
The Effects of an ARMOR-Based SIFT
Environment on the Performance and
Dependability of User Applications

Keith Whisnant, Member, IEEE, Ravishankar K. Iyer, Fellow, IEEE,

Zbigniew T. Kalbarczyk, Member, IEEE, Phillip H. Jones III,

David A. Rennels, Member, IEEE, and Raphael Some, Member, IEEE

Abstract—Few distributed software-implemented fault tolerance (SIFT) environments have been experimentally evaluated using

substantial applications to show that they protect both themselves and the applications from errors. This paper presents an

experimental evaluation of a SIFT environment used to oversee spaceborne applications as part of the Remote Exploration and

Experimentation (REE) program at the Jet Propulsion Laboratory. The SIFT environment is built around a set of self-checking ARMOR

processes running on different machines that provide error detection and recovery services to themselves and to the REE applications.

An evaluation methodology is presented in which over 28,000 errors were injected into both the SIFT processes and two

representative REE applications. The experiments were split into three groups of error injections, with each group successively

stressing the SIFT error detection and recovery more than the previous group. The results show that the SIFT environment added

negligible overhead to the application’s execution time during failure-free runs. Correlated failures affecting a SIFT process and

application process are possible, but the division of detection and recovery responsibilities in the SIFT environment allows it to recover

from these multiple failure scenarios. Only 28 cases were observed in which either the application failed to start or the SIFT

environment failed to recognize that the application had completed. Further investigations showed that assertions within the SIFT

processes—coupled with object-based incremental checkpointing—were effective in preventing system failures by protecting dynamic

data within the SIFT processes.

Keywords—Software-implemented fault tolerance, distributed systems, high availability.

�

1 INTRODUCTION

THE Remote Exploration and Experimentation (REE)

project at JPL-NASA intends to use a cluster of

commercial off-the-shelf (COTS) processors to analyze the
data onboard and send only the results back to Earth. This

approach saves downlink bandwidth and provides the

possibility of making real-time, application-oriented deci-

sions. While failures in the scientific applications are not

critical to the spacecraft’s health in this environment

(spacecraft control is performed by a separate trusted

computer), they can be expensive nonetheless (with error

rates ranging from one per day to several per hour).
The missions envisioned to take advantage of the SIFT

(Software Implemented Fault Tolerance) environment for

executing MPI-based [23] scientific applications include the
Mars Rover, the Orbiting Thermal Imaging Spectrometer
(OTIS), the Next-Generation Space Telescope (NGST), the
Gamma Ray Large Area Space Telescope, and the Solar
Terrestrial Probe. Although a complete set of requirements
is closely dependent upon the particular characteristics of
the scientific applications, some facts are clear:

. The SIFT environment must be able to detect and
recover from its own crash and hang failures with
minimal impact on application performance. A
study of applications indicates that a performance
impact of 5 percent or less is desirable.

. The SIFT environment must detect and recover
application crashes and hangs.

. The SIFT environment must limit error propagation.

. Performance, power, and weight must be considered
when designing SIFT mechanisms.

This paper presents an experimental evaluation of a SIFT
environment constructed around Chameleon ARMOR pro-
cesses [19] that provide error detection and recovery for
themselves and for the REE applications. Applications are
protected from crashes and hangs by progress indicators, a
form of “I’m-alive” heartbeats used by the application to
convey its progress to the SIFT environment. The ARMOR

processes are protected through an object-based incremen-
tal checkpointing strategy called microcheckpointing and
internal self-checking mechanisms.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004 257

. K. Whisnant is with Sun Microsystems, 9515 Towne Centre Dr., San
Diego, CA 92121. E-mail: Keith.Whisnant@sun.com.

. R.K. Iyer and Z.T. Kalbarczyk are with the Center for Reliable and High-
Performance Computing, University of Illinois at Urbana-Champaign,
1308 W. Main St., Urbana, IL 61801.
E-mail: {iyer, kalbar}@crhc.uiuc.edu.

. P.H. Jones III is with the Computer Science Department, Washington
University, One Brookings Drive, St. Louis, MO 63130-4899.
E-mail: pjones@wustl.edu.

. D.A. Rennels and R. Some are with the Jet Propulsion Laboratory, 4800
Oak Grove Drive, Pasadena, California 91109.
E-mail: Rennels@cs.ucla.edu, Raphael.R.Some@jpl.nasa.gov.

Manuscript received 15 Jan. 2003; revised 22 Jan. 2004; accepted 26 Jan. 2004.
Recommended for acceptance by J. Bechta Dugan
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 118150.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

An error injection-based methodology was developed to

progressively stress the error detection and recovery

mechanisms of the SIFT environment while executing

applications [35]. This approach allows creating a wide

variety of error scenarios including multiple and correlated

failures. The injections comprise: 1) SIGINT/SIGSTOP

injections to reproduce clean crash and hang failures while

minimizing the possibility of error propagation or check-

point corruption, 2) register and text-segment injections to

reproduce corruption of the state in the register set and text

segment memory while allowing error propagation and

checkpoint corruption, and 3) heap injections to induce errors

in the dynamic heap data that maximize the possibility of

error propagation.

2 REE TESTBED AND APPLICATIONS

The REE computational model is shown in Fig. 1. The

trusted Spacecraft Control Computer (SCC) is radiation-

hardened (rad-hard) [21] and ultra-reliable, while the SIFT

environment is only used for the scientific applications. The

SCC schedules applications for execution on the REE cluster

through the SIFT environment, possibly sharing the

computational resources among several applications

through multitasking.
The REE project developed several hardware testbeds

ranging from 4 to 20 nodes for experimentation purposes.

Since the early spaceborne experiments are expected to

involve only a few processors, the experiments described in

this paper were executed on 4 and 6-node systems. Fig. 2

depicts the 4-node experimental testbed consisting of two

boards (A and B), each with two PowerPC 750 processors

running the Lynx real-time operating system. All processors

communicate with each other through the Ethernet net-

work, although the actual onboard computing platform is

expected to use a high-speed interconnect such as Myrinet.

Between one and two megabytes of RAM on each
processor are set aside to emulate local nonvolatile memory
available to each node. The nonvolatile RAM is expected to
store temporary state information that must survive hard-
ware reboots (e.g., checkpointing information needed
during recovery). A remote file system on a Sun work-
station stores program executables, application input data,
and application output data. This storage device is intended
to emulate nonvolatile memory visible to all nodes. Two
MPI-based applications are used in the experiments:

1. Mars Rover texture analysis program [7]. Cameras on
the Mars Rover take images of the Martian surface
and store the images on stable storage (the Sun
workstation disk in the testbed). The program
applies a series of filters to segment the image
according to texture features. Three filters are used
to extract vectors that describe image features along
each of its three axes. A statistical clustering
algorithm is applied to the feature vectors in order
to segment the image (e.g., to distinguish between
different rocks in the image). An output of the
segmented image in feature vector space is written
back to disk. The application takes rudimentary
checkpoints by updating a status file after each filter
completes. If the application restarts, it can skip
filters that have already completed, but it must redo
any filtering that was interrupted by the application
failure. For the purposes of this experiment, the
application executes on two nodes and analyzes one
image per run.

2. Orbiting Thermal Imaging Spectrometer (OTIS). This
application extracts land temperature and surface
emissivities from thermal images taken from sen-
sors. The program uses an algorithm to compensate
for atmospheric distortions in the thermal input
images and an algorithm for data compression.

The primary focus of the experiments presented in this

paper is the Mars Rover texture analysis program. Section 8

briefly examines both programs executing simultaneously

on the REE testbed to investigate how the SIFT environment

reacts to the added application load.

3 SIFT ENVIRONMENT

The REE applications are protected by a SIFT environment
designed around a set of self-checking processes called
ARMORs (Adaptive Reconfigurable Mobile Objects of
Reliability) that execute on each node in the testbed.
ARMORs control all operations in the SIFT environment
and provide error detection and recovery to the application

258 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

Fig. 1. REE platform of SIFT-protected COTS components interfacing with rad-hard Spacecraft Control Computer.

Fig. 2. REE testbed configuration.

and to the ARMOR processes. We provide a brief summary
of the ARMOR-based SIFT environment as implemented for
the REE applications; additional details of the general
ARMOR architecture appear in [19].

3.1 SIFT Architecture

An ARMOR is a multithreaded process internally structured
around objects called elements that contain their own private
data and provide elementary functions or services (e.g.,
detection and recovery for remote ARMOR processes,
internal self-checking mechanisms, or checkpointing sup-
port). Together, the elements constitute the functionality
that defines an ARMOR’s behavior. All ARMORs contain a
basic set of elements that provide core functionality,
including the ability to

1. implement reliable point-to-point message commu-
nication between ARMORs,

2. communicate with the local daemon ARMOR process,
3. respond to “Are-you-alive?” messages from the local

daemon, and
4. capture the ARMOR state.

Specific ARMORs extend this core functionality by adding
extra elements.

Each ARMOR is addressed by a unique identification
number, allowing messages to be sent to an ARMOR without
prior knowledge of the ARMOR’s physical location.
ARMORs communicate solely through message passing,
and messages are processed in separate threads within the
ARMOR. A message consists of sequential events that
trigger element actions. Elements subscribe to events that
they are designed to process (e.g., an element can subscribe
to an event that corresponds to the termination of the
application), and an element’s state can only be modified
while processing message events. This modular, event-
driven architecture permits the ARMOR’s functionality and
fault tolerance services to be customized by choosing the
particular set of elements that comprise the ARMOR [38]. A
technique called microcheckpointing [35] protects the ARMOR

state against process failures by taking checkpoints on an
element-by-element basis.

Internal assertions help protect the execution of the
ARMOR processes. Like microcheckpointing, these asser-
tions leverage the element-centric design of ARMOR

processes and, therefore, can be added or removed
dynamically [37]. Many of these assertions protect the
common infrastructure components found in all ARMOR

processes (e.g., thread creation, message transmission,
message retrieval, and event handling). Other assertions
are element-specific; the assertions protect functionality
unique to a particular element (e.g., the FTM’s element that
tracks all nodes in the SIFT environment performs sanity
checks on the ID of the daemon installed on each node).
Heap injections in Section 7 explore how internal ARMOR

assertions guard against error propagation in the SIFT
environment.

3.1.1 Types of ARMORs

The SIFT environment for REE applications consists of four
types of ARMOR processes: a Fault Tolerance Manager
(FTM), a Heartbeat ARMOR, daemons, and Execution
ARMORs.

Fault Tolerance Manager (FTM). A single FTM executes
on one of the nodes and is responsible for recovering from
ARMOR and node failures as well as interfacing with the
external Spacecraft Control Computer (SCC). The FTM
contains all of the basic ARMOR elements plus additional
elements to

1. accept requests to execute applications from the
SCC,

2. track resource usage of nodes in the SIFT
environment,

3. send “Are-you-alive?” messages to daemons to
detect node failures,

4. install Execution ARMORs for a particular application,
5. recover from failed subordinate ARMORs (i.e.,

Execution ARMORs and the Heartbeat ARMOR),
6. recover from node failures by migrating processes to

another node,
7. recover from application failures, and
8. send application status information to the SCC.

Heartbeat ARMOR. The Heartbeat ARMOR executes on a
node that is separate from the FTM. Its sole responsibility is
to detect and recover from failures in the FTM by
periodically polling for liveness.

Daemons. Each node on the network executes a daemon
process. Daemons are the gateways for ARMOR-to-ARMOR

communication, and they detect failures in local ARMORs.
In addition to the core ARMOR configuration, the daemon
contains elements that permit it to

1. install other ARMOR processes on the node,
2. communicate with local ARMORs,
3. cache the location of remote ARMORs,
4. route messages to remote ARMORs,
5. send “Are-you-alive?” inquires to local ARMORs to

detect hang failures,
6. detect crash failures in local ARMORs,
7. process “Are-you-alive?” inquires from the FTM,

and
8. notify the FTM to initiate recovery of failed local

ARMORs.

Execution ARMORs. Each application process is directly
overseen by a local Execution ARMOR. In addition to the
core set of elements, an Execution ARMOR contains
elements to

1. launch application processes,
2. detect crash failures in application processes,
3. handle progress indicator updates from the applica-

tion (to be described later), and
4. notify the FTM if the application process fails.

3.1.2 Error Detection and Recovery

Each ARMOR in the SIFT environment plays a specific role
in detecting and recovering from errors, as shown in Table 1.
Details of the error detection and recovery hierarchy can be
found in [19], [2].

3.2 Executing REE Applications

Before executing any applications, the SCC first performs a
one-time installation of the daemons, FTM, and Heartbeat

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 259

ARMOR on the REE cluster. The SCC then launches
applications through the SIFT environment, prompting the
FTM to install Execution ARMORs on the appropriate nodes
to support the application. Table 2 lists the steps involved in
executing an MPI application, including the one-time
installation of the SIFT environment. If the application
executes perpetually, then the Execution ARMORs are
never uninstalled; otherwise, they are removed from the
SIFT environment after the application completes. If several
applications are executed sequentially, then the FTM can
reuse Execution ARMORs across applications.

Fig. 3 illustrates a configuration of the SIFT environ-
ment with two MPI applications (from the Mars Rover and
OTIS missions) executing on a four-node testbed. Arrows
in the figure depict the relationships among the various
processes (e.g., the application sends progress indicators to
the Execution ARMORs, the FTM is responsible for

recovering from failures in the Heartbeat ARMOR, and
the FTM heartbeats the daemon processes). While the
ARMORs can be distributed across the REE cluster in
several ways, the FTM and Heartbeat ARMOR must reside
on separate nodes to tolerate single-node failures. The
entire SIFT environment can scale down to a minimal two-
node configuration, if necessary: the FTM executing on the
first node, the Heartbeat ARMOR on the second, and the
other ARMOR and application processes distributed across
both nodes.

Each application process is linked with a SIFT interface
that establishes a one-way communication channel with the
local Execution ARMOR at application initialization. The
interface used for these experiments contains functions for
initializing the communication channel, using progress
indicators to detect application hangs, and closing the
communication channel.

260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

TABLE 1
Error Detection and Recovery Responsibilities of ARMORs

TABLE 2
Steps in Running an REE Application in the SIFT Environment

As described in Table 2, the Execution ARMORs, the
Heartbeat ARMOR, and the FTM are children of their
respective daemons. The MPI process with rank 0 is also a
child of its Execution ARMOR. Because of the parent-child
relationship, crash detection for child processes is im-
plemented by having a thread within the parent process
block on a waitpid() call to the operating system.
Because the Execution ARMORs do not directly launch
MPI processes with ranks 1 through n, crash failures in
these MPI processes are also detected through application
heartbeating.

4 INJECTION EXPERIMENTS

Experiments were conducted to inject errors into the
application and SIFT processes in order to

1. stress the detection and recovery mechanisms of the
SIFT environment,

2. determine the failure dependencies among SIFT and
application processes,

3. measure the SIFT environment overhead on applica-
tion performance,

4. measure the overhead of recovering SIFT processes
as seen by the application, and

5. study the effects of error propagation and the
effectiveness of internal self-checks in limiting error
propagation.

The experiments used NFTAPE [32], a software frame-

work for conducting injection experiments. NFTAPE

separates the control, monitoring, and data collection

aspects of injection experiments from the code that actually

injects faults/errors. This design philosophy allowed us to

use a different error injector for each error model while

leaving the rest of the NFTAPE environment unchanged.

4.1 Error Models

The error models used in the injection experiments

represent a combination of those employed in several past

experimental studies [13] and those proposed by JPL

engineers [4]. Table 3 summarizes the error models used

and the definition of failure for each model.1

Our study aims at assessing the effectiveness of the SIFT

environment in recovering from failures when they occur,

regardless of their origin—single or multiple-bits. While a

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 261

Fig. 3. SIFT architecture for executing two MPI applications on a four-node network.

TABLE 3
Error Models Used in Injection Experiments

1. Errors are not injected into the operating system since our experience
has shown that kernel injections typically led to a crash, led to a hang, or
had no impact. Madeira et al. [22] used the same REE testbed to examine the
impact of transient errors on LynxOS.

single-bit error model is used in the experiments, errors are
injected into the target process until a failure manifests,
making it highly likely that there are several single-bit
errors in the target process at the time of the failure.
Observe that: 1) injecting into data values on the heap can
mimic the effects of writing outside valid array bounds,
2) corrupting registers can cause reading from an invalid
memory address, and 3) injecting an instruction operand (in
the text segment) that is used as an index to a lookup table
containing function offsets may result in accessing an
invalid function (address)—equivalent to the lookup table
data corruption. These examples illustrate that our ap-
proach allows for a wide range of failure scenarios.
Moreover, by using our error model, we are able to create
and analyze complex failure scenarios, including correlated
errors and error propagation, and show that they can be
handled by the ARMOR-based SIFT environment.2

4.2 Definitions and Measurements

System. We use the term system to refer to the REE cluster
and associated software (i.e., the SIFT environment and
applications). The system does not include the rad-hard
SCC or communication channel to the ground.

Experiment and run. An error injection experiment
targets a specific process (application process, FTM, Execu-
tion ARMOR, or Heartbeat ARMOR) using a specific error
model from Table 3. For each process/error model pair, a
series of runs is executed in which one or more errors are
injected into the target process.

Activated errors. An injection causes an error to be
introduced into the system (e.g., corruption at a selected
memory location or corruption of the value in a register).
An error is said to be activated if program execution accesses
the erroneous value. Only activated errors can result in a
failure.

Failures and system failures. A failure refers to a process
deviating from its expected (correct) behavior as deter-
mined by a run without fault injection. The application can
also fail by producing output that falls outside acceptable
tolerance limits as defined by an external application-
provided verification program.

A system failure occurs when either 1) the application
cannot complete within a predefined timeout or 2) the SIFT
environment cannot recognize that the application has
completed successfully. These failures are caused by errors

that propagate to an ARMOR’s checkpoint or to other
processes. System failures require that the SCC reinitialize
the SIFT environment before continuing, but they do not
threaten either the SCC or spacecraft integrity.3

Recovery time. Recovery time is the interval between the
time at which a failure is detected and the time at which the
target process restarts. For ARMOR processes, this includes
the time required to restore the ARMOR’s state from
checkpoint. In the case of an application failure, the time
lost while rolling back to the most recent application
checkpoint is accounted for in the application’s total
execution time, not in the recovery time for the application.

Perceived application execution time. The perceived
execution time is the interval between the time at which the
SCC submits an application for execution and the time at
which the SIFT environment reports to the SCC that the
application has completed.

Actual application execution time. The actual execution
time is the interval between the start and the end of the
application. This is a fixed overhead independent of the
actual application execution time (see Fig. 4). We differ-
entiate between the perceived and actual execution times
because it is important to assess how the SIFT environment
responds to errors during the setup and takedown phases
of an application’s execution.

Baseline application execution time. In the injection
experiments, the perceived and actual application execution
times are compared to a baseline measurement in order to
determine the performance overhead added by the SIFT
environment and recovery. Two measures of baseline
application performance are used: 1) the application
executing without the SIFT environment and without fault
injection and 2) the application executing in the SIFT
environment but without fault injection. The difference
between these two measures provides the overhead that the
SIFT processes impose on the application. Table 4 shows
that the SIFT environment adds less than two seconds to the
perceived application execution time. The actual execution
time overhead is not statistically significant.

The sections that follow add a third measurement,
namely, the application execution time in the presence of
failures and recovery. Comparing this measurement to the
baseline measurement provides the overhead (as seen by

262 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

2. In the initial phase of this study, we have injected multiple-bit errors
and we found that they did not cause any new failure scenarios as
compared with the range of failures observed in our experiments (while
applying fault models presented in this paper).

3. There exists a nonzero probability that errors from the SIFT
environment can propagate to the SCC. We consider this probability low
enough to discount for the purposes of this paper because the SCC interacts
with the SIFT environment only to submit an application job and to receive
the termination status of application. Even if error propagation happens in
these scenarios, the errors would not impact an executing application, which
is the primary focus of the experiments in this paper.

Fig. 4. Perceived application execution time versus actual application execution time.

the application) in recovering from failures in the system.

The mean application execution time and recovery time are

calculated for each fault model. Ninety-five percent con-

fidence intervals (t-distribution) are also calculated for all

measurements.

5 CRASH AND HANG FAILURES

This section presents results from SIGINT and SIGTOP

injections into the texture analysis application and SIFT

processes. We first summarize the major findings from over

700 crash and hang injections:

. All injected errors into both the application and SIFT
processes were recovered.

. Recovering from errors in the SIFT processes

imposed a mean overhead of 5 percent to the
application’s actual execution time. This 5 percent

overhead takes into account 25 cases out of

roughly 700 runs in which the application was

forced to block or restart because of the unavail-

ability of a SIFT process. Neglecting these cases,

the overhead imposed by recovering SIFT pro-

cesses is insignificant.
. Correlated failures involving some SIFT processes

and the application were observed. Although they
did not directly corrupt state, the crash and hang
failures caused the SIFT processes to become
unavailable for a period of time. In a few cases, this
unavailability impacted the application processes
that expect timely responses from the failed SIFT

process, thus causing the application to fail as well.
All correlated failures were successfully recovered.

. Recovery from the correlated failures was possible
because the checking and recovery processes in the
SIFT environment are decoupled from the entities
involved in correlated failures.

SIGINT and SIGSTOP signals were injected at random

intervals during the application’s execution. Results for

100 runs per target are summarized in Table 5. In some

cases, the injection time (used to determine when to inject

the error) occurred after the application completed. For

these runs, no error was injected.

5.1 Application Recovery

Table 5 shows that the application execution time under

hang failures (SIGSTOP injections) is greater than the

execution times under crash failures (SIGINT injections).

Recall that hang failures are detected through a timeout,

whereas application crashes can be detected almost

immediately by the Execution ARMOR through operating

system calls. The extra detection latency accounts for the

difference between these two measurements.
Application hangs are detected using a polling techni-

que: The Execution ARMOR executes a thread that “wakes

up” every 20 seconds to check the value of a counter that is

incremented by progress indicator messages sent by the

application. Because the Execution ARMOR polls the

counter value at fixed intervals, the error detection latency

for hangs can be up to twice the checking period. Fig. 5

illustrates an example of the application updating its

progress indicator from c ¼ 3 to c ¼ 4 before it hangs, but

after the Execution ARMOR has last checked the progress

indicator value. At the next check, the Execution ARMOR

sees the progress indicator has been updated to c ¼ 4, so it

concludes that the application has made progress during

the last checking interval even though it has hung. Only on

the next check does the Execution ARMOR see that the

progress indicator is unchanged at c ¼ 4. In the experi-

ments, this phenomena can add up to 40 s to the

application’s execution time.

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 263

TABLE 4
Baseline Application Execution Time without Fault Injection

TABLE 5
SIGINT/SIGSTOP Injection Results

5.2 SIFT Environment Recovery

FTM. The perceived execution time for the application is
extended if 1) the FTM fails while setting up the
environment before the application execution begins or
2) the FTM fails while cleaning up the environment and
notifying the Spacecraft Control Computer that the
application terminated (see Fig. 6). The application is
decoupled from the FTM’s execution after starting, so
failures in the FTM do not affect it. The only overhead in
actual execution time originates from the network con-
tention during the FTM’s recovery, which lasts for only
0.6-0.7s.

FTM-application correlated failure. The error injections also
revealed a correlated failure in which the FTM failure
caused the application to restart in two of the 178 runs.
Recall that, during the setup phase, the FTM installs an
Execution ARMOR and the MPI process with rank 0 on the
first node. The MPI process then installs the other MPI
process on the second node. The rank 0 process sends the
process ID of the other MPI process to the Execution
ARMOR on the second node via the FTM. If the FTM fails
during this period, then the rank 0 MPI process times out
waiting for the other process to start (i.e., the MPI
application aborts). Once the FTM recovers, the application
is restarted.

The SIFT environment is able to recover from this
correlated failure because the components performing the
detection (Heartbeat ARMOR detecting FTM failures and
Execution ARMOR detecting application failures) are not
affected by the failures. The Execution ARMOR resends the
“application-failed” message to the FTM until it receives an
acknowledgment. Once recovered, the FTM receives the
Execution ARMOR’s message and restarts the application.

Execution ARMOR. Of the 198 crash/hang errors
injected into the Execution ARMORs, 175 required recovery
only in the Execution ARMOR. For these runs, the applica-
tion execution overhead was negligible. The overhead

reported in Table 5 (up to 10 percent for hang failures)

resulted from the remaining 23 cases in which the

application was forced to restart.
Execution ARMOR-application correlated failure. If the

application process attempted to contact the Execution

ARMOR (e.g., to send progress indicator updates or to notify

the Execution ARMOR that it is terminating normally) while

the ARMOR was recovering, the application process is

blocked until the Execution ARMOR completely recovers.

Because the MPI processes are tightly coupled, a correlated

failure is possible if the Execution ARMOR overseeing the

other MPI process diagnosed the blocking as an application

hang and initiated recovery. Section 8 explores this

phenomenon in greater detail.
This correlated failure occurred most often when the

Execution ARMOR hung (i.e., due to SIGSTOP injections):

Twenty-two correlated failures were due to SIGSTOP

injections as opposed to one correlated failure resulting

from an ARMOR crash (i.e., due to SIGINT injections). This

is because Execution ARMOR crash failure is detected

immediately by the daemon through operating system

calls, making the Execution ARMOR unavailable for only a

short time. The time during which the Execution ARMOR is

unavailable from hangs, however, can be significant since

hang failures are detected via 10-second heartbeat. Increas-

ing the daemon-to-Execution ARMOR heartbeat frequency is

one way to reduce the detection latency and, thus, improve

Execution ARMOR availability. Care must be taken, how-

ever, not to lower the heartbeat period to a point at which

false alarms are raised.
Heartbeat ARMOR. Direct SIGINT/SIGSTOP injections

into the Heartbeat ARMOR did not affect the application.

The Heartbeat ARMOR was not needed for the setup or

completion phases of a run, so its failure affected neither the

perceived nor actual execution time of the application.

264 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

Fig. 5. Application hangs detected through progress indicator.

Fig. 6. FTM failures in setup and takedown of SIFT processes affect perceived application execution time.

6 REGISTER AND TEXT-SEGMENT INJECTIONS

This section expands the scope of the injections to further
stress the detection and recovery mechanisms by allowing
for the possibility of checkpoint corruption and error
propagation to another process. Results from approxi-
mately 9,000 single-bit errors into the register set and text
segment of the application and SIFT processes showed that:

. Most register and text-segment errors led to crash
and hang failures that were recovered by the SIFT
environment.

. Eleven of the approximately 700 observed failures
led to system failures in which either the application
did not complete or the SIFT environment did not
detect that the application successfully completed.
These 11 system failures resulted from injected
errors that corrupted an ARMOR’s checkpoint or
propagated outside the injected process.

. Text-segment errors were more likely than register
errors to lead to system failures. This was because
values in registers typically had a shorter lifetime
(i.e., they were either never used or quickly over-
written) when compared to information stored in the
text segment.

Table 6 summarizes the results of approximately 6,000 reg-
ister injections and 3,000 text-segment injections into both the
application and ARMOR processes. Failures were classified
into four categories:

1. Segmentation fault. An attempt is made to access an
unmapped or invalid memory address. Corrupting a
register that stores a pointer is a common cause for
this type of failure.

2. Illegal instruction. The processor attempts to exe-
cute an instruction with an invalid opcode. For
example, an indirect jump or branch (i.e., jumping or
branching to a location specified by the contents of a
register) can fail due to corruption of the destination
register.

3. Hang. The target process ceases to make progress.

4. Assertion. The error is detected through assertion
checks within the ARMOR.

In Table 6, the “Suc. Rec.” column denotes the number of

errors from which the system successfully recovered. Errors

that were not successfully recovered led to system failures.

Table 6 shows that, unlike the SIGINIT/SIGSTOP injections,

register and text-segment injections resulted in 11 system

failures: four FTM failures, five Execution ARMOR failures,

and two Heartbeat ARMOR failures.

6.1 SIFT Environment Recovery

FTM. Table 6 shows that the FTM successfully recovered
from all register injections. Two text-segment injections
were detected through assertions on the FTM’s internal data
structures and both of these errors were recovered. The
extent to which assertions prevent corrupted state from
escaping the process is investigated via heap injections in
Section 7.

Table 6 also shows that the FTM could not recover from
four text-segment errors. In each case, the error corrupted
the FTM’s checkpoint prior to crashing. Because the
checkpoint was corrupted, the FTM crashed shortly after
being recovered. This cycle of failure and recovery repeated
until the run timed out.

There were seven cases of a correlated failure in which
the FTM failed during the application’s initialization: three
from text-segment injections and four from register injec-
tions. Both the FTM and application recovered from all
seven correlated failures.

FTM-daemon correlated error. Text-segment injections
during the Execution ARMOR’s initialization uncovered a
race condition during early experiments between the thread
installing the ARMOR and the thread notifying the FTM of
failure. This race condition prevented the FTM from
recovering the failed Execution ARMOR.

Fig. 7a illustrates the interactions between the FTM, the
daemon, and the Execution ARMOR. The FTM first instructs
the daemon to install an Execution ARMOR. After the
process is spawned, the daemon sends an acknowledgment

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 265

TABLE 6
Register and Text-Segment Injection Results

back to the FTM. This acknowledgment prompts the FTM to

register the ARMOR (i.e., the FTM adds the Execution

ARMOR to its list of subordinate ARMORs). Meanwhile, the

daemon detects a failure in the Execution ARMOR and

notifies the FTM. The FTM then initiates recovery by having

the daemon reinstall the Execution ARMOR.
Under a different timing scenario, depicted in Fig. 7b, the

failure notification from the daemon to the FTM reaches the

FTM before the acknowledgment of the ARMOR installation.

In this case, the FTM has no record of the Execution

ARMOR, and the failure notification thread aborts. The

acknowledgment later arrives, and the Execution ARMOR is

registered. The daemon, not having received an acknowl-

edgment for its failure notification message, eventually

times out and resends the notification. The FTM detects this

as a duplicate message and drops it before processing; thus,

the Execution ARMOR is not recovered. This race condition

was eliminated by adding the Execution ARMOR in the

FTM’s table before instructing the daemon to install the

ARMOR.
Execution ARMOR. There were three register injections

and two text-segment injections into the Execution ARMOR

that led to a system failure. In each of these cases, the error

propagated to other ARMOR processes or to the Execution

ARMOR’s checkpoint:

1. One text-segment injection and three register injec-
tions caused errors in the Execution ARMOR to
propagate to the FTM (i.e., the error was not fail-
silent). Although the Execution ARMOR did not
crash, it sent corrupted data to the FTM when the
application terminated, causing the FTM to crash.
The FTM state in its checkpoint was not affected by
the error, so the FTM was able to recover to a valid
state. Because the FTM did not complete processing
of the Execution ARMOR’s notification message, the
FTM did not send an acknowledgment back to the
Execution ARMOR. The missing acknowledgment
prompted the Execution ARMOR to resend the faulty
message, which again caused the FTM to crash. This
cycle of recovery followed by the retransmission of
faulty data continued until the run timed out.

2. One of the text-segment injections caused the
Execution ARMOR to save a corrupted checkpoint
before crashing. When the ARMOR recovered, it
restored its state from the faulty checkpoint and
crashed shortly thereafter. This cycle repeated until
the run timed out.

In addition to the system failures described above, three

text-segment injections into the Execution ARMOR resulted

in the restarting of the texture analysis application. All three

of these correlated failures were successfully recovered.
Heartbeat ARMOR. The Heartbeat ARMOR recovered

from all register errors, while text-segment injections

brought two system failures. Although no corrupted state

escaped the Heartbeat ARMOR, the error prevented the

Heartbeat ARMOR from receiving incoming messages

(including a heartbeat reply from the FTM) and falsely

detecting that the FTM had failed. The ARMOR then

began to initiate recovery of the FTM by attempting the

following steps: 1) instructing the FTM’s daemon to

reinstall the FTM process and 2) instructing the FTM to

restore its state from checkpoint after receiving acknowl-

edgment that the FTM has been successfully reinstalled.
As a result of the error, the Heartbeat ARMOR never

received the acknowledgment in Step two, thus prevent-

ing it from sending a follow-up message to restore the

FTM state. Although the immediate problem (i.e., causing

a situation in which the FTM is left unrecovered) can be

solved by combining the reinstallation of the FTM and

state restoration into a single operation without the

intermediate acknowledgment, the underlying problem

persists: The Heartbeat ARMOR suffers from receive

omissions and will continue to detect a failed FTM during

subsequent heartbeat rounds. To detect the receive

omission error, an element can be added to the Heartbeat

ARMOR that performs a series of self-tests on key ARMOR

functionality before the heartbeat messages are sent. These

self-tests generate a signature, which can be verified by

either the local daemon or by the receiving ARMOR.
Among the successful recoveries from text-segment

errors shown in Table 6, four involved corrupted heartbeat

messages that caused the FTM to fail. Although faulty data

escaped the Heartbeat ARMOR, the corrupted message did

266 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

Fig. 7. (a) Correct process interactions. (b) Process interactions arising from race condition.

not compromise the FTM’s checkpoint. Thus, the FTM was

able to recover from these four failures.

7 HEAP INJECTIONS

Two sets of experiments are conducted to further broaden

the scope of the injections by exclusively targeting the

dynamic data stored in heap memory. In the first set of

experiments, errors are repeatedly injected into the heap

memory until the target process fails. The second set of

experiments focuses the heap injections on specific subsets

of data in heap memory in order to closely examine error

propagation and the effectiveness of internal assertions in

preventing system failures due to error propagation.

7.1 SIFT Processes: Crash and Hang Failures

In the first set of experiments, all regions of the target’s heap

memory were candidates for error injection. Each of the

100 runs per target shown in Table 7 involved several

injections to bring about a crash or hang failure. As a result,

approximately 6,700 single-bit heap errors were injected

across all targets. Even with the high injection rate, only

about half of the 100 runs per target showed any effects on

the system.
FTM. All manifested heap errors in the FTM were

successfully recovered, including three instances in which

the error propagated to the Execution ARMOR. The

propagated errors caused the Execution ARMOR to crash

when accepting progress indicator updates from the

application.
Execution ARMOR. The application restarted on eight

occasions in which the Execution ARMOR failed, causing the

application execution time to be more than the baseline

measurement. In all but one of 41 failure scenarios, the

application completed successfully after the Execution

ARMOR recovered. The one exception occurred because a

corrupted state in the Execution ARMOR prevented it from

recognizing that the application had completed.
Heartbeat ARMOR. All errors were successfully handled

by the SIFT environment. Three errors corrupted the

heartbeat messages sent by the ARMOR to the FTM, causing

the FTM to crash. In one run, corrupted message header

data caused the Heartbeat ARMOR’s daemon to crash.

Because daemon failures are treated as node failures, the

FTM migrated the Heartbeat ARMOR to another node. The

application completed in spite of the daemon failure and

subsequent Heartbeat ARMOR migration.

7.2 SIFT Processes: Targeted Injections into
Heap Data

Injections described in the previous section did not

discriminate as to the type of data injected. Data structures

on the heap contain a mix of data fields that store

information and pointers that connect the various items of

the data structures (e.g., forward and backward pointers in

doubly-linked lists). Careful examination of the experi-

mental results showed that crash failures are most often

caused by segmentation faults raised when a corrupted

pointer is dereferenced. To maximize the chances of

observing system failures due to error propagation, a set

of experiments was performed in which only a single error

in data (not pointers) was injected. There is a good chance

that these data errors propagate and cause system failures

since dynamic data are often used either directly or

indirectly4 by the SIFT processes.

These experiments target the FTM because it contains

the most state of all the ARMOR processes and because

the FTM is used in all three phases of the run’s execution

(initialization of the SIFT environment, executing the

application, and cleanup of the SIFT environment), thus

providing more opportunities for system failures to result

from escaped errors.
Results from injections into the FTM heap memory are

grouped by the element into which the error was injected
(recall from Section 3.1 that an ARMOR is composed of
elements and that each element contains private state).
Table 8 shows the number of system failures observed from
100 error injections per element, classified by their effect on
the system.

Many data errors were detectable through internal
assertions within the FTM, but not all assertions were
effective in preventing system failures. One of four
scenarios results after a data error is introduced:

1. The data error was not detected by an assertion and
has no effect on the system. The application
completes successfully as if there were no error.

2. The data error was not detected by an assertion but
led to a system failure. Because the SIFT process
could not detect an incorrect condition in the system,
only higher-level timeouts from the Spacecraft
Control Computer can detect these situations (i.e.,

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 267

4. A load instruction is an example of an instruction directly accessing
heap data. Indirect access to heap data includes instructions that
manipulate data in registers that are loaded from the heap.

TABLE 7
Heap Injection Results

if the SCC does not receive application results within
x seconds, then it can conclude that the submission
request failed). None of the system failures impacted
the application while it was executing—the failures
either prevented the application from starting or
prevented the SIFT environment from cleaning up
after the application completed.

3. The data error was detected by an assertion before
propagating to the FTM’s checkpoint or to another
process. After an assertion fired, the FTM killed itself
and recovered as if it had experienced an ordinary
crash failure.

4. The data error was detected by an assertion but only
after the error had propagated to the FTM’s
checkpoint or to another process. Rolling back the
FTM’s state in these circumstances was ineffective.
System failures resulted from which the SIFT
environment could not recover. These results show
that error latency is a factor when recovering from
errors in a distributed environment.

The least sensitive elements were those modules whose
state was substantially read-only after being written early
within the run. With assertions in place, none of the data
errors led to system failures. At the other end of the
sensitivity spectrum, 28 errors in two elements caused
system failures. In contrast with the elements causing no
system failures, the data in mgr_armor_info and
node_mgmt were repeatedly written to during the
initialization phases of a run.

Table 9 shows the efficiency of assertion checks in
preventing system failures. The rightmost two columns
represent the total number of runs in which assertions
detected errors in an element. For example, assertions in the
mgr_armor_info element detected 27 errors, and 19 of
those errors were successfully recovered (this information is
depicted by the Venn diagram to the right of Table 9).

The data show that assertions coupled with the incre-
mental microcheckpointing were able to prevent system
failures in 58 percent of the cases (37 of 64 runs in which
assertions fired). Recall that, after an event within a message

268 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

TABLE 8
System Failures Observed through Heap Injections

TABLE 9
Efficiency of Assertion Checks in Preventing System Failures

is processed by an element, only this element’s state is

copied to the checkpoint buffer. Incidental corruption to

other elements (e.g., an error causing the event to overwrite

another element’s data) will not be saved to the checkpoint

buffer. Thus, a clean copy of the corrupted element’s state
exists in the ARMOR’s checkpoint for recovery as long as

future events do not legitimately write to the corrupted

element.
On the other hand, Table 9 shows that assertions

detected the error too late to prevent system failures in

27 cases. For example, 14 of the 17 runs in which assertions

detected errors in the node_mgmt element resulted in

system failures. This element translates hostnames into

daemon IDs. When the SCC instructs the FTM to execute an

application on a particular set of nodes, the FTM translates
the hostnames to daemon IDs via the node_mgmt element.

If the element cannot perform the translation, it uses a

default daemon ID of zero for its response. The FTM

attempts to send a message to the translated daemon ID,

but it currently does not check to make sure that the

returned daemon ID is nonzero. If the translation fails

because of an error, the FTM’s daemon detects that the

message destination ID is invalid. The detection occurs too

late, however, since the error already propagated outside
the FTM.

8 SIFT-INDUCED APPLICATION FAILURES

The error injection experiments identified scenarios in

which a failure in a SIFT process induces a failure in the

application process. These failures are a side effect of
1) having the SIFT environment monitor the application

processes for hang failures and 2) having the application

processes interact with the SIFT environment. The like-

lihood of SIFT-induced application failures depends upon

the failure rate of the SIFT process and several performance

parameters, including the frequency at which the applica-

tion interfaces with the SIFT process (progress indicators),

timeout used to detect application hangs, application
recovery time, and SIFT recovery time. These factors can

be incorporated into the Stochastic Activity Network (SAN)

shown in Fig. 8, which models the behavior of one

application process when interfacing with its local Execu-

tion ARMOR.

The model begins with tokens in the app_okay and

sift_okay places, indicating that both the application and

SIFT process are operating normally. From these normal

states, two independent activities are enabled:

1. The application can interface with the local SIFT
process (e.g., to send a progress indicator update)
through theapp_interface_rate activity, placing
the application in the app_block state.

2. The SIFT process can fail through the sift_�
activity, temporarily placing the SIFT process in
the sift_fail state until it is recovered via the
sift_� activity.

If the SIFT process is in the sift_okay state, then the

instantaneous activity leading to app_interface is

enabled, causing the application to transition out of the

app_block state. SIFT failures do not affect the application

once the application enters the app_interface state, i.e.,

once the SIFT process receives a request, it is able to send a

reply to the application without failing.
If the application attempts to interface with the SIFT

process while the SIFT process is unavailable, then the

application remains in theapp_block state until either 1) the

SIFT process is recovered, at which time the instantaneous

activity (from app_block to app_interface) is reen-

abled, or 2) another SIFT process detects the hung application

through lack of a progress indicator update, represented by

the app_timeout activity with uniformly distributed firing

times. A scenario corresponding to case 2 is illustrated in

Fig. 9. In this scenario, the application process (App rank 0)

sends progress indicators to the Execution ARMOR, while the

ARMOR is unavailable due to a failure at an earlier time. As a

result, the application blocks until the Execution ARMOR

recovers. The blocking of one application process eventually

causes the other process (App rank 1) of the MPI application to

block as well. If the blocking persisted past the progress

indicator timeout period, the Execution ARMOR overseeing

the other application process declares an application hang

(hang detected) and initiates recovery. The application hang

can occur anytime within a checking interval (timeout period

for the progress indicator); this can be appropriately modeled

by uniformly distributed firing time for app_timeout

activity. For simplicity in the model, we assume that the

application hangs as soon as one of its processes blocks.

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 269

Fig. 8. Stochastic activity network for modeling SIFT-induced application failures.

If no progress indicators are sent in time, the application
transitions into the app_fail state until it is recovered via
app_� activity. Application recovery is conditioned on the
SIFT process being operational since the SIFT process is
responsible for detecting application failures and restarting
the application process. Note that the application process
does not independently fail in this model—all failures are
induced by the SIFT process being unavailable to process
application requests within a predefined timeout period.5

8.1 Application Availability

We define the application’s availability as the percentage
of time that a token is in either the app_okay or
app_interface states. According to this definition,
application unavailability is given by the percentage of
time that a token is in either the app_block or
app_fail state. While in the app_block state, the
application’s execution is suspended until the Execution
ARMOR recovers to process the application’s interfacing
request. If the Execution ARMOR recovers before the
application timeout expires, then the interfacing request
completes and the application resumes execution. In this
case, the time spent in the app_block state only
degrades the application’s performance—there is no need
to recover from any application failure. During this time,
however, we assume that the application cannot execute
its specified tasks. For this reason, the time spent in the
app_block state is counted against the application’s
availability. If a less conservative definition of availability
were used (i.e., only counting the time spent in the
app_fail against availability), then the availability would
be higher than the figures reported in this section. The
Möbius tool [10] was used to simulate the SAN model.

8.2 Effect of Timeout Period on
Application Availability

The timeout parameter app_timeout is crucial in deter-
mining how quickly the SIFT environment responds to a
blocked application. In general, the user prefers a short
timeout period to detect application hang failures quickly.
On the other hand, a short timeout period conflicts with the
desire to minimize the number of SIFT-induced application
failures. Allotting a generous timeout period gives, on

average, a failed SIFT process more time to recover and
respond to the application’s request.

The first set of experiments examines the application’s
availability for different application timeout periods (in the
SAN model, this corresponds to changing the rate at which
the app_timeout activity fires, which represents how
frequently a SIFT process checks for progress indicator
updates from an application process). All other parameters
are fixed as specified by Table 10: The application sends a
request to the local SIFT process every 0.5s (i.e., two
requests/s), and each request takes, on average, 0.1s to
complete. Both the SIFT process and application process
require 0.5s to recover from a failure. These parameters are
derived from the error injection experiments discussed
earlier in the paper.

The application interfacing rate corresponds to the rate
at which the application sends progress indicator updates
to the local Execution ARMOR. Consequently, the applica-
tion timeout cannot be set to less than the time between
progress indicator updates; otherwise, the local Execution
ARMOR would always detect that the application is making
insufficient progress, making the ARMOR continually
restart the application. With this in mind, the application
timeout period is varied between 0.625s and 20s. We also
use two different values of the SIFT failure rate sift_�:
10�4 failures/s and 10�3 failures/s. Table 11 summarizes
the application availability as a function of both the
application timeout period and SIFT failure rate. The
application can be in one of four states according to the
SAN model (app_okay, app_interface, app_block,
and app_fail). Table 11 reports the steady-state prob-
ability that the application is in each of these states.

Table 11 shows that, for a given SIFT failure rate, the
application availability is largely unaffected by the applica-
tion timeout period. This observation runs counter to the
reasoning outlined earlier in this section. It would seem that
a larger application timeout period would result in fewer
SIFT-induced application failures (hence, higher application

270 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

Fig. 9. Application Execution ARMOR correlated failure.

TABLE 10
Fixed Parameter Values for the SAN Model

5. If the application processes were allowed to fail independently, then
the SAN model would need to account for transitions to the app_fail

state from the app_okay and app_interfacing states as well. Our
analysis, however, focuses on the effects of an imperfect SIFT environment
on application availability.

availability) because the larger timeout period gives the
SIFT process more time to recover from any failure it might
experience. The SAN model, however, reveals that adjust-
ing the application timeout is a zero sum game with respect
to application unavailability. Time spent in the app_fail

state increases as the application timeout period shortens as
expected, but this is compensated for by the application
spending less time in the app_block state. Because only
the app_fail and app_block states contribute to the
application’s unavailability, there is no net change in the
application’s unavailability as the application timeout
period changes.

Closer inspection of the SAN model indicates that this
conclusion is indeed reasonable. The application enters
the blocked state whenever it attempts to interface with
the local SIFT process. If the SIFT process is alive at this
time, then the application immediately transitions to the
app_interface state. If the SIFT process is unavailable,
then the application stays in the blocked state until 1) the
SIFT process recovers or 2) the SIFT process detects a
hung application from lack of progress indicator updates.
If the latter condition occurs, then the application
transitions into the app_fail state. The application only
leaves this state once the local SIFT process recovers the
application process. This recovery, however, does not
occur as long as the SIFT process remains unavailable—
the very condition that led to the application failure in
the first place. As can be seen, the combined amount of
time spent in the app_block and app_fail states
depends only on the amount of time that the SIFT process
is in the sift_fail state.

For a SIFT failure rate of 10�4 failures/s, the application
availability averages around 0.99997. We reiterate that the
application unavailability in this number originates only
from the SIFT-induced application failures. Thus, this
figure can be viewed as an upper bound for application
availability—taking into account other sources of applica-
tion failures would reduce the application’s availability.
Also, note that, if a less restrictive definition of application
availability is adopted (i.e., one that includes the time spent
in the app_block state), then the application availability

ranges between 0.99997 for the 0.625s timeout period and

over five nines (> 0.99999) for the 20s timeout period.
In summary, there is no evidence of the seemingly

intuitive trade off between low hang detection latencies and
infrequent SIFT-induced application failures. The user,

therefore, can set the application timeout period without
regard to the impact of SIFT-induced application failures. In

fact, the user can concentrate on minimizing hang detection
latency without being concerned that a shortened applica-

tion timeout increases the rate of SIFT-induced application
failures. The flip side of this observation is that, to maximize
application availability, the SIFT designer must either

reduce the rate at which the SIFT processes fail (by making
the SIFT environment more robust or more self-checking) or

reduce the time needed to recover a failed SIFT process.

8.3 SIFT Failure Rate/Recovery Time Trade Off

Holding the model parameters at the values set earlier in

Table 10, the SIFT failure rate (sift_�) and SIFT
recovery rate (sift_�) can be varied to explore how

the SIFT environment’s availability impacts the applica-
tion. In the previous analyses, the SIFT recovery time has
been fixed at 0.5s. When the local SIFT process

experiences 10�4 failures/s, the application availability is
approximately 0.99997, as shown in Table 11. When

interpreting these results, it is necessary to understand
what the 0.5s recovery time represents.

According to the SAN model in Fig. 8, the SIFT process is
either in the sift_okay or sift_fail state. The recovery

activity in the model is immediately enabled once the SIFT
process enters the sift_fail state, which effectively

means that there is no detection latency (there is no time
between the failure, the detection of the failure, and the

initiation of recovery). While this model is suitable for
handling crash failures in which the operating system
provides near-immediate detection, this model fails to take

into account the latency for detecting hang failures. In order
to detect a SIFT process hang, the local daemon must

periodically poll the SIFT process for liveness, which
introduces a natural detection latency dictated by the

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 271

TABLE 11
Application Availability for Different Application Timeout Periods

polling period. There are two ways in which the SAN
model can account for this nonzero detection latency:

1. A new state, sift_recovering state, can be added
after the sift_fail state to explicitly incorporate
nonzero detection latency into the model. A token
exists in the sift_fail state while the detection is
pending for a failed SIFT process. The token enters
the sift_fail state from the sift_okay state
with a rate of sift_� and exits the sift_fail

state with a rate of sift_detection_rate once
recovery begins. As in the original model, recovery
occurs when the token transitions back to the
sift_okay state via the sift_� activity.

2. Instead of adding a new state, the detection latency
can be rolled into the transition rate for the sift_�
activity, giving an effective recovery time that
accounts for time needed to detect the SIFT process
failure.

This section adopts the latter approach as it avoids
structural changes to the model. When the sift_� activity
takes into account the hang detection latency, it is expected
that the effective SIFT recovery time will be greater than the
0.5 seconds used earlier in this section. Table 12 summarizes
the application availability when the SIFT recovery time is
set to 1s, 5s, and 10s for a range of SIFT failure rates.

As expected, application availability degrades as the
SIFT recovery time lengthens. Keep in mind, however, that
the model parameters in Table 10 assume an aggressive
interfacing rate of two requests per second. If the applica-
tion interfaces with the SIFT process less frequently, then
the application has fewer opportunities to become blocked
on a recovering SIFT process. Table 13 shows application
availability for different interfacing rates when the SIFT
recovery time is fixed at a generous 10s. Application
unavailability improves—around 20 percent—when the

interfacing rate drops to 0.25 requests/s (4s between
interfacing requests) from the original two requests/s.

Results from this section suggest that improving either
the SIFT recovery time or SIFT failure rate can lead to
marked improvements in the application’s availability.
These findings underscore the importance of designing
the SIFT environment to be resilient to its own errors.
ARMOR processes are designed with this point in mind—
the ARMOR process architecture accommodates a wide
variety of internal self-checking techniques to bolster the
error resiliency of the ARMOR processes in the SIFT
environment.

9 MULTIPLE APPLICATIONS

In this section, we briefly present results in which the Mars
Rover and OTIS applications are executed simultaneously
on a six-node testbed. This configuration was chosen so that
each application process executes on a dedicated node;
thus, the processor utilization for each node is comparable
to that in the previous single-application experiments.
These experiments demonstrate that having the SIFT
environment control another application does not degrade
the performance or dependability of the system.

Table 14 summarizes the mean performance character-
istics of the two-application testbed across all targets and
error models (SIGINT, SIGSTOP, register, and text seg-
ment). The first row shows the baseline execution of both
applications simultaneously executing on the six-node
testbed without the SIFT environment. The second row
reports mean application execution time and recovery time
when the master OTIS application is targeted for error
injection, while the final row reports similar figures for
injections into the SIFT processes averaged across all
ARMORs (the FTM, Execution ARMOR for the master OTIS
process, and Heartbeat ARMOR).

272 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

TABLE 12
Application Availability as a Function of SIFT Failure Rate and SIFT Recovery Time

TABLE 13
Application Availability for Various Interfacing Rates

The Mars Rover application execution time actually
improved when the OTIS application was injected with
errors. While the OTIS application was hung or recovering
from an error, the Mars Rover application no longer
contended with OTIS for network resources.

The last line in Table 14 shows that recovering from
failures in the SIFT processes adds only 1-3 percent
overhead to the application baseline execution times. Two
observations suggest that the SIFT environment adds a
fixed amount of overhead to the system regardless of the
application load:

. There is a relatively small (one second) difference
between the perceived and actual application execu-
tion times. This represents the extra time spent
installing and uninstalling the SIFT processes neces-
sary to support the application. Note that this
difference is comparable to the perceived/actual
difference when running the Mars Rover application
alone.

. ARMOR recovery time is similar to the ARMOR

recovery time when running only one application.
This indicates that the added application load does
not impact recovery of the SIFT processes.

Injection results also showed that the kinds of errors
observed were similar to those from the previous experi-
ments. Table 15 groups the results from almost 11,000 injec-
tions according to error model: SIGINT/SIGSTOP and
register/text-segment injections. The two rows marked
“ARMORs” show cumulative numbers for all SIFT processes.

All but two of the SIGINT/SIGSTOP errors were
successfully recovered. The two that led to system failures
were SIGSTOP injections into OTIS before the application
had “created” its progress indicators.6 Until the progress

indicators are created, the Execution ARMOR cannot detect
hang failures in the application. To remedy this situation,
the Execution ARMOR can be designed to assume that the
application has hung if progress indicators are not created
within x seconds of starting unless the application tells the
ARMOR otherwise. By assuming this, however, the applica-
tion becomes less transparent to the SIFT environment (i.e.,
programmers not wanting to use progress indicators will be
forced to make a function call in their programs to disable
checking within the Execution ARMOR).

As with the single-application experiments, Table 15
shows that a majority of the register and text-segment errors
resulted in crash (segmentation fault and illegal instruction
exceptions) and hang failures. All but 14 of the 566 errors
were recoverable. Of these recoverable errors, 25 were
correlated failures involving a SIFT process and an
application process. The 14 system failures were caused
by errors that propagated either to the ARMOR’s checkpoint
or to another process. Text-segment errors caused 12 of the
14 system failures.

Injections into an application only affect processes within
the targeted application. Failure of an application caused
neither a failure in the other application nor a failure in a
SIFT process. The error injection experiments empirically
validate that the ARMOR-based SIFT environment isolates
application failures, which is an important trait of a SIFT
environment intended to manage several applications at a
time. In general, SIFT environments must ensure that the
added complexity of managing multiple applications does
not impair the dependability of the SIFT environment or
other application processes in the system.

10 LESSONS LEARNED

SIFT overhead should be kept small. System designers
must be aware that SIFT solutions have the potential to
degrade the performance and even the dependability of the
applications they are intended to protect. Our experiments

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 273

TABLE 14
Performance Summary under Error Injection when Running Two Applications Simultaneously

TABLE 15
Error Classification when Running Two Applications Simultaneously

6. Before any progress indicators are sent, the application must tell the
Execution ARMOR at what frequency to check for progress indicator
updates. This is when progress indicators are “created” from the
perspective of the Execution ARMOR.

show that the functionality in SIFT can be distributed
among several processes throughout the network so that the
overhead imposed by the SIFT processes is insignificant
while the application is running.

SIFT recovery time should be kept small. Minimizing
the SIFT process recovery time is desirable from two
standpoints: 1) Recovering SIFT processes have the poten-
tial to affect application performance by contending for
processor and network resources, and 2) applications
requiring support from the SIFT environment are affected
when SIFT processes become unavailable. Our results
indicate that fully recovering a SIFT process takes approxi-
mately 0.5s. The mean overhead as seen by the application
from SIFT recovery is less than 5 percent, which takes into
account 10 out of roughly 800 failures from register, text-
segment, and heap injections that caused the application to
block or restart because of the unavailability of a SIFT
process. The overhead from recovery is insignificant when
these 10 cases are neglected.

SIFT/application interface should be kept simple. In
any multiprocess SIFT design, some SIFT processes must be
coupled to the application in order to provide error
detection and recovery. The Execution ARMORs play this
role in our SIFT environment. Because of this dependency,
it is important to make the Execution ARMORs as simple as
possible. All recovery actions and those operations that
affect the global system (such as job submission, preparing
the node to execute an application, and detecting remote
node failures) are delegated to a remote SIFT process that is
decoupled from the application’s execution. This strategy
appears to work, as only 5 of 373 observed Execution
ARMOR failures7 led to system failures.

SIFT availability impacts the application. Low recovery

time and aggressive checkpointing of the SIFT processes

help minimize the SIFT environment downtime, making the

environment available for processing application requests

and recovering from application failures.
If the SIFT environment cannot recover from a failure,

then responsibility rests on the SCC or the ground station to
recover the REE cluster. This externally controlled recovery,
however, can be quite expensive in terms of application
downtime since the entire cluster must be diagnosed and
reinitialized before restarting the SIFT environment. Down-
time can be on the order of hours, if not days, under such
scenarios if ground control is required, underscoring the
need for rapid onboard detection and recovery.

System failures are not necessarily fatal. Only 28 of the
approximate 28,000 injections resulted in a system failure in
which the SIFT environment could not recover from the
error. These system failures were not catastrophic in the
sense of impacting the spacecraft or SCC; in fact, none
affected an executing application.

To reduce the number of system failures, a timeout can
be placed on the application connecting to the SIFT
environment. Because the time between submission and
connection is usually small, errors that occur in the critical
phase of preparing the SIFT environment for a new
application can be detected using this timeout without

significant delay. Once the application starts, our experi-
ence has shown that it is well-protected and relatively
immune to errors in the SIFT environment.

11 RELATED WORK

Few experimental assessments of distributed fault tolerance
environments have been undertaken. Three notable excep-
tions include:

MARS. Three types of physical fault injection (pin-level
injections, heavy-ion radiation from a Californium-252
isotope, and electromagnetic interference) were used to
study the fail silence coverage of the Maintainable Real-
Time System (MARS) [20]. MARS achieved fail silence in
these experiments through process duplication across
nodes. A real-time control program was used as the test
application for these experiments. A later study com-
pared software-implemented fault injection to the three
physical injection approaches [13].

Delta-4. Pin-level injections were performed to evaluate the
fail silence coverage of the Delta-4 atomic multicast
protocol [1]. Fail silence was achieved by designing
network interface cards around duplicated hardware on
which the atomic multicast protocol executes.

Hades. Software-implemented fault injectors were used to
inject errors into the Chorus microkernel and the Hades
middleware, a collection of runtime services for real-time
applications executing on COTS processors [8]. This
experiment evaluated the coverage of the Hades error
detection mechanisms while running an object-tracking
application.

It is not clear if any of these studies validated how well
the fault tolerance environment recovers from its own
errors or how such errors impact performance. All were
primarily interested in showing that the environment’s
error detection and masking were sufficient to maintain fail
silence.

The overall research into software-implemented fault
tolerance is summarized in Table 16. Each of the related
works can be characterized by its support for 1) an external
environment for managing application and handling fail-
ures, and 2) services that are incorporated within the
application to provide fault tolerance. Table 16 specifies the
support in these two areas, plus the experiments done to
evaluate the dependability of the SIFT solutions and the
applications used in the evaluations.

Apart from the specific cases mentioned above, none of
the work in Table 16 has been evaluated using a substantial
application. Most use either synthetic benchmarks or a
program with the complexity on the order of an echo server.
It is difficult to evaluate the SIFT environment’s ability to
handle correlated failures and error propagation when the
application process interactions—including interactions
involving other application processes or the SIFT processes
—are simple and infrequent.

Finally, few of the SIFT solutions presented in Table 16

have utilized extensive fault injection to demonstrate that

their infrastructures are fault-tolerant. Some have under-

gone testing in which the user kills processes from the

274 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

7. SIGINT, SIGSTOP, register, and text-segment injections caused 100, 98,
80, and 95 failures, respectively, in the experiments involving only the
texture analysis program.

command line, but few have gone beyond using crash

and hang failures to validate functionality. As our

experiments have shown, injections into the text segment,

registers, and heap were required to see correlated

failures, error propagation, corrupted checkpoints, and

system failures.

12 CONCLUSIONS

This paper has presents a series of experiments in which the

error detection and recovery mechanisms of a distributed

SIFT environment are stressed through over 28,000 error

injections into a Mars Rover texture analysis program and

the SIFT processes themselves. The results show that:

1. Structuring fault injection experiments to progres-

sively stress the error detection and recovery mechan-

isms is a useful approach to evaluate performance

and error propagation in distributed SIFT.
2. Even though the probability for correlated failures

was small, the potential impact on application
availability was significant. When the correlated
failure scenarios were not considered, the application

experienced virtually no overhead due to SIFT
recovery. When the correlated failures were taken
into account, the mean overhead on application
execution time rose to 5 percent.

3. The SIFT environment successfully recovered from

all correlated failures because the processes perform-

ing error detection and recovery were decoupled

from the failed processes. This was attributed to the

fact that SIFT functionality not directly related to

monitoring and interfacing with the application was

delegated to remote processes, thus insulating the

application from most SIFT errors.

4. Targeted injections into dynamic data on the heap
were useful in further investigating system failures
brought about by error propagation. Assertions
within the SIFT processes were shown to reduce
the number of system failures due to data error
propagation by up to 42 percent. This suggests that
detection mechanisms can be incorporated into the
common ARMOR infrastructure to preemptively
check for errors before state changes occur within
the SIFT processes, thus decreasing the probability
of error propagation and checkpoint corruption.

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 275

TABLE 16
Summary of Related Work

ACKNOWLEDGMENTS

This work was supported in part by NASA/JPL contract

961345, US National Science Foundation grants CCR 00-

86096 ITR, CCR 99-02026, ACI-0121658, and in part by

MURI grant N00014-01-1-0576. The authors would like to

thank the reviewers for the insightful comments and

constructive suggestions. They also thank S. Chen for help

in simulating the SAN model and F. Baker and T. O’Neill

for their careful reading of this manuscript.

REFERENCES

[1] J. Arlat, M. Aguera, Y. Crouzet, J.C. Fabre, E. Martins, and D.
Powell, “Experimental Evaluation of the Fault Tolerance of an
Atomic Multicast System,” IEEE Trans. Reliability, vol. 39, no. 4,
pp. 455-467, Oct. 1990.

[2] S. Bagchi, “Hierarchical Error Detection in a Software-Implemen-
ted Fault Tolerance (SIFT) Environment,” PhD thesis, Univ. of
Illinois, Urbana, 2001.

[3] R. Batchus, J.P. Neelamegam, Z. Cui, M. Beddhu, A. Skjellum, Y.
Dandass, and M. Apte, “MPI/FT: Architecture and Taxonomies
for Fault-Tolerant, Message-Passing Middleware for Performance-
Portable Parallel Computing,” Proc. First Int’l Symp. Cluster
Computing and the Grid, pp. 26-33, 2001.

[4] J. Beahan et al., “Detailed Radiation Fault Modeling of the Remove
Exploration and Experimentation (REE) First Generation Testbed
Architecture,” Proc. IEEE Aerospace Conf., vol. 5, pp. 279-281, 2000.

[5] K. Birman and R. van Renesse, Reliable Distributed Computing with
the Isis Toolkit. IEEE CS Press, 1994.

[6] L. Buzato and A. Calsavara, “Stabilis: A Case Study in Writing
Fault-Tolerant Distributed Applications Using Persistent Objects,”
Technical Report 400, Univ. of Newcastle upon Tyne, U.K., 1992.

[7] F. Chen, L. Craymer, J. Deifik, A.J. Fogel, D.S. Katz, A.G. Silliman
Jr., R.R. Some, S.A. Upchurch, and K. Whisnant, “Demonstration
of the Remote Exploration and Experimentation (REE) Fault-
Tolerant Parallel-Processing Supercomputer for Spacecraft On-
board Scientific Data Processing,” Proc. Int’l Conf. Dependable
Systems and Networks, pp. 367-372, 2000.

[8] P. Chevocot and I. Puaut, “Experimental Evaluation of the Fail-
Silent Behavior of a Distributed Real-Time Run-Time Support
Build from COTS Components,” Proc. Int’l Conf. Dependable
Systems and Networks, pp. 304-313, 2001.

[9] Y.J. Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A. Karr, P. Rubel,
C. Sabnis, W.H. Sanders, R.E. Schantz, and M. Seri, “AQuA: An
Adaptive Architecture that Provides Dependable Distributed
Objects,” Proc. 17th Symp. Reliable Distributed Systems, pp. 245-
253, 1998.

[10] D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M.
Doyle, W.H. Sanders, and P.G. Webster, “The Möbius Framework
and Its Implementation,” IEEE Trans. Software Eng., vol. 28, no. 10,
pp. 956-969, Oct. 2002.

[11] J.-C. Fabre and T. Pérennou, “A Metaobject Architecture for Fault-
Tolerant Distributed Systems: The FRIENDS Approach,” IEEE
Trans. Computers, vol. 47, no. 1, pp. 78-95, Jan. 1998.

[12] G. Fagg and J. Dongarra, “FT-MPI: Fault Tolerant MPI, Support-
ing Dynamic Applications in a Dynamic World,” Lecture Notes in
Computer Science, vol. 1908, pp. 346-353, 2000.

[13] E. Fuchs, “Validating the Fail-Silence Assumption of the MARS
Architecture,” Proc. Sixth Dependable Computing for Critical
Applications Conf., pp. 225-247, 1998.

[14] J.A. Gunnels, R.A. van de Geijn, D.S. Katz, and E.S. Quintana-Ortı́,
“Fault-Tolerant High-Performance Matrix Multiplication: Theory
and Practice,” Proc. 2001 Int’l Conf. Dependable Systems and
Networks, pp. 47-56, 2001.

[15] M. Hayden, “The Ensemble System,” PhD thesis, Cornell Univ.,
Ithaca, N.Y., 1988.

[16] J. He, M. Rajagopalan, M.A. Hiltunen, and R.D. Schlichting,
“Providing QoS Customization in Distributed Object Systems,”
Proc. IFIP/ACM Int’l Conf. Distributed Systems Platforms, pp. 351-
372, 2001.

[17] K. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Trans. Computers, vol. 33, no. 6, pp. 518-
528, June 1984.

[18] M. Li, D. Goldberg, W. Tao, and Y. Tamir, “Fault-Tolerant Cluster
Management for Reliable High-Performance Computing,” Proc.
13th Conf. Parallel and Distributed Computing and Systems, pp. 480-
485, 2001.

[19] Z. Kalbarczyk, S. Bagchi, K. Whisnant, and R. Iyer, “Chameleon: A
Software Infrastructure for Adaptive Fault Tolerance,” IEEE Trans.
Parallel and Distributed Systems, vol. 10, no. 6, pp. 560-579, June
1999.

[20] J. Karlsson, J. Arlat, and G. Leber, “Application of Three Physical
Fault Injection Techniques to the Experimental Assessment of the
MARS Architecture,” Proc. Fifth Dependable Computing for Critical
Applications Conf., pp. 150-161, 1995.

[21] S.E. Kerns, B.D. Shafer, L.R. Rockett, Jr., J.S. Pridmore, D.F. Berndt,
N. van Vonno, and F.E. Barber, “The Design of Radiation-
Hardened ICs for Space: A Compendium of Approaches,” Proc.
IEEE, vol. 76, no. 11, pp. 1470-1509, Nov. 1988.

[22] H. Madeira, R. Some, F. Moreira, D. Costa, and D. Rennels,
“Experimental Evaluation of a COTS System for Space Applica-
tions,” Proc. 2002 Int’l Conf. Dependable Systems and Networks, 2002.

[23] Message Passing Interface Forum, “MPI-2: Extensions to the
Message Passing Interface,” http://www.mpi-forum.org/docs/
mpi-20.ps, 1997.

[24] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, and
C.A. Lingley-Papadopoulos, “Totem: A Fault-Tolerant Multicast
Group Communication System,” Comm. ACM, vol. 39, pp. 54-63,
Apr. 1996.

[25] L. Moser, P. Melliar-Smith, and P. Narasimhan, “A Fault
Tolerance Framework for CORBA,” Proc. 29th Symp. Fault-Tolerant
Computing, pp. 150-157, 1999.

[26] P. Narasimhan, L. Moser, and P. Melliar-Smith, “State Synchro-
nization and Recovery for Strongly Consistent Replicated CORBA
Objects,” Proc. 2001 Int’l Conf. Dependable Systems and Networks,
pp. 261-270, 2001.

[27] D. Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk,
“The Delta-4 Approach to Dependability in Open Distributed
Computing Systems,” Proc. 18th Int’l Symp. Fault-Tolerant Comput-
ing, pp. 246-251, 1988.

[28] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A.
Fantechi, E. Jenn, C. Rabéjac, and A. Wellings, “GUARDS: A
Generic Upgradable Architecture for Real-Time Dependable
Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 6, pp. 580-599, June 1999.

[29] J. Ren, “AQuA: A Framework for Providing Adaptive Fault
Tolerance to Distributed Applications,” PhD thesis, Univ. of
Illinois, Urbana, 2001.

[30] S. Shrivastava, “Lessons Learned from Building and Using the
Arjuna Distributed Programming System,” Lecture Notes in
Computer Science, vol. 938, 1995.

[31] G. Stellner, “CoCheck: Checkpointing and Process Migration for
MPI,” Proc. 10th Int’l Parallel Processing Symp., pp. 526-531, 1996.

[32] D.T. Stott, B. Floering, Z. Kalbarczyk, and R.K. Iyer, “Depend-
ability Assessment in Distributed Systems with Lightweight Fault
Injectors in NFTAPE,” Proc. Fourth Int’l Computer Performance and
Dependability Symp., pp. 91-100, 2000.

[33] R. van Renesse, K. Birman, and S. Maffeis, “Horus: A Flexible
Group Communication System,” Comm. ACM, vol. 39, pp. 76-83,
Apr. 1996.

[34] J. Wensley, “SIFT: Software Implemented Fault Tolerance,” Proc.
Conf. Artificial Intelligence PlanningSystems, vol. 41, pp. 243-253,
1971.

[35] K. Whisnant, Z. Kalbarczyk, and R. Iyer, “Micro-Checkpointing:
Checkpointing for Multithreaded Applications,” Proc. Sixth Int’l
On-Line Testing Workshop, July 2000.

[36] K. Whisnant, R.K. Iyer, P. Jones, R. Some, and D. Rennels, “An
Experimental Evaluation of the REE SIFT Environment for
Spaceborne Applications,” Proc. Int’l Conf. Dependable Systems
and Networks, pp. 585-594, 2002.

[37] K. Whisnant, Z. Kalbarczyk, and R.K. Iyer, “A System Model for
Dynamically Reconfigurable Software,” IBM Systems J., vol. 42,
no. 1, pp. 45-59, Apr. 2003.

[38] K. Whisnant, “A Process Architecture and Runtime Environment
for Dependable Distributed Applications,” PhD thesis, Univ. of
Illinois, Urbana, 2003.

276 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 4, APRIL 2004

Keith Whisnant received the BS, MS, and PhD
degrees in computer engineering from the
University of Illinois at Urbana-Champaign,
where he investigated reconfigurable software
architectures for providing fault tolerance ser-
vices to distributed applications. In 2003, he
joined Sun Microsystems, Inc., San Diego,
California. He currently conducts research in
continuous system telemetry, autonomic com-
puting, and proactive fault monitoring through

advanced pattern recognition techniques. He is a member of the IEEE
and the IEEE Computer Society.

Ravishankar K. Iyer is the director of the
Coordinated Science Laboratory (CSL) at the
University of Illinois at Urbana-Champaign,
where he is the George and Ann Fisher
Distinguished Professor of Engineering. He
holds appointments in the Department of Elec-
trical and Computer Engineering, the Depart-
ment of Computer Science, and he is codirector
of the Center for Reliable and High-Performance
Computing at CSL. His research interests are in

the area of reliable networked systems. He currently leads the
Chameleon-ARMORs project at Illinois, which is developing adaptive
architectures for supporting a wide range of dependability and security
requirements in heterogeneous networked environments. He is a fellow
of the IEEE, ACM, and an associate fellow of the American Institute for
Aeronautics and Astronautics (AIAA). He has received several awards,
including the Humboldt Foundation Senior Distinguished Scientist
Award for excellence in research and teaching, the AIAA Information
Systems Award and Medal for “fundamental and pioneering contribu-
tions towards the design, evaluation and validation of dependable
aerospace computing systems,” and the IEEE Emanuel R. Piore Award
“for fundamental contributions to measurement, evaluation and design
of reliable computing systems.”

Zbigniew T. Kalbarczyk received the PhD
degree in computer science from the Technical
University of Sofia, Bulgaria. He is currently a
principal research scientist at the Center for
Reliable and High-Performance Computing in
the Coordinated Science Laboratory of the
University of Illinois at Urbana-Champaign. After
receiving his doctorate, he worked as an
assistant professor in the Laboratory for De-
pendable Computing at Chalmers University of

Technology in Gothenburg, Sweden. His research interests are in the
area of reliable and secure networked systems. Currently, he is a lead
researcher on the project to explore and develop high availability and
security infrastructure capable of managing redundant resources across
interconnected nodes, to foil security threats, detect errors in both the
user applications and the infrastructure components, and recover
quickly from failures when they occur. His research involves also
developing of automated techniques for validation and benchmarking of
dependable computing systems. He served as a program cochair of
International Performance and Dependability Symposium (IPDS), a
track of the Conference on Dependable Systems and Networks (DSN
2002), and is regularly invited to work on the program committees of
major conferences on design of fault-tolerant systems. He is a member
of the IEEE and the IEEE Computer Society.

Phillip H. Jones III received the BSc degree in
1999 and the MSEE degree in 2002 from the
University of Illinois at Urbana/Champaign. He is
currently working on the DSc degree in the field
of dynamically reconfigurable hardware at
Washington University in St. Louis, Missouri.

David A. Rennels received the BSEE degree
from the Rose Hulman Institute of Technology,
the MSEE degree from California Institute of
Technology, and the PhD degree in computer
science from University of California at Los
Angeles. He has been an employee of the Jet
Propulsion Laboratory since 1965, where he
currently has a faculty part-time position. At JPL,
he has been involved in the development of
several fault-tolerant computers. He is also a

faculty member in the UCLA Computer Science Department, and is
currently vice chair for undergraduate studies. At UCLA, he has been
the principal investigator on several research projects sponsored by the
Aerospace Corporation, US National Science Foundation, US Office of
Naval Research, Hughes Aircraft, and TRW. He has served as
chairman of the IEEE Computer Society Technical Committee on
Fault-Tolerant Computing and is a member of IFIP Working Group 10.4
on Reliable Computing and Fault-Tolerance. His interests include fault-
tolerant computer design for space, embedded computing, and low-
power computer design. He is a member of the IEEE and the IEEE
Computer Society.

Raphael Some has more than 27 years
experience in technology planning, develop-
ment, and commercialization. He is a Project
Manager 1 at the NASA/Caltech Jet Propulsion
Laboratory, where he serves as an avionics and
microelectronics technologist for NASA’s New
Millennium Program. Prior positions at JPL
include chief engineer and systems engineering
manager of the REE (space-borne, COTS-
based, fault-tolerant supercomputer) project

and initiator of JPL’s self-organizing wireless Smart Sensor Web. In
addition to reliable computing and advanced microelectronics materials
and processes, his current research interests include: the development
of methods and tools for evaluation of technology portfolios; the
dynamical control of gravitationally assisted descents of lo-friction,
steeply sloped surfaces using elongated, weight bearing, foot-exten-
ders; and the dynamics of high-speed navigation of complex curvilinear
routes on two-wheeled motorized vehicles. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WHISNANT ET AL.: THE EFFECTS OF AN ARMOR-BASED SIFT ENVIRONMENT ON THE PERFORMANCE AND DEPENDABILITY OF USER... 277

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

