
Towards an Evidence-Based Understanding of Emergence of Architecture Through
Continuous Refactoring in Agile Software Development

Lianping Chen12, Muhammad Ali Babar3
1Lero - The Irish Software Engineering Research Center, University of Limerick, Limerick

2Paddy Power PLC, Dublin, Republic of Ireland
3The University of Adelaide, Adelaide, Australia
lianping.chen@lero.ie, ali.babar@adelaide.edu.au

Abstract—The proponents of Agile software development
approaches claim that software architecture emerges from
continuous small refactoring, hence, there is not much value in
spending upfront effort on architecture related issues. Based on a
large-scale empirical study involving 102 practitioners who had
worked with agile and architecture approaches, we have found
that whether or not architecture emerges through continuous
refactoring depends upon several contextual factors. Our study
has identified 20 factors that have been categorized into four
elements: project, team, practices, and organization. These
empirically identified contextual factors are expected to help
practitioners to make informed decisions about their architecture
practices in agile software development.

Keywords—software architecture; agile software development
component; empirical study

I. INTRODUCTION

Agile software development approaches have been widely
adopted in the industry [1-2] for improving a software
development team’s ability to easily accommodate changes and
delivery working software continuously and incrementally.
Despite the increasing popularity of Agile approaches, there is
huge scepticism about developing large scale critical software
systems because of lack of attention paid to the issues related
to software architecture by Agile followers [3]. This situation
has caused intense debate among software development
practitioners and researchers [2].

One of the most fundamental points of the debate is
“whether or not a satisfactory architecture emerges from
continuous small refactoring in agile software development”
[4]? A satisfactory architecture is one that satisfies the
architecturally significant requirements [5] of the software
system. This issue has been so fiercely debated because many
agile approaches encourage their followers not to worry about
software architecture related issues upfront under the
assumption that “a satisfactory architecture can emerge from
continuous small refactoring.”

The proponents of architecture-centric approaches warn
against this assumption and quote stories of disastrous
consequences for not paying sufficient attention to
architecture-centric issues through a system’s lifecycle. Hence,
there has been significant interest in and support for finding a
middle ground by integrating sound architectural practices and
principles in agile approaches [2-3, 6].

However, there is not much empirical evidence in support
or against the key assumption of agile approaches “a
satisfactory architecture emergences from continuous
refactoring”; and what are the factors that facilitate or inhibit
the emergence of a satisfactory architecture through continuous
refactoring? We assert that it is important to systematically
gather and rigorously analyse empirical data to provide an
evidence-based understanding about the emergence of a
satisfactory architecture through continuous refactoring.

We have conducted a large-scale empirical study that
explored the observations and experiences of 102 experienced
practitioners with regards to the claim that “a satisfactory
architecture emergences from continuous small refactoring.”
We carried out email-based semi-structured interviews and
analyzed the collected data using descriptive statistics and
techniques from Grounded Theory (GT) [7].

The results reveal that whether or not a satisfactory
architecture can emerge depends upon contextual factors. Our
study has identified 20 key factors that can support or inhibit
the emergence of a satisfactory architecture through continuous
refactoring in agile software development. We have classified
those 20 factors into four elements that have been presented as
a framework in this paper. Those four elements are: project,
team, practices, and organization. This four elements
framework and its 20 factors have enabled us to discuss the
contexts in which a satisfactory architecture is likely to emerge
through continuous small refactoring or otherwise. The
findings are expected to help practitioners to make informed
decisions about their architectural practices in Agile software
development. We believe that this evidence-based
understanding is important to address the commonly observed
lack of attention paid to architecture-centric activities in Agile
software development [8].

II. BACKGROUND AND MOTIVATION

Agile approaches (such as Extreme Programming (XP) [9],
Crystal Clear [10] and Scrum [11]) are based on certain
assumptions [12] and Agile manifesto1. Since Agile movement
was originally promoted as a way of moving away from
formalism and bureaucratic centralized way of developing
software, a large number of agile software development
followers started playing down the role and importance of
software architecture related processes, activities, artefacts, and

1 http:\\www.agilemanifesto.org

2014 IEEE/IFIP Conference on Software Architecture

978-1-4799-3412-6/14 $31.00 © 2014 IEEE

DOI 10.1109/WICSA.2014.45

195

roles in software development projects. For example,
Thapparambil argues that “no agile methods discuss
Architecture in any length.” Many practitioners have been led
to believe that agile methods consider architectural design to be
an optional matter. The description of the agile methods
provide very little discussion on common architectural design
activity types [13] such as architectural analysis, architectural
synthesis and architectural evaluation, as well as the artifact
types [13] associated with these activities.

Scrum, one of the most popular project management
approaches, claims to support architectural practices through
frequent oral communication. According to Scrum, the
architecture of one-project application can always be re-
factored and repackaged to components for a higher level of
reuse after the release to production to implement a walking
skeleton, a small end-to-end functionality of the system, at the
beginning of the project.

In the Incremental Re-architecture strategy of Crystal Clear
[10], the team starts from the working architectural skeleton
and incrementally evolves the architecture or infrastructure in
stages and in parallel with the system functionality. Two
architectural work products are almost certainly needed to be
produced within a Crystal Clear project: system architecture
and common domain model.

Agile proponents reason that “Refactoring is the primary
method to develop Architecture in the Agile world”. The
Incremental Design practice of XP [9] claims that architecture
can emerge in daily design. The emergent design means that
architecture relies on looking for potentially poor architectural
solutions in the implemented code and making a better
architecture when needed in design cycles of hours and days.
According to this approach, the architecture emerges from the
system rather than being imposed by some direct structuring
force.

These positions of agile advocates create an impression that
“Refactoring is the primary method to develop architecture in
the Agile world” [14]. Abrahamsson and colleagues have also
concluded that the proponents of Agile methods believe that
architecture should emerge from continuous small refactoring
[3]. The advocates of architecture-centric approaches consider
software architecture design as a very important activity to be
conducted in the early stage of software development life cycle
[15-17]. Software architecture researchers and practitioners are
very sceptical about the claim that software architecture can
emerge from continuous, small refactoring without upfront
thinking and appropriate design efforts. Their scepticism has
been reinforced by several stories where large scale software
projects failed to succeed as a result of failure in paying
sufficient attention to software architecture related issues [8].

The widespread adoption of agile approaches and
importance of software architecture in a large scale software
development projects have been promoting the importance of
paying more attention to architectural aspects in agile
approaches. There is a growing interest in identifying the
mechanics and prerequisites of integrating agile and
architectural approaches [2]. An increased number of efforts
are focusing on devising appropriate ways of incorporating
architecture-centric activities into Agile software development

practices [3, 6]. For example, Ali Babar conducted a case study
to identify and understand architectural practices and
challenges of teams using Agile approaches [18]. Falessi and
his colleagues surveyed the perceptions of software developers
about the potential co-existence of Agile development and
software architecture [19]. Nord and Tomayko [6] have
proposed a few ways of integrating some of the SEI
architecture-centric methods into the XP framework.

There are some other proposals for combining the strengths
of the core elements of agile and architecture-centric
approaches. For example, [20-21] combine the strengths of the
core elements of the risk-driven, architecture-centric Rational
Unified Process (RUP) and the XP [9] process. The
combinations were enabled by the facts that RUP and XP share
the cornerstone of the iterative, incremental and evolutionary
development [22] and that most of the core elements of RUP
and XP are complementary.

None of these efforts purport to explore the role and/nature
of a particular architecture activity in agile approaches. That
means there has been no significant empirical effort aimed at
investigating one of the most significant point of debate
between agile proponents and architecture followers: can a
satisfactory architecture emerge from continuous small
refactoring [4]?

Boehm and his colleagues have reported a set of guidelines
for deciding how much agility and architecting are enough in a
software development project [23]. Their set of guidelines was
derived from an analysis model that considers three factors:
project size, criticality, and volatility. Their effort highlights
the importance of considering the contextual factors in
deciding the level of architectural efforts required in projects
using agile approaches.

We assert that the contextual factors identified by Boehm
and his colleagues can also play important role in understand
whether or not a satisfactory architecture can emerge from
small, continuous refactoring. At the same time, we also assert
that there can be many more contextual factors whose interplay
can impact the emergence of “satisfactory architecture”
through continuous refactoring. There has been no significant
effort aimed at systematically identifying the factors that
characterise the context in which a satisfactory architecture
emerges or otherwise.

Hence, the main goal of this research is to empirically
explore the perceptions and experiences of practitioners for
identifying and building a taxonomy of the factors that can
influence the emergence of a satisfactory architecture through
continuous refactoring. In order to achieve the research goal,
we carried out a large-scale study for empirically investigating
two key aspects of the role of refactoring in achieving a
satisfactory architecture when using agile approaches:

• Whether or not a satisfactory architecture can emerge
from continuous small refactoring;

• What can be the contextual circumstances in which a
satisfactory architecture emerges or not?

Both of these aspects were considered important for our
research as we were not only interested in empirically finding

196

out whether or not a satisfactory architecture emerges from
continuous refactoring based on practitioners’ experiences but
also intended to discover the factors that can play a role in the
emergence of a satisfactory architecture through refactoring.

III. METHODOLOGICAL DETAILS

In this section, we describe and discuss the research
methodology, data gathering approach, and data analysis
method used for the reported research.

A. Survey

We decided to use survey research method to explore the
perceptions and opinions of practitioners about their
perceptions, observations, and experiences of the role of small
continuous refactoring in the emergence of satisfactory
architecture. A survey research method is considered suitable
for gathering self-reported quantitative and qualitative data
from a large number of respondents [24]. The objective of our
study was to gather self-reported qualitative data. Our survey
design was a cross-sectional, case control study. Survey
research can use one or a combination of several data gathering
techniques such as interviews and self-administered
questionnaires [25]. We decided to use interviews as the data
collection instrument as it appears to be more appropriate for
gathering the detailed information required to find the answers
to the questions that motivated our research.

We recruited the participants from different sources based
on our pre-defined criteria for inviting the potential participants
in our study; some of the criteria elements were industrial
experiences of working in software development using agile
and architecture approaches, experience of working as software
architecture or requirements engineer, and represent different
regions and domains. We sought the participants through the
primary researcher’s personal and professional networks as
well as through a professional networking site, LinkedIn.

B. Data Collection Approach

We conducted semi-structured interviews using open-ended
questions via email. Each email thread started from a brief
description of the background and objective of the study, and a
few questions for kicking off the required discussion. The
email thread was continued through the primary researcher’s
enquiring and the participants’ responses for more details until
it was felt that an exhaustive amount of information had been
gathered from each participant. Our email-based data gathering
approach not only avoided the difficulty for the participant to
find a sufficient chunk of free time to fit the researcher's
schedule, but also provided participants with more time for
preparing and sending reflective answers.

The interview questions focused on the participants’
observations and experiences on architecture practices in Agile
software development. In particular, we asked about their
experiences and observations of cases where a satisfactory
architecture emerged or did not emerge as expected from
continuous small refactoring, and their reflections on why a
satisfactory architecture emerged or did not emerge in those
cases. Each email thread resulted in one to five pages (A4 size)

document of communication log. The communication logs
with all the participants form a rich set of qualitative data.

C. Data Analysis

For data analysis, we used mixed methods approach. The
answers to the first question needed to be analysed by
quantifying the qualitative data from the participants’
responses based on their experiences and observations of cases
where a satisfactory architecture emerged or did not emerge as
expected. The quantification simply counted the number of
participants who answered “Yes” or “No” to the two particular
questions we asked related to the emergence of a satisfactory
architecture through refactoring. We then summarized the
quantified data using descriptive statistics.

Then we analyzed the data to find answer to the second
aspect of our inquiry (i.e., underlying reasons for the observed
phenomenon). For this analysis, we followed the techniques
described in Grounded Theory (GT) [7]. Recently, other
researchers have also used GT to study different aspects of
Agile software development [26]. The data analysis procedure
in GT involves three types of coding: open coding, axial
coding, and selective coding. During the open coding, we
analyzed the data line by line for creating and assigning codes
to phrases, sentences, or paragraphs. A code is a phrase that
summaries the key point concisely. During the axial coding, we
went through the codes, and related them to each other, via a
combination of inductive and deductive thinking [7]. The data
analysis was not a linear process. We went through several
iterations to refine, adjust the codes, and their relationships.
The codes emerged directly from the data, which is in turn
collected directly from the field. Thus, the resulting findings
are grounded within the context of the real world experiences
and observations.

For our finding, we included only those concepts that were
mentioned by at least two participants. Once the concepts had
made their way into the findings, we did not discriminate
between them based on their frequencies; rather, we focused on
the logical relationships among the concepts as recommended
by GT. We report the findings in the following sections.

IV. PARTICIPANTS’ DEMOGRAPHIC INFORMATION

We interviewed 102 experienced software professionals
across the world. Each of them has experience in both
architecture design and Agile approaches. Due to limited
space, we cannot provide the complete details of the
participants’ demographic details, hence, we just provide a
summary of their backgrounds and work experiences.

The participants were located in 13 countries from 6
continents. The distribution across these continents is
summarized in Figure 1. A majority of them were from North
America. They had accumulated more than 1,600 years of
work experience of software development (See Table I) in over
700 companies from nearly 40 different domains. All of them
had experiences in both architecture design and Agile
approaches. The experience they had in architecture, and Agile
approaches was: 9 years and 7 years on average respectively;
2.5 years and 2 years minimum respectively; 20 years and 30
years maximum respectively. It is worth noting that a few of

197

them reported that they had been using Agile approaches
before the term “Agile” was coined.

Africa, 1 Asia, 10

Australasia, 7

Europe, 21

North America,
58

South America,
5

Fig. 1. Geographical distribution of participants

The Agile approaches that the participants had been using
included Scrum [11], XP, Lean (Lean software development)
[27], FDD (Feature Driven Development) [28], Kanban [29],
and Crystal Clear [10]. The distribution over these approaches
is summarized in Table II. Scrum and XP are the mostly
widely used ones among the participants. It is worth noting that
many of them used multiple approaches. The participants had
worked for various organizations. On average, a participant
had worked for 8 organizations at different stages of his/her
career. The participants had worked for 737 different
companies that ranged from very small (<10), small (10-49),
medium (50-249), large (250-10,000), and to very large
(>10,000). The ten top domains of the participants’ companies
are presented in Fig. 2; the domains include automotive,
telecom, finance, and web-based socio-technical systems. In
order to protect our participants’ privacy, we refer to them by
numbers P1 to P102 when presenting their quotations.

TABLE I. SUMMARY OF PARTICIPANTS’ EXPERIENCE

 Minimum Maximum Average
Software Industry 6 37 16

Architecture2 2.5 20 9
Agile 2 30 7

TABLE II. AGILE APPROACHES USED BY THE PARTICIPANTS

Scrum XP Lean FDD Kanban C. C.
82 68 10 6 4 2

0
5

10
15
20
25
30
35
40
45
50

Telec
om

Finance

Enter
pris

e
Web

Heal
thcare

Medical
Reta

il

Insuran
ce

Automotiv
e

Media

of

 P
ar

tic
ip

an
ts

Fig. 2. Distribution of participants based on domains

2 It was measured by the number of years that a participant has been taking

the position of architect.

V. ON THE EMERGENCE OF ARCHITECTURE FROM

CONTINUOUS REFACTORING

To gather evidence regarding whether a satisfactory
architecture can emerge through continuous small refactoring,
we particularly asked every participant two questions:

• Q1: Have you experienced or observed cases where a
satisfactory architecture emerged from continuous small
refactoring as expected?

• Q2: Have you experienced or observed cases where the
team expected a satisfactory architecture to emerge
from continuous small refactoring, but it did not?

Figure 3 shows the numbers of participants who said
“YES” or “NO”. A majority of the participants (68%, 69 out of
102) had experienced or observed cases where a satisfactory
architecture emerged from continuous small refactoring. A
slightly less than a third (32%, 33 out of 102) of the
participants had not experienced or observed any such cases. It
indicates that in many cases a satisfactory architecture can
emerge from continuous small refactoring.

Does this mean that, in most cases, a team can go for
implementation directly and let the architecture emerge?
Participants’ replies to Q2 do not support this claim. Figure 4
presents the participants’ replies to Q2. A large majority of
them (82%, 84 out of 102) had experienced the cases where a
satisfactory architecture did not emerge from continuous small
refactoring as expected. This result indicates that in many cases
a satisfactory architecture cannot emerge from continuous
small refactoring.

YES, 69, 68%

NO, 33, 32%

YES

NO

Fig. 3. Q1: Have you observed cases where a satisfactory architecture

emerged as expected?

NO, 18, 18%

YES, 84, 82%

YES

NO

Fig. 4. Q2: Have you observed cases where a satisfactory architecture did not

emerge as expected?

To gain more insights into the data, we cross-tabulated
participants’ answers to Q1 and Q2. Table III shows the result.
The number in each cell represents the number of participants
who gave the answers indicated by the column and row
headings. We can see that a majority of the participants (59%,
60 out of 102) have experienced or observed both types of
cases. Slightly less than a quarter of the participants (23%, 23

198

out of 102) have only experienced cases where a satisfactory
architecture did not emerge as expected. Nearly one in ten
participants (9%, 9 out of 102) has only experienced or
observed cases where a satisfactory architecture emerged. A
similar number of participants (9%, 9 out of 102) have not
experienced or observed either type of cases. This is because
they have not tried to follow the advice that architecture should
emerge from continuous small refactoring. We will discuss
these numbers in Section VII.

TABLE III. Q1 VS. Q2 CROSS TABULATION

 Q2.Yes Q2.No

Q1.Yes 60 (59%) 9 (9%)
Q1.No 16 (23%) 9 (9%)

The descriptive statistical summary of the participants’

answers to Q1 and Q2, as presented above, shows that a
satisfactory architecture emerged from continuous small
refactoring in many cases, but did not emerge in many cases as
well. Thus, the answer for whether a satisfactory architecture

can emerge, suggested by the data, is: It depends. But, what
does it depend on? We present the findings gained from our
qualitative data analysis in the next section.

VI. FACTORS THAT IMPACT THE EMERGING OF

ARCHITECTURE THROUGH REFACTORING

The second key aspect of this study was to identify the
contextual factors that may support or inhibit the emergence of
a satisfactory architecture through continuous refactoring. For
this part of the data, we applied the data analysis techniques
from GT as previously stated. Our data analysis identified
twenty contextual factors that perceived to have positive or
negative impact on the emergence of architecture through
refactoring. We systematically analysed the identified factors
and place them into categories to form a framework of
contextual factors that can help predict whether or not a
satisfactory architecture would emerge through continuous
refactoring. Figure 5 shows the framework that consists of
factors: project, team, practices, and organization.

o Safe Net

o Continuous Integration

o Good Design Principles

Practices

o Management Support

o Culture

o Organization Structure

o Governance

o Organization Maturity

Organization

o Experience

o Skill

o Personality and Mindset

o Team Size

o Team Distribution

Team

Context
Factors

o Change

o Size

o Type

o Maturity of AK

o System Age

o Type of ASR

o Criticality

Project

Fig. 5. A framework of factors that influence the emerging of a satisfactory architecture from continuous small refactoring

A. Project

This category of factors is related to different aspects of a
project that can impact the emergence of architecture from
refactoring. Our analysis revealed that around 35% of the
participants indicated the factors that have been placed under
this category. Many other studies have also mentioned that
the implementation of agile approaches is customized based
on a project’s need. This category has 7 factors.

Rate of Change has impact on the emergence of
architecture through continuous refactoring, as mentioned by
many participants. If the rate of change in the requirements is

quite high or a significant implementation has been done
before getting to know the key non/functional requirements,
it is quite unlikely that a satisfactory architecture emerges
through small continuous refactoring: “Many times string
non-functional (business) requirements may appear after the
software started to be built, and that may impact on the half-
built solution you've got”, P41. On the other hand, if the rate
of change is very low, continuous refactoring may become
an unnecessary overhead rather than helping architecture to
emerge: “When unlike #1 [where rate of change is high]. I
have seen where due to the constant changes and updates
that the end goal either gets clouded, lost all together or is
severely changed then what was first thought”, P92.

199

Size of A Project also plays an important role in
emergence of architecture through refactoring. Like many
sceptics of the claim about the emergence of architecture
through refactoring, most of the participants reported that
most of the time this happens for smaller projects.
Interestingly, however, a few participants have experienced
cases where a satisfactory architecture emerged for large
projects: “Larger projects--involving several groups-- are
more prone to architectural issues, but some of this can be
mitigated by focusing on loosely coupled interactions
between the software components”, P3.

Type of Project is also an important consideration for
this matter as for some types of projects, such as those that
have only one feature and are algorithmically complex, and
those that do not allow small releases, a satisfactory
architecture is hard to emerge,“sometimes you need a base
with a set of minimum of functionality” and this “minimum”
can be “a fairly large critical mass. Then it may not be
possible to work in small steps”, P11.

Maturity of Architectural Knowledge (AK) means the
amount of experience and knowledge of reusable
architectural artefacts such as reference architectures, design
patterns, and tactics. If a project team is mature in AK and its
applications in different situations and contexts, it is likely
that their knowledge and experience can lead to implicitly
disciplined and mindful refactoring that takes into
consideration of well-known design principles and patterns.
Hence, such refactoring usually leads to the emergence of a
satisfactory architecture, compared with a team consisting of
architecturally immature people. With a matured AK, they
are able to know where to start the architecture and have a
relative clear vision on potential evolutionary paths of the
architecture they started with. Without the existence of
mature AK, a satisfactory architecture is unlike to emerge
from continuous refactoring.

System Age also plays an important role in supporting
the emergence of architecture through refactoring. Software
systems designed based on contemporary design principles
and technologies are likely to be more amenable to gain
structural and behavioural integrity through refactoring.
Generations old systems have the tendency of being
monolithic and unnecessarily interdependent that can make it
difficult (or impossible) for them to provide a coherent and
conceptual integral architecture through refactoring. “Failure
[architecture did not emerge] is also more prevalent in cases
of large pre-existing products which either had no
discernable architecture to begin with or had their
architecture erode away over years of maintenance and
haphazard addition of new features by persons who didn't
understand the pre-existing architecture or ignored it for one
reason or another”, P85.

Type of ASRs (Architecturally Significant
Requirements) and Their Criticality are known to be the
key driver of architecture design activities. For refactoring,
ASRs are also the key motivators. However, it all depends
upon the nature of ASRs whether or not a highly coherent
and integral architecture is achieved through refactoring. For
example, design time ASRs such understandability may be

achieved through continuous small refactoring by applying
well known design principles and patterns. However, this
may not be the case for another type of ASR such as
security, which needs to be proactivity addressed at design
stage. “A good example is security, which in all of my years
of experience, should be designed in (but can be
implemented later). Especially in terms of cascading Web
Services and such, [an] impedance mismatch between
services and framework architecture is costly for rework”,
P33. That means the criticality of achieving a particular ASR
also plays an important role in a decision whether to do
detailed design upfront or wait to get it fixed through
refactoring. A project with critical ASRs hardly progresses in
an expectation that a satisfactory architecture will emerge
from refactoring.

B. Team

The category incorporates those factors that are directly
or indirectly related to different dimensions of a project’s
team. Nearly half of the participants (48%, 49 out of 102)
mentioned the team related factors having an impact on the
emergence of architecture through continuous refactoring.
“You need to have a good Agile team that know how to go
about this process [emerging of architecture] well.
Otherwise this is a disaster and produces a lot of waste”, P99.

Experience and Skill of designing similar systems can
also help support architecture through refactoring as
mentioned by several participants. Researchers in other
disciplines have also reported significant differences in
understanding a design problem and devising solutions based
on the amount of design experience [30]. That means
significant experience with similar projects carried out using
similar technologies in similar domains can enable designers
to gain and maintain conceptual integrity of the software
design through refactoring of the structure of the software
being developed or evolved. “An inexperienced developer
may not have as much success since he/she may not know
what architectural goals need to be achieved, which could
result in absolutely messy unusable code”, P37. Skillset is
another related factor mentioned by many respondents. The nature
of a skill set and the amount of experience usually go together. That
is why our analysis revealed that when participants indicated
experience they were referring to experience of a particular skillset
directly or indirectly. Lack of sufficient skills usually results in
refactoring not making any noticeable contribution to have a
sufficient architecture rather there may be risk of having the source
code broken at various places: “Those [teams] not having high
skill in this area tend to simply make the codebase
‘different’, not better. Worst case they retard progress with
continual rework”, P85.

Personalities and Mindset of team members is
important to succeed in getting a satisfactory architecture
through continuous refactoring.“Change should be
acknowledged as a part of the development process” (P3), be
“willing to learn technology and try to adapt to them” (P9),
have “passion” (P9), and need “dedication throughout the
team (75% or more of its members, in my experience) to
good quality design” (P13). “Pedantic developer personalities
who are more focused on consistency of micro details rather
than the overall readability, understandability, obviousness

200

of the code” (P28), “Unwillingness from some team members
to look outside of their own code (keep constant look at
overall system's architecture)” (P30), and “personalities not
inclined to work in groups” (P55) can lead to failure.

Team Size and Distribution are also mentioned as
factors. Team size is usually driven by project size, but it
may not always be the case, e.g., a small project may use a
large team with the expectation to finish the project faster.
The participants of our study were of the view that a
satisfactory architecture may be achieved through refactoring
if the team size is relatively small. It was also revealed that a
team’s distribution nature may also impact as a satisfactory
architecture can usually be achieved through refactoring in
collocated teams. “Proximity between co-workers (being
able to listen and talk freely...no cubicles) [is essential]”, P24.
“2 teams working across geo (in different [time zones])
without an integrated approach has resulted in failure
[architecture did not emerge]”, P65.

C. Practices

Since software development practices interact with each
other, the participants of our study have also indicated
several practices which can potentially support or inhibit the
achievement of a satisfactory architecture through
continuous refactoring. Due to limited space, we describe the
three most frequently mentioned practices that can impact on
the emergence of a satisfactory architecture.

Safe Net refers to automated testing with good coverage
to form a safe net for refactoring, so that the team can have
confidence that refactoring does not break a system. Many
participants were of the view that continuous refactoring
may fail to return a satisfactory architecture because of low
coverage through automated testing. “Your team must use
constant automated unit testing and measure code coverage
before practicing ‘wide’ refactoring. Code coverage in
testing should be above 90% to give [the] team some kind of
psychological confidence that changing the architecture will
not break the system. Without this confidence team members
will be resistant to change [the] architecture much and will
rather focus on small local refactoring.”, P30. “Without
automated tests, architectural changes become more risky.
They tend to take longer to implement. And so they tend to
occur less often, and you don't see incremental movement
toward a good architecture -- more typically you see
incremental degradation of the architecture into chaos”, P13.

Continuous Integration is a key supporting practice for
architecture to emerge from continuous small refactoring.
“Re-factoring without continuous integration tests to verify
re-factoring hasn't broken, or re-broken the product is very,
VERY dangerous […] Way before Agile and integrated tests
I worked on a rule-based system [with more] than 10,000
rules. One team member would always re-factor something
[…]. He knew he was so good [that] his changes were
‘correct’. He broke almost every build and by the time we
found out he was on the road driving three hours away”, P14.

Good Design Principles are expected to lead to high
quality architecture that can ensure the achievement of
desired ASRs – Agile approaches also support the use of

good design principles, albeit implicitly, for example,
refactoring is one way improving the internal structure of an
application. Many of the participants mentioned the use of
several principles: DRY (Don’t Repeat Yourself) [31],
SOLID (the Single responsibility principle, the Open closed
principle, the Liskov substitution principle, the Interface
segregation principle, and the Dependency inversion
principle), and KISS (Keep It Simple and Straightforward).
“..all these practices complement each other..while
eliminating the pitfalls that otherwise might be introduced by
other practices. For example, unit test without refactoring
will definitely introduce rigidity in architecture compounded
with light up-front design could contribute to severe and
rapid architectural deterioration thus compromise in quality
and productivity”, P60.

D. Organization

Software development practices and their outcomes are
expected to be influenced by organizational cultures and
practices. The participants of our study also identified
organizational factors that can support or inhibit the
emergence of a satisfactory architecture through continuous
refactoring. The organizational factors were identified by
almost 33% of the participants.

Management support and commitment to agile and
architecture is important. When lack of management support,
a satisfactory architecture did not emerge. “Of course when
an architecture transformation is not a priority target and a
team is not given enough time to work on the necessary
changes then the new architecture will not emerge”, P5.
“You[r] team should have enough time to perform [a]
‘wider’ look at the system and change its architecture when
local refactoring comes into conflict with overall
architecture. Working under constant pressure from
management to deliver releases, [the] team may not feel it's
in the best interest to spend days improving architecture...
even realizing it may significantly improve [the] product's
maintenance and reliability. Management must be supportive
on team's decision to refactor code and invest time, if
necessary”, P30.

Culture can also play an important role in achieving
architecture through refactoring. The cultural aspects
mentioned by the participants include: good communication
channels, encouragement for people to take ownership and
commitment, open, and blame-free. If suitable culture is not
there, a satisfactory architecture is unlikely to emerge.
“Team members must have good communication channels
and discuss overall changes with each other all the time
[…], so everyone would know about system-wide changes
[…]. Bad communication between team members is another
strong contributor to fail producing new architecture from
small local changes”, P30. A participant referred to a failure
case: “They [the team] were used to work heads down in
their cubicles for months without speaking to anybody. After
that time they simply deposit hundreds of pages of useless
diagrams and felt good about it. […] the sense of
responsibility that comes with Agile is not there”, P24.

201

Organization Structure can also help or hinder in
gaining a satisfactory architecture through refactoring. When
describing the reasons for cases where a satisfactory
architecture did not emerge, participants said: “When the
organizational structure prevents [emerging of
architecture], for example, enterprise organizations often
make it difficult to do continuous small refactoring.” P29.
“Their organizational structure was based by role
(architects, analysts and developers). They were not
embracing the openness of the Agile approach”, P24.

TABLE IV. A CHARACTERIZATION OF CONTEXTS IN WHICH A
SATISFACTORY ARCHITECTURE IS LIKELY TO EMERGE

 Factor Success Condition

Change Medium to high rate of change

Size Small

Type Support small releases

Maturity of AK Mature Architecture Knowledge (AK)

System Age Green field

Type of ASR
No demanding ASR that cannot be satisfied
by refactoring

P
ro

je
ct

Criticality Low criticality

Experience Experienced

Skill Skilled

Personality
and Mindset

Willing to make change, learn, have passion,
with dedication to good design

Team Size Small

T
ea

m

Distribution Collocated

Safe Net Automated testing with good coverage

Continuous
Integration

Continuous integration

P
ra

ct
ic

es

Good Design
Principles

Applying good design principles such as
DRY, SOLID, KISS

Management Management support and commitment

Culture
Good communication channels, encouraging
for taking ownership and commitment, open,
blame-free

Structure Embraces the openness of Agile approaches.

Governance Proper architecture governance O
rg

an
iz

at
io

n

Maturity Certain Level of Maturity

Organizational Governance and Maturity are
important factors in ensuring architecture can be achieved
through refactoring. A participant said: “Without any kind of
governance, 5 different development teams implemented
different code that impacted the performance of everyone on
the platform”, P32. When answering the reasons for cases
where a satisfactory architecture emerged, a participant
noted: “It is a success because there is good architecture
governance”, P76. Moreover, it is commonly known that
sound architecture are designed upfront or achieved through
refactoring in relative mature organizations. When
explaining why a satisfactory architecture did not emerge as
expected, P63 replied: “CMMI level one task[s] are only
accomplished by the heroic act of individuals.”

E. A Characterization of Contexts

The findings from our study have resulted in a
characterization of contexts in which a satisfactory
architecture is likely to emerge from continuous small
refactoring (see Table IV). For the projects in contexts that
are different from those characterized in Table IV, relying on
a satisfactory architecture to emerge instead of doing an
adequate upfront architecture design is risky. For these
projects, a proper upfront design by adopting architecture-
centric practices is highly recommended.

Due to the qualitative and exploratory nature of this
study, giving an accurate measure for each factor is beyond
the scope of this study. Characterizing a factor accurately
(e.g., what is the threshold for project size, what are the
specific types of ASR, how mature an organization should
be, how informal or formal the governance should be) would
require a separate empirical program consisting of defining
appropriate metrics and then validating them. Though the
characterization given in Table IV could not provide
accurate measurement for each of these factors, it provides
useful information to assist practitioners in deciding
appropriate architecture practices to be used in their
particular projects, rather than following the advice that
“architecture should emerge from continuous small
refactoring” on its face value.

VII. DISCUSSION

The findings of this study has shown that like any other
software development practices, the contextual factors play a
significant role in supporting or inhibit the emergence of a
satisfactory architecture through continuous refactoring.
However, many instances have been reported when
contextual aspects of a particular practice or belief may be
ignored by practitioners [8]. Interestingly, our study has also
unearth a reason for this phenomenon. Table III (see Section
V) shows that people, who are only aware of cases where a
satisfactory architecture emerged and have not observed
cases where a satisfactory architecture did not emerge, do
exist (9%, 9 out of 102 participants). Because they have only
experienced or observed successful cases, they tend to have
strong belief in their practices. Thus, they tend to say with
strong conviction to other practitioners: “it worked for me, so
I do not see why it should not work for you” [8].

The findings of our study can provide some important
insights with regards to the importance and role of contextual
factors that should be taken into consideration when devising
strategies to deal with architectural aspects, otherwise, it can
harmful. If other practitioners, who work in totally different
contexts, listened and followed their generic advice, they
may run into difficulties, or even cause project failures.
Clarifying or even just recognizing the confusion caused by
such context-regardless preaching of practices is not easy.
This is evidenced by the many “blind bigots, sometimes
rabid bigots” among followers of Agile advocates [8].

In such a situation, empirical evidence is particularly
valuable. Thus, we suggest that more empirical studies
should be conducted to establish an evidence-based
understanding of the context factors and their impact on the

202

effectiveness of agile practices in general and combining
architecture and agile approaches. Such understanding is
essential for practitioners to select and tailor their process to
a particular project according to the specific contexts at hand.
As described in Section II, Boehm et al. [23] and
Abrahamsson et al. [3] have also indicated a set of factors
that determine the needs for architecture-centric activities.
Compared to Boehm et al. [23], we have identified all the
three factors they considered, i.e., project size, criticality, and
volatility (corresponding to change). We have also identified
many more factors. This answers the question we asked in
Section II about the guidance [23] they provided. The answer
is: many more factors need to be considered in their
guidance. So we suggest practitioners to carefully consider
the extra factors we have identified when using their three-
factor based guidance.

The context model presented by Kruchten [32] provides
the most comprehensive list of factors. Our results have
confirmed Kruchten’s experience-based insights with
empirical evidence. Our study has also identified several
factors (e.g., experience and skill) that are not included in the
Kruchten’s model. Our study only focuses on a particular
practice in Agile software development (i.e., emergence of
architecture through continuous small refactoring), we also
identified and highlighted several supporting practices as
factors. So our study results corroborate and complement
Kruchten’s work.

VIII. THREATS TO VALIDITY

Given the qualitative nature of our research, the usual
threats to validity are inconsistent. An investigator’s bias is
not considered a threat in GT, but a required attribute. The
investigator is expected to select the participants, refine the
questions, and develop the theory. When evaluating the
validity of a qualitative research, the terms like quality and
credibility are used. Quality concerns the question: are the
findings useful [33]? Credibility concerns the question: are
the findings trustworthy and do they reflect the participants’
experiences with a phenomenon [33]? We used three criteria
to evaluate the quality and credibility of this study.

Fit concerns with questions like, “do the findings
fit/resonate with the professionals for whom the research
was intended?” We kept all traces from each finding to the
participants’ replies throughout the data analysis. We can
link a finding to the replies from the participants.

Applicability or Usefulness concerns with question such
as “do the findings offer new insights? Can they be used to
develop policy or change practice?” On average, each of the
participants mentioned three out of the 20 factors we have
identified. At maximum, an individual participant mentioned
six factors. This indicates that the list of 20 factors as a
whole is probably beyond an individual’s knowledge. We
believe that these 20 factors together with the
characterization of contexts can offer new insights. The
findings can also cause changes in practice. These findings
can help practitioners to realize the importance of context
factors, and help them to make informed decisions. Hence,
they may decide to spend sufficient time and resources on

architecture design in the contexts where a satisfactory
architecture is unlikely to emerge.

Variation concerns with questions like, “has variation
been built into the findings?” That means if a phenomenon is
complex, the findings accurately represent that complexity.
The study participants had diverse backgrounds as noted in
the demographic information of the participants. Hence, the
findings are expected to show that diversity.

The inherent limitation of studies like ours is that the
results can only be explained in the specifically explored
contexts. The identified factors are not exhaustive. They only
represent those that have been experienced and observed by
our participants. The selection of participants through social
connections could potentially result in selection bias. We
have carefully excluded persons who are likely to advocate
one side of issue due to their vested interest. A very high
number of variables that affect a real software engineering
project make it difficult to conclusively identify the impact
that one factor may have on a project.

IX. CONCLUSION

Despite continuously increasing popularity and adoption
of Agile approaches, there is an increasing perplexity about
the software architecture’s role and importance in Agile
software development [3]. One of the most fundamental
points of the perplexity is the question: Can a satisfactory
architecture emerge from continuous small refactoring [4]?
Based on a large scale interview based empirical study, it can
be concluded that different participants had different views
about whether or not a satisfactory architecture emerges
through continuous refactoring. Our study has identified
twenty contextual factors that have been placed in four
elements of framework: project, team, practices, and
organization. We have further characterized the contexts in
which a satisfactory architecture is likely to “emerge”. These
findings can be used by practitioners to make informed
decisions on their architecture practices in Agile software
development.

Particularly, we hope the empirical evidence reported in
this study can help eliminate the commonly observed
phenomenon [8]: some practitioners usually ignore
architecture-centric activities with the justification that “we
are doing Agile, architecture should emerge from continuous
small refactoring.”

ACKNOWLEDGMENTS

The authors are thankful to all the participants. The first
author also acknowledges the help of Bashar Nuseibeh,
Klaas-Jan Stol, Soo Ling Lim, and Sajid Ibrahim Hashmi for
improving an initial draft of this paper.

REFERENCES

[1] D. West and T. Grant, "Agile Development:
Mainstream Adoption Has Changed Agility -
Trends In Real-World Adoption Of Agile
Methods," Forrester Research, Inc.2010.

203

[2] M. A. Babar, "Making Software Architecture and
Agile Approaches Work Together: Foundations
and Approaches," in Aigle Software Architecture:
Aligning Agile Processes and Software
Architectures, M. A. Babar, Brown, A. W.,
Mistrik, I., , Ed., ed: Morgan Kaufmann, 2014, pp.
1-22.

[3] P. Abrahamsson, et al., "Agility and Architecture:
Can They Coexist?," IEEE Software, vol. 27, pp.
16-22, 2010.

[4] H. Erdogmus, "Architecture Meets Agility," IEEE
Software, vol. 26, pp. 2-4, 2009.

[5] L. Chen, et al., "Characterizing Architecturally
Significant Requirements," Software, IEEE, vol.
30, pp. 38-45, 2013.

[6] R. L. Nord and J. E. Tomayko, "Software
architecture-centric methods and agile
development," Software, IEEE, vol. 23, pp. 47-53,
2006.

[7] J. Corbin and A. Strauss, Basics of Qualitative
Research: Techniques and Procedures for
Developing Grounded Theory, 3 ed.: Sage
Publications, 2007.

[8] P. Kruchten, "Voyage in the Agile Memeplex,"
ACM Queue, vol. 5, pp. 38-44, 2007.

[9] K. Beck, Extreme Programming Explained:
Embrace Change: Addison Wesley Longman, Inc.,
Reading, MA. USA, 2000.

[10] A. Cockburn, Crystal Clear: A Human-Powered
Methodology for Small Teams: Addison-Wesley,
2004.

[11] K. Schwaber, Agile Project Management with
Scrum: Microsoft Press, 2004.

[12] D. Turk, et al., "Assumptions underlying agile
software-development processes," Journal of
Database Management, vol. 16, pp. 62-87, 2005.

[13] C. Hofmeister, et al., "A general model of software
architecture design derived from five industrial
approaches," Journal of System and Software, vol.
80, pp. 106-126, 2007.

[14] P. Thapparambil. (2005) Agile architecture: pattern
or oxymoron? Agile Times. 43-48.

[15] C. Hofmeister, et al., Applied Software
Architecture: Addison-Wesley, 1999.

[16] L. Bass, et al., Software Architecture in Practice,
2nd ed.: Addison-Wesley, 2003.

[17] P. Kruchten, The Rational Unified Process: An
Introduction: Addison-Wesley, 2003.

[18] M. A. Babar, "An exploratory study of
architectural practices and challenges in using agile
software development approaches," in Joint
Working IEEE/IFIP Conf. on Software
Architecture & European Conf. on Software
Architecture, 2009, pp. 81-90.

[19] D. Falessi, et al., "Peaceful Coexistence: Agile
Developer Perspectives on Software Architecture,"
IEEE Software, vol. 27, pp. 23-25, 2010.

[20] S. W. Ambler, Agile modeling: effective practices
for eXreme Programming and the Unified Process.
New York: John Wiley & Sons, Inc., 2002.

[21] IBM. (2004, RUP for Extreme Programming (XP)
Plug-Ins. Available: http://www-
128.ibm.com/developerworks/rational/library/4156
.html

[22] C. Larman, Agile and iterative development: a
manager's guide. Boston, MA: Addison Wesley
Professional, 2003.

[23] B. Boehm, et al., "Architected Agile Solutions for
Software-Reliant Systems," in Agile Software
Development: Current Research and Future
Directions T. Dingsøyr, et al., Eds., 1 ed: Springer,
2010, pp. 165-184.

[24] B. Kitchenham and S. L. Pfleeger, "Principles of
Survey Research, Parts 1 to 6," Software
Engineering Notes, 2001-2002.

[25] T. C. Lethbridge, "Studying Software Engineers:
Data Collection Techniques for Software Field
Studies," Empirical Software Engineering, vol. 10,
pp. 311-341, 2005.

[26] R. Hoda, et al., "Organizing self-organizing
teams," presented at the Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 1, Cape Town, South
Africa, 2010.

[27] M. Poppendieck and T. Poppendieck, Lean
Software Development: An Agile Toolkit: Addison-
Wesley, 2003.

[28] S. R. Palmer and J. M. Felsing, A Practical Guide
to Feature-Driven Development: Prentice Hall,
2002.

[29] D. J. Anderson, Kanban: Blue Hole Press, 2010.
[30] S. Ahmed, et al., "Understanding the Difference

Between How Novice and Experienced Designers
Approach Design Tasks," Journal of Research in
Engineering Design, vol. 14, pp. 1-11, 2003.

[31] A. Hunt and D. Thomas, The Pragmatic
Programmer: From Journeyman to Master:
Addison-Wesley Professional, 1999.

[32] P. Kruchten, "Contextualizing agile software
development," Journal of Software: Evolution and
Process, vol. 25, pp. 351-361, 2013.

[33] J. W. Creswell, Qualitative Inquiry and Research
Design: Choosing among Five Approaches, 2 ed.:
Sage Publications, 2006.

204

