 + 20A + 24 = 0 

A'+ Z,A2 + &A + &  = 0 

where Z, = 7 ,  Z2 = 20, and = 24. The feedback gains can be calculated from the 
equation 

k = [(VW)T]-'[Z - a] 
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The controllability matrix, V, is determined from 

The response of the closed loop system to an initial displacement is shown in 
Figure 9.5. The system returns to the equilibrium state rapidly. 

9.5.2 Multiple Input-Output System 

In the previous section we examined the use of state feedback control for placement 
of the closed-loop eigenvalues. For a single-input system a unique set of gains can 
be found by solving the state feedback problem. A single-input system is a special- 
ized case of the more general multi-input system (see Figure 9.6). For a multi-input 
system having p controls the state feedback control law is given by the following 
expression: 

q = -Kx (9.99) 

where the gain matrix K is n X p. We now have a situation where there are n X p 
gains, but we still only haven eigenvalues to be specified. Therefore we havep times 
as many gains as necessary for eigenvalue placement. At first this may seem to be 
a problem but actually the additional gains can be used to provide the designer with 
greater flexibility in configuring the control system. 

The number of gains can be reduced to n, that is, the number of closed-loop 
eigenvalues, by defining the gain matrix as follows: 

K = gkT (9.100) 

where g is a p X 1 vector of constants chosen by the designer and k is an n X 1 
vector of gains that can be determined by the desired eigenvalue placement. 
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FIGURE 9.5 
Response of closed-loop system to an initial condition disturbance. 

FIGURE 9.6 
Sketch of a multiple input-output system. 
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9.5.3 Eigenvalue Placement 

In this chapter we discussed the use of state feedback to locate the eigenvalues or 
poles of the closed-loop system. The methods presented here allow us to position 
the closed-loop eigenvalues at any location we desire. The question that must now 
be asked is this: Is there a preferred location? Several factors should guide us on 
locating the closed-loop eigenvalues. The factors include actuator saturation, actu- 
ator size, unmodeled structural dynamics, and noise. 

The control law for a single input system is proportional to the gains times the 
states 

7 = -kTx (9.101) 

The larger the gains the bigger the control action becomes for a given state vector. 
The gains increase the further we move the closed-loop poles from the open-loop 
poles. This clearly is demonstrated by examining the Bass-Gura formula: 

k = [(VW)T]p'[i i  - a] (19.102) 

For a given state vector the control input can become very large if the gains are too 
high. This may mean that the control input might exceed a servo actuator's capabil- 
ity to respond due to physical limitations. In such a case the actuator is said to be 
saturated. If saturation occurs through most of the control process the system will 
not perform as expected. This could be fixed by replacing the servo actuator with 
a more powerful one. 

Recall that when setting up the state equations that model a physical system we 
often times ignore the structural dynamics equations. For example, in the aircraft 
equations of motion we treat the airplane as a rigid body, thus neglecting the 
structural modes. Therefore we want to avoid increasing the closed-loop frequency 
response so that we will not excite an unmodeled structural mode. 

9.6 
STATE VARIABLE RECONSTRUCTION: 
THE STATE OBSERVER 

The state feedback design discussed in the previous section requires the measure- 
ment of each state variable. In some systems this is not possible, owing either to the 
complexity of the system or to the expense required to measure certain states. If the 
states cannot be measured for these reasons the control law cannot be imple- 
mented. An alternate approach for designing the controller when all the states are 
not available is to use an approximation to the state vector. The approximation to 
the unavailable states is obtained by a subsystem called an observer. The design of 
a state feedback control system when some of the states are inaccessible can be 
divided into two phases. In the first phase, the control system is designed as though 
all the states were known; for example, the method discussed in the previous 
section. The second part of the design deals with determining the design of the 
system that estimates the unavailable states. Figure 9.7 shows a linear system with 
state feedback and a state observer. 
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k 
State 

observer 

FIGURE 9.7 
A linear system with state feedback and a state observer. 

The designer can select the eigenvalues of the state observer. In choosing the 
eigenvalues, it should be obvious that one would want the observer to respond faster 
than the observed system. This means that the eigenvalues of the observer should 
be more negative than those of the observed system. In practice, the observer 
eigenvalues are chosen so that they are only slightly more negative than the 
observed system eigenvalues. If the observer eigenvalues were chosen to be ex- 
tremely large negative values the observer would have extremely rapid response. 
Such an observer would be highly sensitive to noise. Hence, it has been found that 
good closed-loop response with an observer is best achieved by selecting eigen- 
values of the observer that make the observer only slightly more responsive than 
the observed system. 

A state observer can be designed in a number of ways. The basic idea is to make 
the estimated state x, to be very close to the actual state x. Because x is unknown 
there is no direct way of comparing the estimated state to the actual state of the 
system. However, we do know the output of the system and we can compare it with 
the estimated output of the observer. In the following analysis we will examine how 
one can design a state observer for a single input and output system. The output 
vector y in this case is a scalar. The estimated output can be expressed in terms of 
the estimated states as follows: 

Ye = Cx, (9.103) 
where C is a 1 X n row matrix. 

The observer can be constructed as a state feedback problem as illustrated in 
Figure 9.8. The problem now is one of determining the observer feedback gains k, 

1 

FIGURE 9.8 
Design for a state observer multi-input and -output system. 
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so that ye approaches y as rapidly as possible. The dynamic characteristics of the 
observer can be expressed as 

but 

or 

If we subtract Equation (9.106) from the state equation for the actual system, we 
obtain 

The characteristic equation for the observer can be determined by solving 

The gain matrix of the observer is selected so that Equation (9.108) decays rap- 
idly to 0. 

The approach outlined here can be extended to a multi-input and -output 
system in a manner similar to that outlined in section 9.5.2. 

EXAMPLE PROBLEM 9.11. For Example Problem 9.9 assume that all the states are 
not available for feedback control. Because some of the states are not available we need 
to design a state observer to generate estimates of the system states. This problem is 
solved by first determining !he state feedback gains to meet the desired closed-loop 
performance as if all the states were available for feedback. Once this has been 
accomplished a state observer is designed to generate estimates of the system states. 
The estimated states then will be used in the state feedback control system. 

Solution. Having determined the state feedback gains in Example Problem 9.9 we next 
turn our attention to design the state observer. Before attempting to design an observer 
we will first determine whether the system is observable. This is accomplished by 
examining the observability matrix, U. If the system is observable then the rank of the 
observability matrix U is the same as the order of the system. The observability matrix 
for this example problem is as follows: 

-3  0 1 
= [ 8 01 [o] = [i3] 

u = [' -31 
0 8 

The rank of U is 2, which is the same as the order of the system, therefore the system 
is state observable. 

The observer is determined by solving Equation (9.108): 
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Substituting in the appropriate matrices and performing the indicated matrix opera- 
tions yields 

The dynamics of the observer must be faster than the system being controlled. For this 
example we assume that the observer roots are four times as large as the desired closed 
loop performance. 

The roots for the closed loop system were 

therefore the observer roots are selected as 

A ,,,,, = -70.72 + 70.721 

The characteristic equation desired for the observer is given as 

(A - AI,)(~ - = 0 

or A 2  + 141.44A + 10,003 = 0 

This allows us to select the observer gains by equating the desired observer character- 
istic equation to the observation characteristic equation in terms of observer gains: 

3 + k,, = 141.44 * k,, = 138.4 

8k,, = 10,003 3 ke2 = 1250 

Figure 9.9 is a sketch of closed loop system incorporating state feedback and a state 
observer. 

State observer within dashed lines. 

FIGURE 9.9 
Sketch of closed-loop system with state observer (shown within the dashed lines). 
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9.7 
OPTIMAL STATE-SPACE CONTROL SYSTEM DESIGN 

The control system can be written in the state-space form: 

x = Ax + Bq (9.109) 

For the optimal control problem, given an initial state x(tJ we want to find a 
control vector q that drives the state x(t,) to the desired final state x,(tf) in such a 
way that a selected performance index of the form 

(9.1 10) 

is minimized. The functional form of the performance index can be expressed in a 
variety of forms. The most useful form is a quadratic index: 

where Q is a weighting matrix. For many practical control problems it is desirable 
to include a penalty for physical constraints such as expenditure of control energy. 
The performance index can be rewritten as 

J = [ (xrQx + q r R q )  dr (9.1 12) 

Using the quadratic performance index just defined it can be shown that for a linear 
feedback control the optimal control law for a single input system is 

7 = -kTx (9.1 13) 

where k is a matrix of unknown gains. This problem is often referred to as the linear 
regulator problem. 

If we apply the principles of the calculus of variations to the minimization of 
the performance index, we obtain the Riccati equation. A complete development of 
the Riccati equation can be found in [9.4] and [9.8]. The Riccati equation is a set 
of nonlinear differential equations that must be solved for the Riccati gains S(t): 

The Riccati matrix, S, is a symmetric positive definite matrix. The time-varying 
gains are related to the Riccati gains in the following manner: 

For the case in which the final time t, approaches infinity the Riccati gain matrix 
becomes a constant matrix and Equation 9.114 reduces to 

SBR-'BTS - SA - A'S - Q = 0 (9.1 16) 

In this form the Riccati equation is a set of nonlinear algebraic equations in terms 
of the Riccati gains. Except for the simplest of examples the solution to Equation 
(9.116) requires sophisticated computer codes. 
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E X A M P L E  P R O B L E M  9.12. Find the control law that minimizes the performance 
index 

J = [ (x i  + X: + u2)df 

for the system 

Solution. First we need to determine the weighting matrices Q and R. The perfor- 
mance index is expressed as 

J = [ (xTQx + q T R q )  dr 

The first part of the integrand can be expanded in the following manner. 

But that part of the integrand related to the state variables is given asx: + xi ,  therefore 
Q, ,  = Q2, = 1 and QI2 = Q2, = 0. In a similar manner one can show that R = [I]. 
The weighting matrices Q and R follow: 

R = [1 ]  

The reduced Riccati equations can be rearranged as follows: 

We will perform the indicated matrix operations for first two terms in the Riccati 
equation: 

The third term SBR-' BTS will be calculated in steps: 
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- - [ ~ 1 2 ~ 2 1  sn%2]  
s 2 2  s21 $ 2  

Note that in this problem R-'  = I .  Substituting matrices into the Riccati equation 
yields 

Combining the matrices yields 

-s12s21 + 1 
Sll - S22S21 S12 + S21 - $2 + 1 

We now must solve the nonlinear algebraic equations for the unknown Riccati gains: 

-S l zSz1  + 1 = 0 

SI  1 - s 1 2 s 2 2  = 0 

S I 2  + S21 - $2 + 1 = 0 

From symmetry s12 = s21 

-s:, + I = 0 * S l 2  = +v"i = 51 

2S,,  - 5'2, + 1 = 0 

For S12 = 1, 

-s;, + 3 = O* S22 = tv5 
S I I  - SI2SZ2 = 0 =3 S I I  = tv5 

The Riccati matrix S follows: 

The control law = -kTx, where 

The control law can now be written 

- - - X I  - f i x 2  

For a higher-order system numerical techniques are required. The MATLAB control 
system toolbox has numerical algorithms for solving optimal control problems. 



362 CHAPTER 9: Modern Control Theory 

9.8 
SUMMARY 

In this chapter we examined another approach to control system analysis and design 
called modern control theory. This theory is based on the state-space formulation 
of the differential equations that govern the system. We showed that higher-order 
differential equations can be reduced to a system of first-order differential equa- 
tions; that is, the state-space approach. These equations can be solved easily using 
a computer. 

Once the system has been formulated in the state-space format we can use state 
feedback to locate the closed-loop eigenvalues so that the system meets whatever 
performance requirements are desired. When some of the states are not available 
for feedback we can design a state observer to estimate or predict the states. The 
estimated states then can be used in place of the actual states in the feedback 
system. 

Finally, a short presentation of optimal control was presented. Optimal control 
allows the designer to specify constraints on maximum allowable excursion of the 
states and control input. This is accomplished by specifying weighting matrices for 
the states and control in an integral performance index. The optimal control gains 
are determined by solving the steady-state Riccati equation. 

Modern control theory provides the control system designer with a set of very 
powerful tools for designing control systems. 

PROBLEMS 

Problems that require the use of a computer have the capital letter C after the problem 
number. 

9.1. For the differential equations that follow, rewrite the equations in the state-space 
formulation. Each part-(a), (b), and (c)-is to be treated as a separate problem. 
Also identify the output equation. 

d2c dc 2 
(a) 7 + 2&0, - + W, c = r dt dt 

d'c d2c dc dr (b) - + - + 2 - + c = 2 - + 3 r  dt3 dt2 dt dt 
dB dff (c) $ + 3 -  + 2-- + 5a = -6& dt dt 

d ff dB 
- + 40 - 15- = -38, dt dt 

Hint: For problem (b), assume that one of the states includes the derivative dr/dt. 

9.2. The transfer functions for a feedback control system follow. Determine the state- 
space equations for the closed-loop system. 

k 
(a) G(s) = s(s + 2)(s + 3) H(s) = 1 

k 
(b) '(') = s(s2 + 8s + 10) H(s) = I 
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9.3. Given the second-order differential equation 

having the initial conditions c(0) = 1 and dc/dt(O) = 0, write the equation in 
state vector form. 
(a) Find the state transition matrix. 
(b) Determine the solution if r(t) is a unit step function. 

9.4. Given the linear time-invariant dynamical system that is governed by the equa- 
tions 

where 

determine the state transition matrix and the response of the system if the input 
signal is a unit step function. 

9.5(C). Use the numerical algorithm discussed in Section 9.2 to solve Problem 9.3. 

9.6(C). Use the numerical algorithm discussed in Section 9.2 to solve Problem 9.4. 

9.7. Given the following matrix 

(a) Determine the eigenvalues of A. 
(b) Determine the transformation matrix P that can be used to diagonalize the A 

matrix 

A = P-' AP 

9.8. Given the following matrix 

(a) Determine the eigenvalues of A. 
(b) Determine the transformation matrix P that can be used to diagonalize the A 

matrix 

A = P-'AP 

9.9(C). The state-space equations are given as follows: 

Determine the transformation, P, that transforms the state equations so that the 
new plant matrix is a diagonal matrix. 
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9.10(C). Given the following matrix determine the transformation P that transforms the A 
matrix into a diagonalized matrix A. 

9.11. Given the f ~ " ~ w i n g  matrix determine the transformation matrix P, that trans- 
forms the A atrix into a diagonal matrix A. 

What form would P take to obtain A in the following forms? 

9.12. When a new state vector 
diagonalized plant matrix 

is selected so that the transformed equation has a 

show that the state transition matrix @ ( t )  can be expressed as 

a 2 t 2  a3 t3  
The series expansion for e'" is given as e"' = I + at + - + - 

2 !  3 !  
a4t4  + - + . . .  
4! 

9.13. When the eigenvalues are repeated, the A matrix takes on the following 
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Show that the state transition matrix for this case is 

e 0 
t  = eAt = [ e r  i;] 

9.14(C). Given the state equations 

determine whether the system is completely controllable. 

9.15. If the output matrix for Problem 9.9 is 

determine the following: 
(a) Is the system controllable? 
(b)  Is the system observable? 

9.16. Given the system governed by the following state equations 

that can be decoupled by defining a new state variable z(t) so that 

where A = P - ' A P  and B = P-'B, the A matrix is a diagonal matrix and P is a 
transformation matrix. 
(a) Show that the transformation matrix P is as follows: 

(b)  Determine the state transition matrix @(t)*  for the new state equations 

i ( t )  = Az + Br( 
(c) Determine the state transition matrix @ ( t )  for the original state equations 

i ( t )  = Ax + Bq 
from @(I)* .  

(d) The free response x( t )  = ? 

9.17. A single-axis, attitude control system for a satellite can be modeled as follows: 
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where 0, q, T, t, and I are defined as follows: 
8 = the pitch angle of the satellite 
q = the pitch rate of the satellite 
T = the thrust of the control thrusters 
e = the distance of the thrusters from the satellite's center of gravity 
I = the mass moment of inertia about the axis of rotation. 

If ell = 50 determine the state feedback gains so that the closed-loop system has 
the following performance: 

w,, = 20 radls 

9.18(C). An open-loop control system has the following state-space model: 

I4 = [y] 
(a) Determine the characteristic equations and eigenvalues for the open-loop 

system. 
(b) Use the Bass-Gura method to locate the closed-loop eigenvalues at A, = -5, 

h2,, = -2 2 3i. 
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CHAPTER 10 

Application of Modern Control Theory 
to Aircraft Autopilot Design 

"While the Wright brothers are justly famed for their priority in many jields of 
aviation, their most notable contribution was the implicit appreciation that the 
secret to the control offight was feedback." 

Duane McRuer and Dunstan Graham [lo. 11 

10.1 
INTRODUCTION 

In this final chapter we apply modern control theory to the design of aircraft 
autopilots. This is accomplished through a series of example problems to illustrate 
the control techniques presented in Chapter 9. State feedback is used to provide a 
stability augmentation system (SAS) to improve an aircraft's longitudinal and 
lateral flying qualities. In addition, an altitude hold autopilot is designed using state 
feedback. 

Next we discuss the design of a state observer. Recall that a state observer or 
estimator is required to implement a state feedback control law if some of the states 
are unavailable. Obviously a state that is not measured cannot be used in the state 
feedback controller. The observer provides estimates of the states so the controller 
can be implemented. Finally we examine several examples where we apply optimal 
control theory. 

10.2 
STABILITY AUGMENTATION 

State feedback control can be used to improve the stability characteristics of 
airplanes that lack good flying qualities. As shown in Chapter 9 the eigenvalues of 
a system can be changed by using state feedback. The longitudinal eigenvalues are 
the short- and long-period roots. If the longitudinal eigenvalues do not meet the 
handling quality specifications discussed in Chapter 4 the airplane would be con- 
sidered difficult to fly and deemed unacceptable by the pilots. 
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10.2.1 Longitudinal Stability Augmentation 

Starting with the longitudinal state equations given in Chapter 4, we develop a set 
of linear algebraic equations in terms of the unknown feedback gains. The state 
equations for the longitudinal motion have been simplified by neglecting the affect 
of the control on the X-force equation and the stability derivative M,. The state 
equations are given below: 

where A and B are the stability and control matrices just shown and x and r] are 
the state and control vectors. 

The eigenvalues of the A matrix are the short- and long-period roots. If these 
roots are unacceptable to the pilot, a stability augmentation system will be re- 
quired. State feedback design can be used to provide the stability augmentation 
system. In state feedback design we assume a linear control law that is proportional 
to the states; that is, 

where k T  is the transpose of the feedback gain vector and 77, is the pilot input. 
Substituting the control law into the state equation yields 

x = (A - BkT)x + Brl, 

or x = A*x + Br]p 

where A* is the augmented matrix, expressed as 

A* = A - BkT 

The augmented matrix for the longitudinal system of equations is 

The characteristic 
equation 

:quation for the augmented matrix is ot 

which yields a quartic characteristic equation, 

A A 4  + B A 3  + C A 2  + D A  + E = 0 

,tained by solving the 

(10.8) 
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where the coefficients are defined as follows: 

A = 1.0 

B = Z,k2 + M,k3 - (Xu  + Zw + M,) 

C = Z,X,kI + (uO M6 - Xu Z,  - Z6Mq)k2 

+ Xu M,  + XUZw + ZwMq - u0 M, - XwZ,  

D = (uoXw M ,  - gM, - XwZ, M,)kl + (Xu Z, Mq - uoXu M,)k2 

+ (Xu Zw M6 - Xu Z ,  Mw - Xw Z,, M,  + Xw Z6 Mu)k3 

+ ( Z ,  Mw - Xu M,  - Zw M8)k4 + gM, - Xu Zw M, 

+ uoX,M, + X,Z,,M, - uoXwMu 

= (gZ ,M6 - gZ6Mw)k1 + (gZZiMu - gZuM,)k2 

+ (Xu Z,  M6 - XuZ6 Mw - X, Zu Ma + Xw Z6 Mu)k4 

+ g z ,  Mw - gZwM,, 

The characteristic equation of the augmented system is a function of the known 
stability derivatives and the unknown feedback gains. The feedback gains can be 
determined once the desired longitudinal characteristics are specified. For example, 
if the desired characteristic roots are 

and 

then the desired characteristic equation is 

A4 - [(A! + AZ + A3 + A4)]A3 + [A1 A2 + A3A4 + (Al + h2)(h3 + &)]A2 
(10.13) 

- [AlA2(A3 + A4) + A3A4(Al + A2)]A + A,A2&A4 = 0 

By equating the coefficients of like powers of A for the augmented and desired 
characteristic equations one obtains a set of four linear algebraic equations in terms 
of the unknown gains. These equations can be solved for the feedback gains. 

E X A M P L E  P R O B L E M  10.1. An airplane is found to have poor short-period flying 
qualities in a particular flight regime. To improve the flying qualities, a stability 
augmentation system using state feedback is to be employed. Determine the feedback 
gains so that the airplane's short-period characteristics are A,, = -2.1 + 2.14i. As- 
sume that the original short-period dynamics are given by 

Solution. The augmented matrix A* can be obtained from Equation (10.6): 

A* = A - BkT 
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The eigenvalues of the augmented matrix A* are determined from the characteristic 
equation, which is obtained from 

Expanding the determinant yields the characteristic equation of the augmented system 
in terms of the unknown feedback gains, k, and k,: 

The desired characteristic equation is given as 

A 2  + 4.2A + 9 = 0 

Comparing like powers of A we obtain a set of algebraic equations for the unknown 
feedback gains: 

Solving for the gains yields 

k, = -2.03 k2 = -1.318 

and the state feedback control is given as 

Figure 10.1 shows the response of the airplane with and without the stability augmen- 
tation system. An initial angle of attack disturbance of 5" is used to excite the airplane. 
Without the stability augmentation, the airplane responds in its natural short-period 
motion. However, when the state feedback stability augmentation system is active the 
disturbance is quickly damped out. 

In Example Problem 10.1 the state feedback gains for the second-order system are 
relatively easy to determine. Through some simple algebraic manipulations and calcu- 
lations we can estimate the state feedback gains. On the other hand, when the order of 

6 FIGURE 10.1 
I Longitudinal response of an 

airplane with and without state 
feedback. 

- 4 I L I ' I '  

0 2 4 6 8 

Time (secs) 
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the system is greater than 2 the algebraic manipulations and calculations can become 
quite tedious. For higher-order systems, numerical techniques usually are used to find 
the state feedback gains. 

As mentioned, numerous computer software codes are available to solve control 
problems and in particular to determine the state feedback gains. In the following 
example problem we rely on the Bass-Gura method to determine state feedback gains 
for improving the longitudinal dynamics using the complete or fourth-order model of 
longitudinal equations. To solve this problem using the Bass-Gura method we use 
matrix software that is readily available for most personal computers. 

EXAMPLE PROBLEM 10.2. The longitudinal equations for an airplane having poor 
handling qualities follow. Use state feedback to provide stability augmentation so that 
the augmented aircraft has the following short- and long-period (phugoid) character- 
istics: 

Solution. As the order of the system increases beyond 3, simple hand calculations 
similar to Example Problem 10.1 become quite difficult. As stated earlier, software 
packages are available for solving state feedback design problems. Later in this chapter 
we use such programs to solve selected problems; however, for this example problem 
we use the Bass-Gura method, which lends itself to simple matrix manipulations. The 
state feedback gains can be estimated using the Bass-Gura technique described in 
Chapter 9. The feedback gains are found by solving the following equations: 

where V is the controllability matrix, W is a transformation matrix, and 5 and a are 
vectors made up of the coefficients of the characteristic equation of the augmented or 
closed-loop system (A - BkT) and the characteristic equation of the open-loop plant 
matrix A. 

The characteristic equation for the augmented or closed-loop system is determined 
by deciding on what closed-loop performance is desired. For this particular problem 
the desired eigenvalues are specified in terms of the short- and long-period damping 
ratio and undamped natural frequency. The desired characteristic equation can be 
written in terms of the damping and frequency as follows: 

Substituting the numerical values of l,,, wnSp, cp, and wnP into the preceding equation 
and expanding yields 
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The vector s is created from the coefficients of the desired characteristic equation: 

A 4  + Z,A3 + &A2 + &A + = 0 

The characteristic equation of the open-loop system is obtained by solving the equation 

which yields 

The vector a is created from the coefficients of the open-loop characteristic equation: 

Continuing with the solution, we need to determine the controllability matrix, V. In 
Chapter 9 we showed that the controllability matrix is defined in terms of the plant and 
control matrices. For the fourth-order system under consideration here, the control- 
lability matrix is 

The elements of the V matrix can be readily calculated by performing the appropriate 
matrix multiplications: 
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Substituting the column matrices into the definition of V yields 

The transformation matrix W is required if the plant matrix A is not in the companion 
form. For this particular problem the A matrix is not in companion form; therefore, the 
transformation matrix must be developed. As was shown in Chapter 9 the transforma- 
tion matrix is defined in terms of the coefficients of the characteristic equation of the 
plant matrix. For this particular example of a fourth-order system the W matrix is 
defined as  

W =  

Now we are in a position to calculate [(VW)T]-'. This will be accomplished in the 
following steps: 

The transpose of the matrix VW is obtained by interchanging the rows and columns: 
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The inverse of the matrix [(VW)IT)-' follows: 

0.0008 -0.0010 0.0004 0.0138 
0.0014 -0.0019 0.0025 -0.0014 

-0.3622 0.0068 -0.0089 0.0050 
0.0321 -0.0135 -0.4446 0.245 1 1 

The state feedback gains can now be calculated from the equation 

Having determined the feedback gains we can now define the control law. The 
stability augmentation control law is 

10.2.2 Lateral Stability Augmentation 

The lateral eigenvalues of an airplane also can be modified using state feedback. 
The lateral state equations are expressed in state-space form as follows 

0 0. 

or in shorthand mathematical form 

Note that the control vector is made up of two control inputs; namely, the aileron 
and rudder deflector angle. The control matrix B no longer is just a column matrix 
but a 4 X 2 rectangular matrix. 

When we have a multiple input system the state feedback gain vector becomes 
a gain matrix of order n X m where n is the order of the system and m is the number 
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of control input signals. Placing the eigenvalues at some desired location allows the 
designer to identify n of the gains; however, we still have n X (m - 1) gains that 
must be selected. There are techniques that can be used to handle the multiple input 
system but these techniques are beyond the scope of this book. 

One technique for handling the multiple input system was discussed in Chap- 
ter 9. Basically this technique reduces the gain matrix to a gain vector. Oehman 
and Suddath [lO.2] use this approach to apply state feedback control for lateral 
stability augmentation. The control law can be expressed in terms of a constant row 
matrix, g, the gain vector, k, and the pilot's control input, qp : 

The procedure is identical to that for the longitudinal equations. The constant 
vector g establishes the relationship between the aileron and rudder for augmenta- 
tion. Either g, or g, is equal to 1, and the ratio g,/g, = AS,/AS, is specified by 
control deflection limits. 

Substituting the control vector into the state equation yields 

where A* is the augmented matrix, expressed as 

EXAMPLE PROBLEM 103. Use state feedback to improve the Dutch roll characteris- 
tics of an airplane. For this example we use a 2-degrees-of-freedom model to approx- 
imate the Dutch roll motion. The equations used to approximate the Dutch roll motion 
follow: 

Assume that the stability derivatives have the following numerical values. 

N, = -.21 11s u, = 400 ftls 

The desired damping ratio for the Dutch roll motion is lDR = 0.3 and the undamped 
natural frequency is w, = 1.0 radls. 

Substituting the numerical values of the stability derivatives into the Dutch roll 
equations yields 

Solution. For a multiple-input system the control law is modified as follows: 
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where 

The elements of the constant vector g represent a weighting of the relative authority of 
the ailerons and rudder for augmentation. For this problem we assume that g, = 1 and 
g2 = A6,/6, is taken as  the ratio of the maximum control deflection angles. With this 
assumption the maximum authority of the rudder and aileron would be achieved 
simultaneously. We assume that g2 = Ati,/A6, = 0.25 for this problem. Substituting 
the control law into the state equation yields 

The augmented matrix A* is given as 

The characteristic equation of the augmented system can now be determined: 

I A I  - A*I = 0 

Expanding this determinant yields the characteristic equation of the augmented matrix 
in terms of the unknown gains k, and k2: 

A 2  + (0.259 + 0.003kl - 0.0285k2)A + 1.51 + 0.029kl + 0.0031k2 = 0 

The desired characteristic equation can be expressed in terms of the Dutch roll damping 
ratio and frequency: 

A 2  + 2 lDR~, , , ,h  + = 0 

Substituting in the values for lDR and on, yields 

h2 + 0.6A + 1.0 = 0 

Equating the coefficients of the two polynomials yields a set of linear algebraic equa- 
tions in terms of the unknown gains: 

Solving for the gains yields 
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Substituting the gain vector back into the control law yields 

86, = - g l k l A p  - glk2Ar 

A6, = -g2kIAP - g2k2Ar 

For the selected values of g and the feedback gains determined here, we have the 
following control law: 

AS, = 16.1 A p  + 13.7 Ar 

This problem could have been solved using the Bass-Gura method once the g matrix 
was selected. The augmented system for a single- and multiple-input system follow: 

A* = A - BkT Single-input system 

A* = A - BgkT Multiple-input system 

For a multiple-input system the control matrix B is n X m where n is the order of the 
system and m is the number of control input signals. The constant matrix g is n X 1, 
therefore the matrix product Bg is n X 1. The Bass-Gura method can be used if we 
replace the control matrix by B where 

The constant vector reduces the problem to determining n gains instead of n X m gains. 
Now let us apply the Bass-Gura method to this problem. First we determine the 

modified control matrix B: 

The vector is determined from the desired characteristic equation 

A 2  + 0.6A + 1.0 = 0 

or h 2  + ;TIA + Z2 = 0 

therefore 

The vector a is determined from the characteristic equation of the plant matrix A. The 
characteristic equation for the A matrix can be calculated easily: 

therefore 
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The controllability matrix is defined in terms of B and A: 

v = [B AB] 

Because the plant matrix is not in companion form we need to determine the transfor- 
mation matrix W: 

Finally the feedback gains can be calculated by 

where [(VW)TI = [ 3.71 34.05] 
-34.70 3.58 

and 

Figure 10.2 is a plot of the Dutch roll motion for an initial displacement in /3 for an 
airplane with and without a stability augmentation system working. 

Response to an initial disturbance 

0 1 2 3 4 5 6 7 8 9 10 

Time (secs) 

FIGURE 10.2 
Dutch roll response with and without state feedback. 
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103 
AUTOPILOT DESIGN 

The stability augmentation system discussed in the previous section is an autopilot. 
The function of an SAS autopilot is to provide good handling qualities for the 
airplane so that the pilots do not find the airplane difficult to fly. Other types of 
autopilots discussed in Chapter 8 were used to lessen the flight crew's workload 
during cruise and help them land the airplane during adverse weather conditions. 
We examined autopilots to maintain the airplane's orientation, speed, and altitude. 

The state feedback design approach can be used to design autopilots to perform 
the same functions. In the following example problem we demonstrate how the 
state feedback design approach can be used to design an altitude hold autopilot. 

EXAMPLE PROBLEM 10.4. Use state feedback to design an autopilot to maintain a 
constant altitude. To simplify this problem we will assume that the forward speed of 
the airplane, 4, is held fixed by a separate velocity control system and furthermore we 
neglect the control surface actuator dynamics. If the actuator dynamics were included 
the order of the system would be increased by 1. This assumption was made solely for 
the purposes of keeping the system as simple as possible. The airplane selected for this 
example is the STOL transport used in Example Problem 8.3. 

The state equation for the airplane can be represented by the short-period approx- 
imation. The kinematic equation representing the change in vertical height in terms of 
the angles A a  and At), developed in Chapter 8 is: 

If we add the vertical velocity equation to the short-period equations we obtain the 
following fourth-order system: 

Substituting the numerical values of the stability derivatives for the STOL transport 
yields 

In state feedback design the designer can specify the desired location of the eigenvalues. 
For this example we choose to locate the eigenvalues at 

A,,, = -1.0 2 3 . 5  

Solution. The state feedback gains can be again determined using the Bass-Gura 
method. The gains are determined by the matrix equation 

k = [V W T ] - ' [ a  - a] 
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where V is the controllability matrix, W is a transformation matrix, and ?i and a are 
vectors made up of the coefficients of the characteristic equations for the closed-loop 
system A* = (A - BkT) and the characteristic equation for open-loop plant matrix A, 
respectively. The eigenvalues for the desired closed-loop system can be multiplied 
together to give the closed-loop characteristic equation 

Substituting the desired eigenvalues into the above equation and performing the indi- 
cated multiplication yields the following characteristic equation: 

The vector ?i is composed of the coefficients of the desired characteristic equation: 

where 

The characteristic equation for the A matrix is found by solving for the eigenvalues of 
the A matrix: 

which was solved on the computer 

therefore 

The next step is to determine the controllability matrix V. The controllability matrix 
is defined in terms of the plant matrix A and control matrix B. For this example it is 

The elements of the V matrix can be calculated readily by simple matrix multiplication: 
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The rank of the V matrix is 4; therefore the system is completely state controllable. Our 
next step is to determine the transformation matrix W, which for this particular prob- 
lem is 

We can now calculate the state feedback gains 

k = [(VW)T]-'[Z - a] 

where 

0 -13.20 43.84 
0 49.60 -69.29 

The transpose of the matrix VW is obtained by interchanging the rows and columns 
of VW: 

-13.2 0 
-17.7 -13.2 49.6 

(VW)' = 
0.1 -0.3 -17.7 161.8 

-0.5 0.6 -0.3 -7,104 O I 
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The inverse of the matrix (VW)T follows: 

L 

The state feedback gains are 

k = [(VW)T]-'[ii - a] 

0.0978 -0.0741 0.0553 0.0007 
-0.0767 0.0007 -0.0005 

0.000 ] [[::I - ki] ] 0.0018 -0.0003 -0.0563 -0.0013 
0.000 0.000 0.000 -0.0001 66.25 

= 

The control law developed to maintain a constant altitude was evaluated using a 
numerical simulation. The autopilot was given an initial altitude excursion of 100 ft 

FIGURE 10.3 
Response of the STOL transport to a 100-ft initial displacement from the 
designated altitude. 
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from the desired attitude. Figure 10.3 shows the response to the change in altitude. The 
autopilot quickly brings the airplane back to the designated altitude. 

10.4 
STATE OBSERVER 

In Example Problems 10.1 and 10.2 we determined the state feedback gains to 
relocate the longitudinal eigenvalues so that the airplane would have better han- 
dling qualities. The state feedback design approach assumes that all the states are 
available for feedback. By available we mean that the states must be able to be 
measured by sensors onboard the aircraft. This may not always be the case. One 
could imagine that one or more states may not be easily measured and therefore 
would not be available for feedback. If all the states cannot be measured the control 
law developed in these examples could not be implemented. Obviously if state 
feedback were used to locate the eigenvalues at some desired location so the system 
would have certain time domain performance, then all the states would have to be 
used to accomplishing this task. A state observer could be used to provide estimates 
of the states that cannot be measured. 

Recall in Chapter 9 that the state observed can be constructed if the output is 
observable. In the following example problems we design a state observer to predict 
the states of the system. The predicted states then could be used to implement the 
state feedback control law r10.3- 10.61. 

EXAMPLE PROBLEM 10.5. In Example Problem 10.1 we designed a state feedback 
control law, r] = -kTx, to improve the handling qualities of the airplane. Through state 
feedback we were able to relocate the eigenvalues (short-period roots) of the airplane. 
To implement the stability augmentation system all the states must be available. In this 
problem we assume that the states are not measured by onboard sensors and therefore 
are unavailable for feedback. To overcome this difficulty we design a state observer to 
provide predictions of the necessary states. The predicted states then can be used in 
conjunction with the state feedback control law determined in Example Problem 10.1. 

Solution. The characteristic equation of the observer can be determined by expanding 
the following equation: 

( A 1  - (A - k,C)( = 0 

where A and C are the plant and output matrices and kc is the observer gain vector. For 
this problem the output matrix is given by 

Substituting the appropriate matrices into the preceding equation and expanding 
yields 
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As stated in Chapter 9 the observer roots should be more responsive than the roots of 
the state feedback system. We assume for this example problem that the observer roots 
are four times as responsive as the state feedback roots. From a mathematical stand- 
point the observer roots can be located anywhere in the left-hand portion of the 
complex plane, provided they are to the left of the desired closed-loop system roots. 
However, practical constraints similar to those discussed in Chapter 9 for the state 
feedback root location also apply to the placement of the observer roots. In Example 
Problem 10.1 the roots for the state feedback system were located at As, = 
-2.1 2 2.14i. The desired observer characteristic equation is obtained by 

By equating the desired observer characteristic equation with the one as a function of 
the observer gains we obtain a set of equations for the unknown observer gains. 

0.721 + k,, = 16.8 

Solving for each k, yields 

kc, = 16.08 

k,, = 134.9 

In Example Problem 10.5, the observer gains were easily obtained for the second- 
order system through simple algebraic manipulations. However, as the order of the 
system increases the analysis becomes quite tedious. Numerical techniques such as the 
Bass-Gura method can be used to solve for the observer gains for higher-order systems. 

Friedland [10.7] shows that the state observer gains can be determined by the 
Bass-Gura method. The observer gains are obtained from the equation 

where U is the observability matrix, W is a transformation matrix defined earlier, and 
B and a are vectors of the coefficients of the desired observer characteristic equation 
and the plant matrix, respectively. 

E X A M P L E  P R O B L E M  10.6. Solve Example Problem 10.5 using the Bass-Gura 
method. 

Solution. In Example Problem 10.5 the desired observer characteristic equation was 
shown to be 

therefore 

The characteristic equation of the plant matrix A can be shown to be 

A 2  + 0.721A + 2.65 = 0 
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The observability matrix for a second-order system is given by 

The transformation matrix W is defined in terms of the coefficient of the plant matrix: 

The observer gains can now be estimated from Equation (10.20): 

where 

FIGURE 10.4 
State feedback controller with an observer (within the dashed line). 
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The inverse of (UW)T is 

Therefore the observer gains are 

Figure 10.4 is a block diagram of a system using state feedback and an observer. 

10.5 
OPTIMAL CONTROL 

In the previous sections we examined the use of state feedback control for the 
placement of the closed-loop eigenvalues. By placing the eigenvalues in the left half 
portion of the complex plane we can be sure that the system is stable. However, as 
we move the eigenvalues farther to the left in the complex plane the gains may 
become large, resulting in excessive control deflection. For some systems the de- 
signer may not have a good idea or feel for the best location of the closed-loop 
eigenvalues. 

Optimal control theory can be used to overcome these difficulties. In the fol- 
lowing example we apply optimal control theory to provide an optimal controller 
for maintaining a desired roll angle while placing constraints on the maximum 
permissible roll angle and aileron deflection, respectively [10.8- 10.101. This prob- 
lem is simple enough that we can solve the steady-state Riccati equations by hand. 
However, for higher-order systems computer methods are required. A second ex- 
ample of a higher-order system is examined using the software package MATLAB. 

EXAMPLE PROBLEM 10.7. Most guided missiles require that the roll attitude of the 
missile be kept at a fixed orientation throughout its flight so that the guidance system 
can function properly. A roll autopilot is needed to maintain the desired roll orienta- 
tion. Figure 10.5 is a sketch of a wing-controlled missile. 

All movable 
-h wing surfaces 

FIGURE 10.5 
A wing-controlled missile. 
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Solution. In this example we design a feedback control system that will keep the roll 
orientation near 0" while not exceeding a given limit on the aileron deflection angle. 
The following equations of motion for the rolling motion of the missile were developed 
in Chapter 5: 

Rewriting these equations as 

@ = L p p  + L ,  6, & = p  

where a L l a p  a ~ l a t i ,  Lp = - and L ,  = - 
I, 1, 

the equations can easily be written in the state variable form as follows: 

where 

The quadratic performance index that is to be minimized is 

where &,, = the maximum desired roll angle 
pmaX = the maximum desired roll rate 
ti,,, = maximum aileron deflection. 

Comparing the performance index given here with the general form allows us to 
specify the matrices Q and R: 

Q =  [$ I] 
Pmax 

The optimum control law is determined by solving the steady-state Riccati matrix 
equation: 

ATS + SA - SBR-'BTS + Q = 0 

for the values of the S matrix. The optimal control law is given by 

q = -kTx 

where kT = R-~BTS 
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Substituting the matrices A, B, Q, and R into the Ricatti equation yields a set of 
nonlinear algebraic equations for the unknown elements of the S matrix:* 

For the case in which the missile has the aerodynamic characteristics 

L, = -2 radls 

Laa = 9000 s - ~  

= 10" = 0.174 rad 

p,,, = 300•‹/s = 5.23 radls 

6,,, = 230" = 20.524 rad 

the nonlinear Ricatti equations can be solved for the elements of the Ricatti matrix S: 

The control law gains can now be calculated from the equation 

and the control law is found to be 6, = -3.04 - 0 . 1 0 3 ~ .  
In Example Problem 10.6 it was possible to solve the Ricatti equation through 

simple algebraic calculations. For more complex problems the Ricatti equation must be 
solved by numerical algorithms incorporated into computer software. 

A computer software package to solve for the optimal gains can be found in 
MATLAB. A program called lqr solves the Ricatti equations for the continuous linear- 
quadratic regulator problem. The lqr program is one of a collection of control system 
analysis and design algorithms found in the MATLAB control system toolbox. 

To use this program the user must supply the plant matrix A, the control matrix 
B, and the weighting matrices Q and R that are in the performance index, J: 

As a final example problem, we will determine the optimal control law to maintain 
a fixed altitude. 

E X A M P L E  PROBLEM 10.8. Determine the optimal control law for Example Prob- 
lem 10.4 if we place constraints on the angle of attack, altitude excursion, and control 

*Remember that the S matrix is symmetric, so it is necessary to solve only the equation generated for 
the elements along and above the diagonal of the matrix. 
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deflection. The weighting matrices are assumed to have the following form: 

where Aa,,, = 5" = 0.087 rad 
Ah,,, = 100 ft 
AScmx = 10" = 0.175 rad 

Solution. The equations for the STOL transport follow: 

The MATLAB program Iqr was used to determine the Riccati matrix. Figure 10.6 
is a listing of the MATLAB instructions used to solve this problem. The Ricatti matrix 
was found to be 

FIGURE 10.6 
Listing of MATLAB instruction. 
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Once the Ricatti matrix has been determined the optimal control gains can be 
determined by the equation 

k~ = R- IBTS 

where 

R-' = [S:mar] = 0.0306 

The optimal control law can now be written 

q = -kTx 

or A4  = -0.098Aa + 0.0304Aq + 1.715A8 + 0.0017Ah 

Figure 10.7 shows the response of the airplane to an initial displacement of 100 ft 
from the desired altitude. The control system is observed to rapidly bring the aircraft 

Altitude response 

0 2 4 6 8 10 12 14 16 18 20 

Time (secs) 

FIGURE 10.7 
Response of the STOL aircraft to a 100-ft deviation from the desired altitude. 
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back to the desired altitude while keeping the angle of attack and control deflection under 
Aa,,, and A6 ,,,,,x, respectively. 

10.6 
SUMMARY 

Modem control theory provides the control systems engineer with a valuable 
design tool. Unlike the classical control methods presented in Chapter 7, modem 
control theory is ideally suited for synthesis of a control system with multiple inputs 
and for determining optimal control strategies. 

In state feedback design the designer can place the closed-loop system poles at 
any location in the complex plane. In principle this technique permits the designer 
to completely specify the dynamic performance of the system. From a mathemat- 
ical standpoint the poles can be placed anywhere. However, practical consider- 
ations such as signal noise and control actuator saturation place limitations on pole 
placement. 

To use a state feedback design the system had to be state controllable and all 
the states must be accessible to measurement. If any state is unavailable for feed- 
back the design cannot be implemented. This limitation can be overcome by the use 
of a state observer. The state observer provides estimates of the system states. 
Therefore the state observer can provide information on the unavailable states so 
that the state feedback design can be implemented. 

PROBLEMS 

Problems that require the use of a computer have the capital letter C after the problem 
number. 

10.1. 

10.2. 

A wind-tunnel model is mounted on a bearing system so that the model is free 
to pitch about its center of gravity. No other motion is possible. Design a control 
system to maintain the model at some reference pitch attitude. The equation of 
motion for the model is 

where Ma = - 1 s-* 
Mq = -3 s-' 
Ms = -4 s-2 

Use state feedback to locate the closed-loop eigenvalues at A,,z = - 1 2 2i. 

The longitudinal motion of an airplane is approximated by the differential equa- 
tions 

w = - 2 . 0 ~  + 1798 - 276 

9 = - 0 . 2 5 ~  - 158 - 456 
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(a) Rewrite the equations in state-space form 

(b) Find the eigenvalues of A. 
(c) Determine a state feedback control law 

so that the augmented system has a damping ratio 5 = 0.5 and the undamped 
natural frequency w, = 20 radls. 

An airplane is found to have poor lateral handling qualities. Use state feedback 
to provide stability augmentation. The lateral equations of motion and the de- 
sired lateral eigenvalues follow. The lateral state equations are 

The desired lateral eigenvalues are 

Assume the relative authority of the ailerons and rudder are g ,  = 1.0 and 
g, = 6, /So = 0.33. 

Assume that states in Problem 10.1 are unavailable for state feedback. Design a 
state observer to estimate the states. Assume the state observer eigenvalues are 
three times as fast as the desired closed-loop eigenvalues; that is, A,, = 3AsF. 

Design a state observer to estimate the states for the airplane described in 
Problem 10.2. Assume that observer roots are twice as fast as the closed-loop 
eigenvalues of the augmented system; that is, hoB = 2A where A,,, = -10 
? 17.3i. 

Use state feedback to design an altitude hold control system. Assume the forward 
speed is held constant and the longitudinal equation can be modeled using the 
short-period approximation. The short-period equations are 

Assume the Ah = uo(AB - Am) where uo = 200 ftls. Determine the state- 
feedback gain if the closed-loop eigenvalues are located at 
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Use state feedback to design a control system to maintain a wings level attitude. 
Assume the aircraft can be modeled by the following state equations: 

where LQ = 2.0/s2 and L, = -0.51s. 
The closed loop system should have the following performace 

Design an optimal control law for Problem 10.1. Assume these constraints on the 
pitch angle and elevator angle: 

AO,,,,, = 2 1OS = 0.175 rad 

A8, mx = ? 15- = 0.26 rad 

The weighting function for the performance index J are 

Design an automatic control system to maintain zero vertical acceleration. 
The equations of motion governing the aircraft's motion are 

Find the nonlinear algebraic equations that must be solved to determine the gains 
for the control law 7 = -kTx, that satisfies the performance index 

where 6, = maximum control deflection 
a, = maximum angle to attack 
q, = maximum pitch rate. 

The rolling motion of an aerospace vehicle is given by these state equations: 

where tia, p, 4, and 8, are the aileron deflection angle, roll rate, roll angle, and 
voltage input to the aileron actuator motor. Note that in this problem the aileron 
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angle is considered a state and the control voltage, 6,, is the input. Determine the 
optimal control law that minimizes the performance index, J, as follows: 

J = [(.'QX + qTRv)dt 

where 

For this problem assume the following: 

7 = 0.1 s 

Lao = 301s' 

L, = - 1.0 radls 

= 2 25' = 0.436 rad 

&,, = + 45" = 0.787 rad 

6, ,Ax = 10 volts 
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APPENDIX A 

Atmospheric Tables 
(ICAO Standard Atmosphere) 

TABLE A.1 
Geometric altitude (metric units) 



TABLE A.2 
Geometric altitude (English units) 





APPENDIX B 

Geometric, Mass, and Aerodynamic 
Characteristics of Selected Airplanes 

Data on the geometric, mass, and aerodynamic stability and control characteristics 
are presented for seven airplanes. The airplanes include a general aviation airplane, 
two jet fighters, an executive business jet, two jet transports, and a STOL transport. 
The stability coefficients are presented in tabular form for each airplane. Co- 
efficients that were unavailable have been presented with a numerical value of 0 in 
the following tables. The stability coefficients for the A-4D are presented in graph- 
ical form as a function of the Mach number and altitude. These plots show the large 
variations in the coefficients due to compressibility effects. The definitions of the 
stability coefficients and geometric data presented in the figures are given in the 
following nomenclature list. The information presented in this appendix was taken 
from [B.l], [B.2] and [B.3] given after the nomenclature list. 

NOMENCLATURE 

b Wing span 

F Mean chord 

acL CL8 = - (rad-') as, 
a c1 C, = - (rad-') 

8. as, 
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acY Cya = - (rad-I) 
a c n  C =-(rad-') 

ap as, 
acY Cys, = - (rad-I) 

acn C = - (rad-') asr as, 
L c = -  I, Rolling moment of inertia 

QSb Iy Pitching moment of intertia 
ac~ I, Yawing moment of inertia Clg = - (rad-') 
ap I,, Product of inertia about xz axis 

M Mach number 
C - (rad- ') Q Dynamic pressure 

' p  - a(pb/2uo) S Wing planform area - - 
ac~ (rad-~) u Reference flight speed 

Cl, = a (rb/2uo) 

REFERENCES 
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B.3. Mac Donald, R.A.; M. Garelick; and J.O'Grady. "Linearized Mathematical Models 
for De Havilland Canada 'Buffalo and Twin Otter' STOL Transports." U.S. Depart- 
ment of Transportation - Transportation System Center Report No. DOT-TSC-FAA- 
71-8, June 1971. 



TABLE B.1 
General aviation airplane: NAVION 

Sea level 0.41 0.05 4.44 0.33 -0.683 0.0 -4.36 3.8 -9.96 0.0 0.0 0.0 0.355 -0.923 

Sealevel -0.564 -0.074 -0.071 -0.410 -0.0575 0.107 -0.125 -0.134 -0.0035 0.157 0.107 -0.072 

Note: All derivatives are per radian 
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Center of gravity and 
mass characteristics 

W = 2,750 Ibs 
CG at 29.5% MAC 
I, = 1048 slug.ft2 
I, = 3000 slug.ft2 
I, = 3530 slug.ft2 
I,, = 0 

Reference geometry 

FIGURE B.l 
Three-view sketch and stability data for a general aviation airplane. 



TABLE B.2 
Fighter aircraft: F104-A 

Long~tud~nal CL c~ L D L Gxm Gq Cm, C L ~  C L ) ~  CmM CLg, Cmg, 
M = 0 257 
Sea level 0.735 0.263 3.44 0.45 -0.64 0.0 -1.6 0 0 -5.8 0.0 0 0 0.0 0.68 -1.46 

Lateral 8 Cl, C.8 GP C n  1 ,  c., C1& C", c , ,  C , ,  c , ,  
M = 0.257 
Sea level -1.17 -0.175 0.50 -0.285 -0.14 0.265 -0.75 0.039 0.0042 0.208 0.045 -0.16 

Note: All derivatives are per radian. 
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Center of gravity and 
mass characteristics 

W = 16,300 Ib 
CG at 7% MAC 
I, = 3549 slug.ft2 
I, = 58,611 slug.ft2 
I, = 59,669 slug-ft2 
I,, = 0 

Reference geometry 

S = 196.1 ft2 
b = 21.94 ft - 
c = 9.55 ft 

FIGURE B.2 
Three-view sketch and stability data for the F- 104-A fighter. 



TABLE B.3 
Fighter aircraft: A-4D 

Longitudina1 C~ C~ L CD, C L  CLy Cmy CLM CDM CmM CLG Cmg, 
M = 0.4 
Sea level 0.28 0.03 3.45 0.30 -0.38 0.72 -1.1 0.0 -3.6 0.0 0.0 0.0 0.36 -0.50 

Sea level -0.98 -0.12 0.25 -0.26 0.022 0.14 -0.35 0.08 0.06 0.17 -0.105 0.032 

M = 0.8 
35,OOOft -1.04 -0.14 0.27 -0.24 0.029 0.17 -0.39 0.072 0.04 0.17 -0.105 0.032 

Note: All derivatives are per radian. 
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Center of gravity and 
mass characteristics 

W = 17,578 1b 
CG at 25% MAC 
I, = 8090 Slug-ft2 
I, = 25,900 Slug.ft2 
I, = 29,200 Slug4t2 
I,, = 1300 Slug4t2 

Reference geometry 

FIGURE B.3 
Three-view sketch and stability data for the A-4D fighter. 

5 FIGURE B.4 
CLm versus the Mach number. 
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FIGURE B.5 
CL, versus the Mach number. 
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0 0.2 0.4 0.6 0.8 1.0 

Mach number 

FIGURE B.6 
Corn versus the Mach number. 

0 FIGURE B.7 
-0.2 Cmm versus the Mach number. 
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FIGURE B.8 
-1 .o Cma versus the Mach number. 
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FIGURE B.9 
Cmq versus the Mach number. 
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FIGURE B. l l  
C,, versus the Mach number. 
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FIGURE B.10 
C,, versus the Mach number. 
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Mach number 
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FIGURE B.13 
CiB versus the Mach number. 
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FIGURE B.14 
C,,, versus the Mach number 

Mach number 

FIGURE B.15 
Cl0 versus the Mach number. 
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0.04 

CnP 
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rad -' 

FIGURE B.16 
C,,,, versus the Mach number. 

Mach number 

FIGURE B.17 
15.000 ft A 

Cl, versus the Mach number. 
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FIGURE B.18 
C,,, versus the Mach number. 
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FIGURE B.19 
C,, versus the Mach number. 
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FIGURE B.20 
C,,, -0.06 C,,, versus the Mach number. 

Mach number 

FIGURE B.21 
0 ' 0 6 m i  CI8, versus the Mach number. 
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FIGURE B.22 
C,, versus the Mach number. 

Mach number 
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FIGURE B.23 
C,, versus the Mach number. 

FIGURE B.24 
C,, versus the Mach number. 

Mach number 



TABLE B.25 
Business Jet: Jetstar 

Sea level 0.737 0.095 5.0 0.75 -0.80 0.0 -3.0 0.0 -8.0 0.0 0.0 -0.05 0.4 -0.81 

Lateral 
M = 0.20 
Sea level -0.72 -0.103 0.137 -0.37 -0.14 0.11 -0.16 0.054 0.0075 0.175 0.029 -0.063 

M = 0.80 
40,000 f t  -0.75 -0.06 0.13 -0.42 -0.756 0.04 -0.16 0.060 -0.06 0.16 0.029 -0.057 

Note: All derivatives are per radian. 
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Center of gravity and 
mass characteristics 

W = 38,200 Ib 
CG at 25% MAC 
I, = 118,773 Slu~ft '  
I, = 135,869 Slu@ft2 
I, = 243,504 Slugft2 
1, = 5061 S l ~ w f t ~  

Reference geometry 

FIGURE B.25 
Three-view sketch and stability data for a Jetstar executive business jet. 
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Center of gravity and 
mass characteristics 

W = 126,000 Ib 
CG at 25% MAC 
I, = 115,000 Slugft2 
I, = 2450,000 Slug.ft2 
I, = 4070,000 Slugft2 
I,, = 0 

Reference geometry 

S = 2,000 ft2 
b = 120 ft - 
c = 18.94 ft 

FIGURE B.26 
Three-view sketch and stability data for a Convair 880 jet transport. 



TABLE B.27 
Transport aircraft: Boeing 747 

Sea level 1.11 0.102 5.70 0.66 -1.26 6.7 -3.2 5.4 -20.8 -0.81 0.0 0.27 0.338 -1.34 

Lateral cY, cnB clp Cn, G, C., CI, Cn, CY, cia, c n ,  

M = 0.25 
Sea level -0.96 -0.221 0.150 -0.45 -0.121 0.101 -0.30 0.0461 0.0064 0.175 0.007 -0.109 

M = 0.90 
40,000 ft  -0.85 -0.10 0.20 -0.30 0.20 0.20 -0.325 0.014 0.003 0.075 0.005 -0.09 

Note: All derivatives are per radian. 
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Center of gravity and 
mass characteristics 

W = 636,600 Ib 
CG at 25% MAC 
I, = 18.2 X 106 Slugft2 
I, = 33.1 X 106Slug.ft2 
I, = 49.7 x 10G Slug.ft2 
I,, = 0.97 X 106 Slugft2 

Reference geometry 

FIGURE B.27 
Three-view sketch and stability data for a large Boeing 747 jet transport. 





Center of gravity and 
mass characteristics 

W = 40,000 Ibs. 
CG at 25% MAC 
I, = 273,000 Slug.ft2 
I, = 215,000 Slu@ft2 
I, = 447,000 Slug.ft2 
I,, = 0 

Reference aeometw 

FIGURE B.28 
Three-view sketch and stability data for a STOL transport. 



APPENDIX C 

Mathematical Review of Laplace 
Transforms and Matrix Algebra 

REVIEW OF MATHEMATICAL CONCEPTS 

Laplace Transformation 

The Laplace transform is a mathematical technique that has been used extensively 
in control system synthesis. It is a very powerful mathematical tool for solving 
differential equations. When the Laplace transformation technique is applied to a 
differential equation it transforms the differential equation to an algebraic equa- 
tion. The transformed algebraic equation can be solved for the quantity of interest 
and then inverted back into the time domain to provide the solution to the differen- 
tial equation. 

The Laplace transformation is a mathematical operation defined by 

where f ( r )  is a function of time. The operator 9 and the complex variable s are the 
Laplace operator and variable, respectively, and F(s) is the transform off (t). The 
Laplace transformation of various functions f ( t )  can be obtained by evaluating 
Equation (C.1). The process of obtaining f ( t )  from the Laplace transform F(s), 
called the inverse Laplace transformation, is given by 

where the inverse Laplace transformation is given by the following integral rela- 
tionship: 

Several examples of Laplace transformations follow. 

EXAMPLE PROBLEM C.1. Consider the function f (t) = e-"I. 

Solution. The Laplace transform of this expression yields 
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and the evaluation of the integral gives the transform F(s): 

As another example suppose that f (1) = sin wt. Substituting into the definition of the 
Laplace transformation one obtains 

F(s) = .Y[sin wt] = sin wt e-" dt = - (ei"' - I i i  jo ei"? e-sr dt 

Evaluating this integral yields 

EXAMPLE PROBLEM C.2. Consider the Laplace transformation of operations 
such as the derivative and definite integral. When f(t) is a derivative, for example 
f ( 4  = dyldt, 

Solution. Solution of this integral can be obtained by applying the method of integra- 
tion by parts. Mathematically integration by parts is given by the following expression: 

b 

[ud. = u U ( : -  (a u d u  

Letting u and du be as follows 

then du = -s e-" db 

Substituting and integrating by parts yields 

but the integral Jo y(t) e-" dt = ~ ( s )  

therefore 

In a similar manner the Laplace transformation of higher-order derivatives can be 
shown to be 
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When all initial conditions are 0 the transform simplifies to the following expression. 

Now consider the Laplace transform of a definite integral: 

This integral can also be evaluated by the method of integration by parts. Letting u and 
do be as follows, 

then du = y(t) 

Substituting and integrating by parts yields 

By applying the Laplace transformation to various functions of f ( t )  one can 
develop a table of transform pairs as shown in Table C. 1. This table is a list of some of 
the most commonly used transform pairs that occur in control system analysis. 

TABLE C.l 
Table of Laplace transform pairs 

W )  
Unit impulse 

sin wt w / (sz  + w Z )  
COS wt s/ (sZ + w Z )  

W 
sinh wt 

sZ - w 2  

S 
cosh wt 

s2 - w2 

w  
e-"' sin wt 

(s - + w Z  

s2 - w2 
t  COS wt 

(s2 + w 2 )  
2ws 

t  sin wt 
(s2 + w2)Z 
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Solution of Ordinary Linear Differential Equations 

In control system design, a linear differential equation of the form 

is common. This is a nonhomogeneous linear differential equation with constant 
coefficients. The Laplace transformations of a differential equation results in an 
algebraic equation in terms of the transform of the derivatives and the Laplace 
variables. The resulting algebraic equation can be manipulated to solve for the 
unknown function Y(s) .  The expression for Y(s)  then can be inverted back into the 
time domain to determine the solution y( t ) .  

EXAMPLE PROBLEM CJ. Given a second-order differential equation 

where u(t) is a unit step function. Find the solution y(t) if the initial conditions are as 
follows 

Solution. Taking the Laplace transformation of the differential equation yields 

Solving for Y(s) yields 

Y(s) = 4 
s(s2 + 25%~ + 0:) 

Now y(r) can be obtained by inverting Y(s) back into the time domain: 

1 
y ( t )  = 1 + ------ e-c'"J sin(w, t - 4) 

where 4 = tan-' (-1 - 6) 

Partial Fractions Technique for Finding Inverse Transformations 

When solving a differential equation using the Laplace transformation approach, 
the major difficulty is in inverting the transformation back into the time domain. 
The dependent variable is found as a rational function of the ratio of two polyno- 
mials in the Laplace variable, s .  The inverse of this function can be obtained by 
the inverse Laplace transform defined by Equation (C.3). However, in practice it 
generally is not necessary to evaluate the inverse in this manner. If this function 



424 APPENDIX C: Mathematical Review of Laplace Transforms ... 

can be found in a table of Laplace transform pairs the solution in the time domain 
is easily obtained. On the other hand, if the transform cannot be found in the table 
then an alternate approach must be used. The method of partial fractions reduces 
the rational fraction to a sum of elementary terms which are available in the 
Laplace tables. 

The Laplace transform of a differential equation typically takes the form of a 
ratio of polynomials in the Laplace variable, s: 

The denominator can be factored as follows: 

These roots can be either real or complex conjugate pairs and can be of multiple 
order. When the roots are real and of order I the Laplace transform can be ex- 
panded in the following manner: 

where the constants C,,, are defined as 

When some of the roots are repeated the Laplace transform can be represented as 

N ( 4  F(s)  = - = 
N(s)  

D ( 4  ( s  + P I N S  + p2) . . . ( s  + p,)'(s + p,) 
and in expanded form as 

The coefficients for the nonrepeated roots are determined as shown previously, 
and the coefficients for the repeated roots can be obtained from the following 
expression: 

1 &-I 

k .  = ------ -- 
( r -  j ) ! d s r - J  ( S  + 
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With the partial fraction technique the Laplace transform of the differential equa- 
tion can be expressed as a sum of elementary transforms that easily can be inverted 
to the time domain. 

Matrix Algebra 

In this section we review some of the properties of matrices. A matrix is a collec- 
tion of numbers arranged in a square or rectangular array. Matrices are used in the 
solution of simultaneous equations and are of great utility as a shorthand notation 
for large systems of equations. A brief review of some of the basic algebraic 
properties of matrices are presented in the following section. 

A rectangular matrix is a collection of elements that can be arranged in rows 
and columns as follows: 

where the indexes i and j represent the row and column, respectively. The rectan- 
gular matrix reduces to a square matrix when i = j. 

A unit matrix or identity matrix is a square matrix with the elements along the 
diagonal being unity and all other elements of the array zero. The identity matrix 
is denoted in the following manner: 

Addition and Subtraction of Matrices 

Two matrices are equal if they are of the same order; that is, they have the same 
number of rows and columns and the corresponding elements of the matrices are 
identical. Mathematically this can be stated as 

A = B 

if a .  11 = b.. tr 
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Matrices can be added provided they are of the same order. Matrix addition is 
accomplished by adding together corresponding elements. 

C = A + B  

or c.. 11 = a, .  11 + b.. EJ 

Subtraction of matrices is defined in a similar manner: 

C = A - B  

or c.. v = a. r l -b i j  

Multiplication of Two Matrices 

Two matrices A  and B  can be multiplied provided that the number of columns of 
A  is equal to the number of rows of B. For example, suppose the matrices A  and 
B  are defined as follows: 

These matrices can be multiplied if the number of columns of A  is equal to the 
number of rows of B; that is, p = q: 

where 

EXAMPLE PROBLEM C.4. Given the matrices A and B, determine the product AB: 

Solution. A and B can be multiplied together because the number of columns of A is 
equal to the number of rows of B: 

C = AB 

Some additional properties of matrix multiplication are included in Table C.2. 
Notice that in general matrix multiplication is not commutative. Multiplication of a 
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TABLE C.2 
Properties of matrix multiplication 

(AB)C = A(BC) Associative 
(A + B)C = AC + BC Distributive 
A(B + C) = AB + AC Distributive 
AB f BA Commutative 

matrix A by a scalar constant k is equivalent to multiplying each element of the matrix 
by the scalar k: 

Matrix Division (Inverse of a Matrix) 

The solution of a system of algebraic equations requires matrix inversion. For 
example, if a set of algebraic equations can be written in matrix form as 

then the solution is given as 

where A-' is the inverse of the matrix A. For the inverse of A to exist matrix A must 
be square and nonsingular. The condition that A be nonsingular means that the 
determinant of A must be a nonzero value. The inverse of a matrix is defined as 
follows: 

AdjA A-1 = - 
I A l 

where Adj A is called the adjoint of A. The adjoint of a matrix is obtained by taking 
the transpose of the cofactors of the A matrix, where the cofactors are determined 
as follows: 

Cij = (- 1)'+'Dij 

and Dij is the determinant obtained by eliminating the ith row and jth column of 
A. Some additional properties of the inverse matrix are given in Table C.3. 

The transpose of a matrix is obtained by interchanging the rows and columns 
of the matrix. Given the matrix A, 
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TABLE C 3  
Properties of an inverse matrix 

1 .  AA-' = A-'A = I 
2. [A-']-I = A 
3. If A and B are nonsingular and square matrices 

then (AB)-' = B - ' A - '  

then the transpose of A is 

For additional properties of matrices the reader should consult his or her mathe- 
matics library. 



APPENDIX D 

Review of Control System 
Analysis Techniques 

BODE DIAGRAMS 

The frequency response of a linear system is determined experimentally by apply- 
ing a sinusoidal input signal and then measuring the sinusoidal response of the 
system. The frequency response data includes the measurement of the amplitude 
and phase shift of the sinusoidal output compared to the amplitude and phase of the 
input signal as the input frequency is varied. The relationship between the output 
and input to the system can be used by the designer to determine the performance 
of the system. Furthermore, frequency response data can be used to deduce the 
performance of a system to an arbitrary input that may or may not be periodic. 

The magnitude of the amplitude ratio and phase angle can be presented graph- 
ically in a number of ways. However, one of the most useful presentations of the 
data is in the so-called Bode diagram, named after H. W. Bode for his pioneering 
work in frequency response analysis. In a Bode diagram the logarithm of the 
magnitude of the system transfer function, I G(iw) I, and the phase angle, 4, are 
plotted separately versus the frequency. 

The frequency response, output-input amplitude ratio, and phase with respect 
to the input can be determined analytically from the system transfer function 
written in factored time constant form: 

This transfer function has simple zeros at - 1/T,, - l/Tb, . . ., a pole at the origin 
of order r, simple poles at -1/T,, -1/T2, . . ., and complex poles at -5% 2 

i w , m .  The steady-state response can be shown to be determined by substi- 
tuting iw for the Laplace variable s in the system transfer function. Substituting iw 
for s one can express the transfer function in terms of the magnitude of its ampli- 
tude ratio and phase angle as follows: 

20 log )G(iw)I = 20 log k + 20 log 11 + iwT,) 

+ 2 0 l o g ( l  + iwT,I + - . .  - 20 r log (iw ( (D.2) 

- 201% 11 + iwT,I - 201% 11 + iwT21 

- 20 log( 1 + 2 5 ( 0 / 4 i  - (w/w,J2 ( . . . 
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and the phase angle in degrees 

LG(iw) = tan-' wT, + tan-' wT, + . . . - r(90•‹) - tan-' wTl 

-tan-' wT, . . . - tan-' (mi*" *) 
The magnitude has been expressed in terms of decibels. A magnitude in decibels is 
defined as follows: 

(magnitude of output ( 
Magnitude in dB = 20 log I magnitude of input I (D.4) 

where the logarithm is to the base 10. 
The Bode diagram now can be constructed using a semilog plot. The magnitude 

in decibels and phase angle are plotted separately on a linear ordinate versus the 
frequency on a logarithmic abscissa. Because the Bode diagram is obtained by 
adding the various factors of G(iw) one can construct the Bode diagram quite 
rapidly. 

In the general case the factors that will make up the transfer function are a 
constant term (system gain), poles at the origin, simple poles and zeros on the real 
axis, and complex conjugate poles and zeros. The graphical representation of each 
of these individual factors is described in the following section. 

System Gain 

The log magnitude of the system gain is as follows: 

20 log k = constant dB 

and the phase angle by 

Figure D. 1 shows the Bode plot for a positive system gain. 

dB OdB 

FIGURE D.l 
Bode representation of the magnitude and phase of the system 
gain k. 

I 
Magnitude of gain in dB 

90" - 

4 oo 

Phase ahgle of gain 

I 

- 
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Poles or Zeros at the Origin (io)" 

The log magnitude of a pole or zero at the origin of order r can be written as 

20 log I (io)" 1 = 220r log w dB (D.6) 

and the phase angle is given by 

The log-magnitude is 0 dB at w = 1.0 radls and has a slope of 20 dBIdecade, 
where a decade is a factor of 10 change in frequency. Figure D.2 is a sketch of the 
log magnitude and phase angle for a multiple zero or pole. 

Simple Poles or Zeros (1 + ioT)" 

The log magnitude of a simple pole or zero can be expressed as 

2 20 log I 1 + ioT I = -C 20 log d l  + (wT)~ (D.8) 

For very low values of oT, that is, o T  -=3 1, then 

220 log d l  + (wT)' = 0 

and for very large values of oT, that is, wT >> 1, then 

220 log d l  + (oT)* s 220 log wT (D. 10) 

From this simple analysis one can approximate the log magnitude plot of a simple 
pole or zero by two straight line segments as shown in Figure D.3. One of the 
asymptotic lines is the 0 dB line and the second line segment has a slope of 20 
dB1decade that intersects the 0 dB line at the frequency o = 1/T. The intersection 

60 FIGURE D.2 
40 ec. Bode representation of the 
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pole or zero at the origin. 
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- Bode representation of the magnitude 
- of a simple pole or zero. 

- 

-20 - 

0.01 0.1 1.0 10 100 

w T  

FIGURE D.4 
Bode representation of the phase angle of a simple pole or 
zero. 

frequency is called the corner frequency. The actual log magnitude differs from the 
asymptotic approximation in the vicinity of the corner frequency. 

The phase angle for a simple pole or zero is given by 

L(l + iwT)" = f tan-' wT (D. 1 1) 

Figure D.4 is a sketch of the phase angle. 

Complex Conjugate Pole or Zero 
[l + i2@/wn - (w/wJ2]* l 

The log magnitude of the complex pole can be written as 

1 
20 log 

1 + i2[w/wn + (w/w,J2 

= -20 log[(l - (o/w,)~)~ + (~[w/w,)~]"~ (D. 12) 

= - 10 log[(l - (W/O")~)~ + (2[w/~")~] 
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FIGURE D.5 
Bode representation of the magnitude of a complex conjugate 
pole. 

FIGURE D.6 
Bode representation of the phase angle of a complex 
conjugate pole. 

The log magnitude can be approximated by two straight line segments. For exam- 
ple, when w/w, 4 1 

and when w/w, S 1 

20 log 
1 

(D.13) 
1 + i25iL)/wn - (w/w,J2 

The two straight line asymptotes consist of a straight line along the 0 dB line for 
o/wn = 1 4 1 and a line having a slope of -40 dB/decade for w/wn %- 1. The 

-40 log w/wn (D.14) 20 log 
1 

1 + i25& - (w/w,J2 
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asymptotes intersect at o/o, = 1 or o = on, where on is the corner frequency. 
Figure D.5 shows the asymptotes as well as the actual magnitude plot for various 
damping ratios for a complex pole. 

The phase angle for a complex pole is given by 

Figure D.6 shows the phase angle for a complex pole. Similar curves can be 
developed for a complex zero. 

If the transfer function is expressed in time constant form, then the Bode 
diagram easily can be constructed from the simple expressions developed in this 
section. 



Index 

Active control technology, 17 1 
Adverse yaw, 78 
Aerodynamic force and moment 

coefficients, 20 
Ailerons, 62, 82 

effectiveness, 83, 121 
positive deflection, 62 

Airspeed, 23 
calibrated airspeed, CAS, 24, 25 
equivalent airspeed, EAS, 25 
indicated airspeed, IAS, 25 
indicator, 23 
true airspeed, TAS, 25 

Airspeed, automatic control of, 309, 
317 

Altitude, 15 
density altitude, 26 
geometric and geopotential, 15 
pressure altitude, 26 
temperature altitude, 26 

Altitude hold autopilot, 302 
Angle of attack, 21 

definition, 21 
sensors, 30, 3 1 

Angular momentum, 97 
Argand diagram, 160, 161 
Atmosphere, 12 

characteristics, 12 
standard atmosphere, 14, 395 

Atmospheric turbulence, 225, 228 
gusts, 219, 226 
wind shear, 229 

Automatic flare control, 3 17 
Autopilots; see Lateral autopilots; 

Longitudenal autopilots 
Axes system, 19 

body frame, 19, 97 
Eulerian frame, 102 
inertial frame, 19, 97, 102 

Axial force coefficient, 20 
definition, 20 
due to change in a, 120 
due to change in u, 1 10, 120 

Bairstow, L., 132 
Bandwidth, 253 
Barometer, 8, 26 
Bass-Gura method, 350 
Bernoulli's equation, 9, 11 

compressible flow, 1 1 
incompressible flow, 9 

Block diagrams, 237 
Bode, H. W., 213 
Bode diagrams, 213, 429 
Body axes, 19 
Bryan, G. H., 108, 130, 131 
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Calibrated airspeed, 24, 25 
Canard control, 52 

positive deflection, 62 
Canonical transformations, 335 

diagonalized matrix, 336 
Chanute, O. ,  35, 36, 39 
Characteristic equation 

definition, 134 
first order, 182 
lateral, 195, 197, 198 
longitudinal, 150, 153, 154 
second order, 134 

Closed-loop control, 236 
Closed-loop transfer function, 238 
Coefficient of viscosity 

absolute, 5 
kinematic, 6, 395 

Compensation 
feedback path, 269 
forward path, 265 
lag compensation, 269 
lead compensation, 267 

Control effectiveness, 63, 78, 81 
Control surfaces, description of 

aileron, 62, 82 
canard, 37, 52, 62 
elevator, 62, 63 
rudder, 62, 77 
spoiler, 81, 82 

Controllability, 344 
Cooper Harper scale, 166 
Cycles for doubling , 142 

or halving initial amplitude, 142 

Damping ratio 
definition, 135 
Dutch roll, 198 
long or phugoid motion, 153, 155 
short period motion, 155 

Decibels, 2 13, 430 
Delay time, 25 1 ,  253 

Density, 4 
Density altitude, 26 
Density ratio, 5, 395 
Design criteria, 262 
Dihedral, definition of, 79 
Dihedral effect 

fuselage contribution, 80 
wing contribution, 80, 12 1, 122 

Directional control 
requirement for, 78 
rudder sizing, 78 

Directional divergence, 1 8 1, 196 
Directional static stability, 73 

fuselage contribution, 74 
vertical tail contribution, 74 

Displacement autopilot, 292 
pitch, 292, 293 
roll, 298 
yaw, 292 

Dominant poles, 257 
Downwash 

effect on horizontal tail, 48 
effect on fuselage, 53 
wing contribution, 47 

Dutch roll motion, 195 
approximate solution, 198 
damping ratio, 198 
flying qualities, 203, 204 
undamped natural frequency, 198 
Dynamic stability, 41 

Eigenvalues, 15 1, 336, 339, 34 1 
Eigenvalues placement, 355 
Eigenvectors, 151, 336, 339, 341 
Elevator 

angle for trim, 65 
effectiveness, 63 
floating characteristics, 69 
positive deflection, 62 
requirements for, 62 

Equations of motion, 97 
lateral, 108 
linearized three degree of freedom 

equations, 104 
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longitudinal, 108 
nonlinear six degree of freedom 

equation, 105 
single degree of freedom equation 
pitching motion, 139 
plunging motion, 21 8 
rolling motion, 182 
yawing motion, 188 

Equilibrium state, 40 
Equivalent airspeed, 25 
Euler angles, 101 

definition, 101 
Euler rates, 103 
Evans, W. R., 235, 243 

Feedback control, 236 
Flare, automatic control of, 3 18 
Flight control system; see Lateral 

autopilots; Longitudinal autopilots 
Flight measurement of neutral point, 

67 
Flight simulation , 169 
Fluid, 3 
Flying qualities, 40, 164 

definition, 164 
lateral requirements, 203, 204 
longitudinal requirements, 167 

Forcing function, 133 
Free elevator, 69 
Frequency response, 2 12 

of complete transfer function, 2 13, 
429 

of first-order system, 223, 43 1 
of longitudinal transfer function, 2 13 
of second-order system, 432 

Gain, 245 
Gain margin, 254 
Gearing ratio, 70 
Glide slope beam, 3 15 

Gust, wind, 215, 226 
sharp-edged, 221 
sinusoidal, 22 1 

Harmonic analysis, 227 
Hinge moments, 68 

effect of trim tab on, 71 
elevator, 68 

Horizontal tail, 47 
contribution to static stability, 49 
sizing, 49 

Indicated airspeed, 24 
Inertia 

moments of, 100 
products of, 100 

Inertial axes, 97 
Inertial cross-coupling, 205 
Instrument landing system, 3 14 
Ionosphere, 13 

Jones, B. M., 132 

Lanchester, F. W., 35, 131 
Langley, S. P., 35, 36, 37 
Laplace transforms, 212, 237, 420 
Lapse rate, 17 
Lateral autopilots 

heading control autopilot, 292 
stability augmentation system, 312, 

367 
wings leveling autopilot, 292, 298 

Lateral flying qualities; see Flying 
qualities 
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Lateral motions, 
Dutch roll motion, 195, 198, 287 
roll motion, 182, 195, 198, 286 
spiral motion, 195, 197 

Lateral transfer functions, 286, 290 
Lilienthal, O., 35, 39 
Limit cycle motion, 186 
Localizer, 3 14 
Longitudinal autopilots 

automatic flare, 3 18 
automatic landing, 3 17 
pitch displacement control, 293 
speed control, 309, 3 17 
stability augmentation system, 3 12, 

397 
Longitudinal eigenvectors, 16 1 
Longitudinal flying qualities; see 

Flying qualities 
Longitudinal motions, 147 

long or phugoid motions, 152 
short period motions, 154 

Longitudinal transfer functions, 160 

Mach meter, 28 
Mach number, 6 
Manely, C., 37 
Mass moments of inertia; see inertia, 

moments of 
Matrix algebra, 425 
Modern control theory, 323 
Multhopp, H., 53 
Multiple inputloutput systems, 353 
Munk, M., 53 

Natural frequency, 135, 137 
Neutral point 

stick fixed, 56, 67 
stick free, 69 

Nonuniform atmosphere, 215; see also 
Atmospheric turbulence 

influence on equations of motion, 
217, 218 

Observability, 344 
Open-loop control, 236 
Optimal control, 359, 386 
Overshoot, 25 1 

Partial fractions, technique, 423 
Penaud, A., 35 
Performance index, 359, 387 
Period, 142 
Phase margin, 254 
Phugoid motion (long period), 147 

approximation, 152 
damping ratio, 153, 155 
flying qualities, 167 
undamped natural frequency, 153, 

155 
PID controller, 27 1 
Pilot, human 

Cooper-Harper scale, 166 
induced oscillations PIO, 42 
opinion, 165 

Pitch damper, 294 
Pitch damping, 1 12 
Pitch displacement autopilot, 293 
Pitching moment coefficient 

definition, 20 
due to change in a, 43, 120 
due to change in &, 1 13, 120 
due to change in $,, 65, 120 
due to change in q, 1 12, 120 
due to change in u, 1 12, 120 

Pitching motion, single degree of 
motion, 139 

Pitot static probe, 23, 29 
Plunging motion, 2 18 
Poles, 244, 247 
Power effects 
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on static stability, 55 
on trim, 55 

Power spectral density, 228 
Pressure, 3 
Pressure altitude, 26 

Resonance frequency, 253 
Resonance peak, 253 
Reynolds number, 6 
Riccati equation, 359, 387 
Rigid body equations of motion, see 

Equations of motion 
Rise time, 252, 253 
Roll angle control system, 299 
Roll control, 8 1 

control effectiveness, 83 
reversal, 186 

Roll stability, 78 
Rolling moment coefficient 

definition, 20 
due to change in P ,  78, 121 
due to change in So, 8 1, 121 
due to change inp,  115, 121 
due to change in r, 119, 121 

Rolling motion, 182, 198 
approximation, 198 
damping, 198 
flying qualities, 203 

Root locus, 243 
Routh's criteria, 238 
Rudder, 77 

effectiveness, 78 
positive deflection, 62 
sizing, 78 

Second-order differential equation, 
133 

Servo, control surface, 29 1, 293 
Settling time, 25 1, 253 
Short-period motion, 154 

approximate solution, 154 
damping ratio, 155 
flying qualities, 167 
undamped natural frequency, 155 

Side force coefficient, 20 
definition, 20 
due to change in P ,  121 
due to change in S,, 121 
due to change in a,, 121 
due to change in p, 12 1 
due to change in r, 121 

Sideslip angle, 21 
definition, 2 1 
sensor, 30 

Sidewash, 70 
effect on fuselage, 70 
effect on vertical tail, 70 

Small disturbance theory, 104 
applied to lateral equations, 108 
applied to longitudinal equations, 

lo8 
Solution to equations of motion forced 

response 
pitching motion due to step change 

in elevator angle, 141 
plunging motion due to sharp edged 

gust, 218 
rolling motion due to step change in 

aileron angle, 182 
yawing motion due to step change in 

rudder angle, 188 
free response 
lateral equations of motion, 193, 

198 
longitudinal equations of motion, 

150, 155 
Speed of sound, 6 
Speed stability, 72, 1 10 
Sperry, L., 281 
Spiral divergency, 18 1 
Spiral motion, 196 

approximate solution, 195 
flying qualities, 203 

Spoiler, 82 
Stability Augmentation System (SAS), 

42, 203, 3 12, 367 
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Stability derivative$, 108 
definition, 108 
methods for estimating derivatives, 

120,121 
Standard atmospheric table, 395 
State feedback design, 347, 368 

numerical method, 349 
State modeling, 324 
State observer, 355 
State transition matrix, 329 

by Laplace transformation, 328 
by matrix exponential, 329 
numerical solution, 332 

State variables, 148, 324 
Static longitudinal stability, 42 

definition, 43 
fuselage contribution, 52 
power effects, 55 
stick-fixed, 42 
stick-free, 69 
tail contribution, 47 
wing contribution, 45 

Static margin, 70 
stick-fixed, 70 
stick-free, 70 

Steady state error, 258 
acceleration error constant, 261 
positional error constant, 260 
velocity error constant, 260 

Stick fixed neutral point, 56 
Stick forces, 70 

gradients, 72 
Stick free neutral point, 69 

Tab surface, 7 1 
Tail efficiency, 47 
Tail volume ratio, 48 
Temperature, 4 
Temperature altitude, 26 
Time constant, 182, 291 

plunging motion, 220 
rolling motion, 182, 198 
spiral motion, 197 

Time for doubling or halving of 
motion amplitude, 143 

Transfer functions, 212, 237 
control servos, 292, 293 
definition, 212 
lateral, 286, 288, 290 
longitudinal, 283, 284, 286, 289 

Transient response; see solution of 
equations of motion forced and 
free response 

Trim tabs, 7 1 
Troposphere, 13 
True airspeed, 25 
Turbulence; see Atmospheric turbulence 

U-tube manometer, 8 
Upwash, 

due to wing, 46 
effect on fuselage, 46, 53 

Velocity hold autopilot, 309 
Viscosity, coefficient of, 5 

absolute, 5 
kinematic, 6 

Wake upset, 94 
Weathercock stability; see Directional 

static stability 
Wind shear, 229 
Wing rock, 185 
Wright brothers, 37, 96 

Yaw angle, 101, 188 
Yaw damper, 203 
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Yaw rate damping, 119 
Yawing moment coefficient, 20 

definition, 20 
due to change in P,  74, 121 
due to change in a,, 121 
due to change in a,, 77, 121 
due to change in p, 12 1 
due to change in r, 119, 121 

Yawing motion, 188 
single degree of freedom, 188 

Z force coefficient, 20 
definition, 20 
due to change in a, 1210 
due to change in dr, 11 3, 120 
due to change in a,, 12!0 
due to change in q, 1 I:!, 120 
due to change in u, 1 11, 120 

Zahm, A., 35 
Zeros, 245 
Ziegler/Nichols Method, 27 1 




