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AUTHOR SUMMARY

Pigmentation patterns on gastropod
(i.e., snail) shells vary widely among spe-
cies, but the complexity of the patterns
make it difficult to quantify these differ-
ences or understand their evolution. To
answer these questions, we use a de-
velopmental model that reproduces the
pigmentation patterns on 19 species of
cone snails. Our model shows that evo-
lutionary changes are generally slow, with
a few episodes of rapid change, possibly
indicating the action of natural selection.
Our analysis allows the inference of an-
cestral shell patterns and represents an
attempt to understand a complex de-
velopmental history by using phylogenetic
methods on a developmental model.
Our neural-network model is based on

a neurosecretory feedback loop; it has
only a few parameters, and they corre-
spond to physiologically measurable fea-
tures of the gastropod nervous system. In
our model, the pigmentation patterns are
formed by secretory cells in the mantle
(i.e., the part of the gastropod that cre-
ates and colors the shell). The modeled
mantle output is controlled by a hypothe-
sized network of excitatory and inhibitory
neurons. The pigmentation pattern rep-
resents the history of the output of this
network with “time” running along the
axis of shell growth and “space” running
parallel to the aperture of the shell. We suppose that other
neurons in the mantle are able to sense pigment that has been
previously laid down. The output of these sensory neurons is
transformed by the excitatory–inhibitory network that produces
the next round of pigmentation. To determine the secretory
output at a specific location for the current bout of pigmentation,
the excitatory–inhibitory network performs a weighted average
over the entire surface of the shell and then applies a satu-
rating nonlinearity to this average. The weights of the summed
activity are interpreted as excitatory for nearby spatial locations
and recent bouts of activity or as inhibitory for spatially
distant and earlier bouts of activity—a so-called center-surround
dynamic. With these few parameters, our model can reproduce
the diverse range of coloration seen on gastropod shells.
To understand the evolutionary history of the model param-

eters, we estimated parameter values for each of 19 species in the
genus Conus, a group of marine snails whose shells display a
wide range of pigmentation patterns. A well resolved phylogeny,

or map of evolutionary relationships, of
these species had already been obtained
from the analysis of DNA sequences
of four genes from each species. By
mapping our model parameter values for
each species onto this phylogeny, we
inferred the evolutionary trajectories of
each parameter (Fig. P1). Specifically,
we found that these parameters evolved
roughly independently of one another in
the ancestors of the extant species. Fur-
ther, we show that the model parameters
evolved slowly on most lineages, but with
a few episodes of rapid change. These
probably indicate the effect of natural
selection on some parameters in some
lineages. There is a strong “phylogenetic
signal” for the parameters, which means
that there is overall concordance be-
tween the model parameters and the
phylogeny. This result contrasts with
what we found for several observable
features of the pigmentation patterns,
including the presence of triangles or
stripes, for which there is no phyloge-
netic signal. The overall fit of the model
parameters to the phylogeny allowed us
to infer the pigmentation patterns of
ancestral cone snails, something that
cannot be determined from the fossil
record of most groups. Some of these
inferred patterns lie outside the range of

phenotypic variation of the 19 species we analyzed, but are found
in other existing gastropods.
Our analysis represents a unique attempt to understand the

history of a complex developmental process by applying phylo-
genetic methods to an explicit developmental model.
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Fig. P1. Shells of living species are displayed at
the tips of the tree. To the right of these are shells
“grown” in the computer by using the neural-
network model. Based on a Brownian-motion
model for the evolution of continuous traits, we
estimated the model parameters for ancestors.
Then, the neural network model was used to
produce the ancestor shells by using the estimated
parameters.
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The pigmentation patterns of shells in the genus Conus can be gen-
erated by a neural-network model of the mantle. We fit model
parameters to the shell pigmentation patterns of 19 living Conus
species for which a well resolved phylogeny is available. We infer
the evolutionary history of these parameters and use these results
to infer the pigmentation patterns of ancestral species. Themethods
we use allow us to characterize the evolutionary history of a neural
network, an organ that cannot be preserved in the fossil record.
These results are also notable because the inferred patterns of an-
cestral species sometimes lie outside the range of patterns of their
living descendants, and illustrate how development imposes con-
straints on the evolution of complex phenotypes.

pattern formation | developmental evolution | phylogenetics | ancestral
inference

Pigmentation patterns on mollusk shells are typical complex
phenotypes. They differ substantially among closely related

species, but the complexity of the patterns makes it difficult to
characterize their similarities and differences. Consequently, it has
proven difficult to describe the evolution of pigmentation patterns
or to draw inferences about how natural selection might affect
them. In this report, we present an attempt to resolve this problem
by combining phylogenetic methods with a realistic developmental
model that can generate pigmentation patterns of shelledmollusks
in the diverse cone snail genus Conus. The model is based on the
interactions between pigment-secreting cells and a neuronal net-
work whose parameters are measurable physiological quantities.
The neural model used here is a generalization of models pro-
posed earlier by Ermentrout et al. (1) and Boettiger et al. (2).
Furthermore, the species have a well supported phylogeny that
allows us to infer rates and patterns of parameter evolution.
We chose 19 species in the genus Conus for which Nam et al.

have presented a resolved phylogeny (3). For each species, we
found a model parameter set that matched the observed pig-
mentation pattern. Then we applied likelihood-based phylogenetic
methods to measure phylogenetic signal in the model parameters,
compare possible evolutionary models, estimate the model
parameters of ancestral species, and then use these to infer the
pigmentation patterns of ancestral species.

Neural Model
Fig. 1 shows a schematic of themantle geometry and illustrates the
basic principle of the neural model. The mathematical details are
described in SI Appendix, Supplement A. Themodel is built on two
general properties of neural networks: spatial lateral inhibition
(also called center-surround), and “delayed temporal inhibition.”
The latter can be viewed as “lateral inhibition in time” (4–6), as
illustrated in Fig. 1C, Center.
The neural field equations describe the local pattern of neuron

spiking. Local activity of excitatory neurons induces the activity of
inhibitory interneurons in the surrounding tissue. The net spatial
activity has “Mexican hat” shape, as shown in Fig. 1C (5–7). As
shell material and pigment are laid down in periodic bouts of se-
cretion, the surface pigment pattern is a space–time record of the
animal’s secretory activity, in which distance from the shell aper-
ture is proportional to the number of bouts of secretion. Excitation

of a cell during a bout inhibits its excitation for some future
number of bouts, so that an active neuron will eventually be
inhibited and remain inactive for a “refractory” period. Thus,
“delayed inhibition” is equivalent to “half a Mexican hat backward
in time.” Finally, the secretory activity of pigment granule secre-
tory cells depends sigmoidally on the difference between the ac-
tivities of the excitatory and inhibitory cells, as shown in Fig. 1C.
The logic of the model is that the sensory cells read the history of
pigmentation and send this to the neural net that uses this history
to “predict” the next increment of pigmentation and instruct the
secretory cells to deposit accordingly. This feedback from output
to input distinguishes the neural model from models whose future
state depends only on their current state (e.g., diffusible morph-
ogens and cellular automata).
The neural field model is characterized by 17 free parameters,

each of which has a concrete physiological interpretation, as de-
scribed in Fig. 2. In effect, there are four cell types: sensory cells,
excitatory neurons, inhibitory neurons, and secretory cells; their
effective connectivity relationship is shown in SI Appendix, Sup-
plement A. The behavior of each cell type is given by its input/
output relationships, as shown in Fig. 2. Each excitatory and in-
hibitory neuron is described by a Gaussian spatial synaptic weight
kernel described by two parameters (amplitude and width), and
a temporal kernel described by four parameters. As several of the
parameters appear in products with other parameters, we can
normalize their magnitudes and thereby reduce them to three free
parameters each describing the spatial and temporal ranges of
excitation and inhibition. The precise parameter reduction pro-
cedure is described in SI Appendix, Supplement A.
Imbued with these properties, the neural network drives se-

cretory cells to lay down both the shell material and pigment.
Thus, the model can reproduce both the shell shape and the
surface pattern for many shelled mollusk species, as described
previously (2). The present model differs in several essential
ways from that proposed previously (2); this is also discussed in
SI Appendix, Supplement A.
The basic neural model consists of a simple feedback circuit that

spatially and temporally filters previous activity and feeds the re-
sult through a nonlinear function to produce the next bout of
pigment. One needs 17 parameters to specify the shape of the
functions in Fig. 2. By varying the 17 parameters in the model, we
were able to produce a wide variety of cone shell patterns. Some of
these patterns are very sensitive to the initial conditions (i.e.,
“chaotic dynamics”), and thus small changes in the initial pattern
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or small amounts of noise give rise to diversity among individuals
while still maintaining the same qualitative pattern. Fig. 3A pro-
vides an example showing multiple instances of a simulation of
Conus crocatus such that there are small differences in initial data
or the addition of a small amount of noise. The overall look of the
pattern is the same, but there are clear individual differences.
Somewhat surprisingly, the regions of parameter space that cor-

respond to cone shell patterns are fairly restricted and almost always
require that the effective spatial interaction be lateral inhibition.
When we chose parameters outside this range, we produced shell
patterns that do not correspond to any known species (Fig. 3B).
Although our basic model is capable of producing many of the

observed patterns, there are some species (e.g., Conus textile) in
which we had to assume that some of the parameters were mod-
ulated in space and “time” to specify prepatterns. The prepatterns
generally are periodic or consist of a localized region where the
parameter is greater or smaller than that of the surrounding re-
gion. Such prepatterns could be hard-wired into the network or
could themselves be produced by another neural network in the
central ganglia (further details are provided in SI Appendix, Sup-
plement A).
Finally, we should point out some important differences be-

tween the morphogen models for shell patterns developed by
Meinhardt and coworkers (8, 9) and the neural network model
used here (1, 2). Structural studies provide strong evidence that

shell patterns are a neurosecretory phenomenon rather than
a diffusing morphogen phenomenon (2). However, from a theo-
retical viewpoint, morphogen models can be viewed as an ap-
proximation to the neural net model when the range of
communication between neurons is short (9, 10). Therefore, in
principle, morphogen models could have been used instead of
the neural model (11). From a practical viewpoint, however, this
would be considerably more difficult because a separate mor-
phogen model is required for each shell pattern, whereas the
neural model has a single set of parameters that are varied to
match each pattern. Also, as the neural models are more general,
they can generate a wider variety of patterns than can diffusible
morphogen models. One other difference is fundamental. Mor-
phogen models described by diffusion-reaction dynamics unfold
with no “memory” of the system state other than the current
state. The neural model, however, is a sensory feedback system
in which the current secretion depends on sensing the history of
the pattern before the current state.

Phylogenetic Analyses
Inferred Parameter Values for Each Species. We chose 19 species
from the phylogeny published by Nam et al. (3) based on mito-
chondrial cytochrome C oxidase subunit I and rDNA sequences
and on internal transcribed spacer 2 sequences from nuclear ri-
bosomal DNA. There were sufficient data that the order of
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Fig. 1. The neural-network model of the mantle. (A) Rough anatomy of a generic shelled mollusk. Note the “brain,” where the neural patterns are
processed consists of a ring of ganglia. (B) Cross-section of the mantle showing how the sensory cells “taste” the previously laid pigment patterns that are
processed by the central ganglion and sent to the mantle network that controls the pigment-secreting cells. (C) Simple pattern on a Conus shell and how
the model extrapolates the previous pattern to produce the current day’s pigment secretion. The pigmentation pattern is read by the sensory cells in the
mantle. This activity is then passed through the space–time filter of neural activation and inhibition. Here, time represents the pigmentation pattern that
was laid down in previous bouts, whereas space is the dimension along the growing edge of the cell. The resulting filtered activity is passed through
nonlinearities for excitation and inhibition, and this net activity drives the secretory cells that lay down the new pigmented shell material. The spatial filter,
shown in top and perspective views, has the form of a Mexican hat, in which excitatory activity stimulates a surrounding inhibitory field. The temporal filter
that implements delayed inhibition is half a Mexican hat. It generates a refractory period following a period of activity. The pigment secreting cells have
a sigmoidal stimulus response curve. Feedback occurs as the current pigment deposition becomes part of the input to the sensory cells for the next se-
cretion bout.
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branching events in the phylogeny could be completely de-
termined with a high degree of statistical confidence.
The neural network model was fit to each living species in the

phylogenetic tree. Nine species can be reproduced using the basic
model (i.e., a single neural network). Six species (Conus tessulatus,
Conus aurisiacus, Conus ammiralis, Conus orbignyi, Conus ster-
cusmuscarum, and Conus laterculatus) require a spatial prepattern
(generated by a “hidden” network), and four species (Conus dalli,
C. textile, Conus aulicus, and Conus episcopatus) require spatio-
temporal prepatterns (generated by one or two hidden networks).
In phylogenetic analyses of these shell parameters, we focus on the
primary network, which can be compared across all species. The
fitted parameters for each species are shown in SI Appendix,
Supplement C. Images of real shells and their corresponding
simulated ones are shown in Fig. 4.

Test for Phylogenetic Signal in Estimated Parameter Values. Pheno-
typic traits like body size and shape typically exhibit a substantial
degree of “phylogenetic signal,” meaning that they are inherited,
and the phenotypes of closely related species are strongly corre-
lated (12). One purpose of the present study is to determine
whether parameters of the neural-network model exhibit a phylo-
genetic signal. They will if the construction of themodel accurately
approximates the real developmental process of shell patterning.
Therefore, we tested for a phylogenetic signal when the model
parameters are fitted to the observed pigmentation patterns. A
basic test for phylogenetic signal in traits is to compare the ob-
served data to a null model in which all phylogenetic signal are
obliterated by randomly shuffling the species names or trait values
at the tips of the phylogenic tree (13). To test for a phylogenetic
signal in the neural network parameters, we constructed a neighbor-
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Fig. 2. Definition of cell specific model parameters. (A) Gaussian excitation and inhibition kernels whose difference creates the Mexican-hat spatial field. (B)
Temporal filter implementing delayed inhibition. β1 (β2) is the strength of the temporal excitation (inhibition) and c1 (c2) is the decay in “time” of the ex-
citation (inhibition), wherein time is measured discretely in secretory bouts, denoted by n (0 < c1 < c2 < 1, so that the inhibition decays more slowly in time;
thus, the most recent activity is excitatory and more distant activity is inhibitory). (C) Sigmoid response function of the secretory cells; ν is the sharpness of the
nonlinearity and θ is the midpoint (there is one nonlinearity for excitation and one for inhibition).
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Fig. 3. (A) Both noise and chaos generate within-species pattern diversity. a, Three real C. crocatus shells. b, Three shells generated with 1% noise only.
c, Three shells generated with slightly different initial conditions, but no noise. d, Three shells with both 1% noise and slightly different initial conditions. (B)
Two examples of “unknown” patterns having too-wide inhibition fields.
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joining phylogeny of the 19 species based on the parameter values
alone and compared it with the DNA phylogeny of Nam et al. (3).
The parameter-based phylogeny was obtained as described in
SI Appendix, Supplement B.
For each method of measuring distances between trees, we

constructed a null distribution on tree-to-tree distances by taking
the parameter-based tree and randomly reshuffling the species
names. The distances between the randomized null-parameter
tree and the DNA tree were then calculated. This procedure was
repeated 10,000 times to produce the null distribution.
The trees are compared in Fig. 5. Despite several dissimilarities

between the DNA- and parameter-based trees, the observed dis-
tance between the trees is much less than expected under the null
hypothesis of only random similarity between the trees (SI Ap-
pendix, Fig. S7). The differences are statistically significant—P =
0.0146 for the topology-based distance measure and P = 0.0001
the branch-length-based distance measure—indicating that the
observed distance was smaller than all the 10,000 null distances

generated. We conclude that there is a phylogenetic signal in the
parameter values, despite the fact that they do not perfectly reflect
the phylogenetic relationships of the group.

Similarity of DNA- and Parameter-Based Trees. Looking more closely
at the parameter and DNA trees, we can see there is broad simi-
larity but with notable exceptions. In both trees, there are two large
clades, called arbitrarily clade 1 (C. stercusmuscarum,C. aurisiacus,
Conus pulicarius, Conus arenatus, and C. laterculatus) and clade 2
(C. gloriamaris, C. dalli, C. textile, Conus omaria, C. episcopatus,
andC. aulicus), that are nearly the same in both trees, although the
detailed branching order differs slightly. In addition, Conus ban-
danus and Conus marmoreus are sister groups in both trees. There
are some conspicuous differences, however. Most notably, Conus
furvus, C. tessulatus, and C. orbignyi form a tight clade in the pa-
rameter tree yet are widely separated in the DNA tree. In fact, in
the DNA tree, C. orbignyi is a well supported out-group to the
other 18 species. C. ammiralis is part of clade 2 on the DNA tree

Fig. 4. Maximum-likelihood estimates of ancestral shell patterns. Shells of living species are displayed at the tips; to the right of these are shells “grown” in
the computer by using the neural-network model and the fitted parameters. By using a Brownian motion model for the evolution of continuous traits, the
maximum-likelihood value was estimated for each neural network parameter at each node. The neural network model was used to produce the shells using
the estimated parameters for each node. Color is not part of the neural network model, so it was added independently to the models of living shells, and then
mapped onto the phylogeny (using maximum likelihood) as a binary trait (black/white or brown/white). The text includes further details.
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but is quite separate on the parameter tree.C. crocatus is in clade 2
on the DNA tree and in clade 1 on the parameter tree (Fig. 5).
The overall similarity of the DNA-based and parameter-based

trees is consistent with the hypothesis that the parameters of the
developmental model evolved sufficiently slowly that sets of
parameters in closely related species are similar. However, there
are some exceptional lineages on which more rapid evolution of
parameters seems to have occurred. The three species C. furvus,
C. tessulatus, and C. orbignyi appear to have converged not only in
pattern but in the developmental process that produces that pat-
tern. C. crocatus appears to have shifted its pattern to become
similar to species in clade 2, and both C. ammiralis and C. consors
have undergone relatively rapid evolution that resulted in quite
distinct patterns. The apparently higher rate of parameter evolu-
tion on these lineages is consistent with the action of natural se-
lection either directly on pigmentation pattern or indirectly as
a correlated response to selection on physiological processes that
affect parameter values. In the absence of knowledge of the
physiological basis of parameter values, we have no way to directly
test for natural selection.
Parametric and nonparametric tests of the Brownian motion model. The
estimation of parameter values for ancestral species in the phy-
logeny is most easily done if the Brownian motion model of con-
tinuous trait evolution can be used. Therefore, when we had
established that detectable phylogenetic signal existed in the
neural network parameters, we conducted a series of tests to assess
the utility of Brownian motion versus other models for modeling
the evolution of neural network parameters, as recommended by
Blomberg et al. (14). We concluded that Brownian motion was an
overall reasonable first approximation for the evolution of neural
network parameters (SI Appendix, Supplement B).

Discrete Characters. Hidden Networks Treated as Discrete Characters.
We can treat the presence or absence of a hidden neural network
as a binary discrete character. Then, the presence or absence of
this character can be mapped onto the phylogeny by using par-
simony and maximum-likelihood reconstruction for discrete
characters. The two methods give identical results. The presence
of hidden networks was restricted to small subclades of the full
clade. The presence/absence of hidden networks (Fig. 6 A and B
show the presence of a space–time-dependent hidden network and
space-dependent hidden network, respectively) showed strong
phylogenetic clustering. Relatively few transitions from simple
models (i.e., no hidden networks) to complex models (i.e., con-
taining a hidden network) were needed for either character. For
the space–time-dependent network, species in two small clades

(C. episcopatus/C. aulicus and C. textile/C. dalli) are complex. For
the space-dependent hidden network, a complex pattern is more
dispersed in the phylogeny.
Discrete phenotypic characters. Other discrete characters were also
mapped for comparison with the results for hidden networks. We
mapped several discrete phenotypic characters on the phylogeny
(SI Appendix, Supplement B). Cone shape is fairly scattered but
shows some uniformity in small clades. Strikingly, prey prefer-
ence shows extremely high conservation [as was clear in the
discussion of Nam et al. (3)] compared with shell pattern char-
acters. Each major clade is almost completely restricted to
a certain prey, and the entire pattern is explained by the mini-
mum possible number of transitions.
Fig. 6 shows the distributions of stripes and triangles in this

group and the maximum-likelihood assignment of ancestral states.
The presence and absence of stripes, in particular, is scattered
throughout the phylogeny, indicating that they are evolutionarily
labile, although triangle presence/absence shows some correlation
with large clades. These observations are confirmed by standard
parsimony statistics and their comparisonwith randomized-tip null
models; presence/absence of stripes, despite these being visually
striking patterns used in identification, appear to lack significant
phylogenetic signal in that they do not show significantly more
congruence with the phylogeny than is expected under the null
model in which character states have been randomly shuffled
among the phylogeny tips.

Inference of Ancestral Shell Patterns. We used a Brownian motion
model to estimate parameter values in the species ancestral to the
living species. We then ran the neural-network model with these
estimated parameter values to predict the pigmentation patterns
in the ancestral species. Those patterns are shown at the nodes in
Fig. 4. Ancestral states for each parameter common to all species
were estimated by using maximum-likelihood estimation on the
tree inferred from DNA sequences, modeling the evolution of
each parameter as an independent Brownian motion process (15,
16). Two other available methods—generalized least-squares and
phylogenetically independent contrasts—gave similar estimates.
For the additional parameters used in the hidden networks,

ancestral character estimation was performed as follows. Phylo-
genetically independent contrasts were applied to reconstruct
the ancestral states of the hidden networks because it works from
the tips downward, and so, unlike maximum likelihood, can be
used when parameters for hidden networks are not available in
the rest of the clade.

Fig. 5. Comparison of the DNA-based phylogeny of cone snails (Left, after Nam et al. (3), unrooted for display) and the parameter-based tree (Right, present
study). Species labeled in blue exhibit major changes in topological position in the parameter-based tree. The observed tree-to-tree distances are significantly
shorter than expected under a null hypothesis of random similarity (SI Appendix, Fig. S7).
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The ancestral shell patterns are shown in Fig. 4. Each estimate
has an associated variance and confidence intervals. To test the
robustness of the ancestral patterns to uncertainty in parameter
estimates, we randomly generated sets of parameters from the
distribution of each parameter and generated ancestral patterns
from each set. We found that some ancestral patterns are quite
robust to uncertainty in estimated parameters whereas others are
not. Fig. 7 shows two examples of each kind. The ancestral patterns
for nodes 25 and 29 are quite similar for different sets of estimated
parameters, whereas those for nodes 27 and 31 differ greatly
among sets of estimated parameters, although various detailed
similarities can still be detected even among these shells because of
the underlying similarity of neural network parameters.

Discussion and Conclusions
We have taken a step in applying modern phylogenetic methods to
understanding the development of complex phenotypic characters.
The pigmentation patterns of Conus shells can be generated by
a neural-network model that has a sound anatomical and physio-
logical basis. The model parameters fitted to observed patterns
show a substantial phylogenetic signal, indicating that the pro-
cesses governing evolutionary change in shell patterns are, to some
extent, gradual across the phylogeny. Our analyses have allowed us
to estimate the shell pigmentation patterns of ancestral species,

identify lineages in which one or more parameters have evolved
rapidly, and measure the degree to which different parameters
correlate with the phylogeny.
Our results are summarized in Fig. 4. This figure shows that

pigmentation patterns in living species are well approximated by
the neural-network model presented in this study. It also shows
the inferred ancestral shell patterns. Often, recent ancestors of
sister species show recognizable similarity to the pigmentation
patterns in living species (e.g., nodes 26–27 and 31–32). Nodes
more remote from the present often show ancestors that are
generally similar to the living species (nodes 21, 22, 24, and 33).
However, some ancestors are strikingly different from any of the
living species in the group we analyzed. Interestingly, such pat-
terns can be found in other living species. For example, the
strong striping perpendicular to the axis of coiling of the shell
found in node 37 is quite similar to that of Conus hirasei, Conus
papuensis, or Conus mucronatus (17). Striping parallel to the axis
of coiling of the shell, observed in other estimated ancestors, can
also be found in living species, for example in some specimens of
Conus hyaena and Conus generalis (ref. 17, pp. 354 and 392).
A unique feature of our results is that the inferred pigmentation

patterns of ancestors may be quite different from the patterns of
their descendants. The patterns generated by the neural-network
model are not necessarily smooth functions of the parameter val-

Fig. 6. Maximum-likelihood estimates of selected discrete characters. The relative simplicity of the inferred evolution of pattern complexity is in striking
contrast to what can be inferred about the evolution of specific features of the patterns when they are described as discrete characters, as illustrated in A–D.
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ues. Instead, they can vary discontinuously when parameter values
move into a different bifurcation region that produces qualitatively
different patterns. The role of bifurcation boundaries in evolution
was recognized in earlier studies of limb morphogenesis (18, 19).
This feature of our results is quite different from what is usually
found when inferring ancestral states of continuously variable
characters. A well known limitation of methods for estimating
ancestral states is that it is impossible for estimates to fall outside
the range of the living species analyzed. This limitation does not
apply to pigmentation patterns. Although the same averaging
procedure is being used on each parameter of the neural-network
model, it is possible, and even likely, that a set of estimated
parameters will be in a region of parameter space not inhabited by
any living species. In addition, the sensitivity of the neural network
to perturbations means that small, gradual evolutionary shifts in
one or a few parameters of the neural network can shift a shell
from one pattern regime into an entirely dissimilar one.
We have necessarily made simplifying assumptions in our anal-

ysis to illustrate the overall logic of our method in a straightfor-
ward way. Although the DNA-based tree used in this study has
strong statistical support, an important assumption is that the
branch lengths inferred from the DNA sequence data are known
without error, and that they have been accurately renormalized
to an absolute time scale. A more formal analysis would begin
with the raw DNA sequence alignment and fossil calibration
points, and then integrate ancestral state estimates and param-
eters of evolutionary models, over the space of data-supported
chronogram phylogenies (20).
A second assumption is that the set of parameter values for

each species is unique and estimated without error. Given the

number of parameters involved, a formal proof of uniqueness
seems impossible; however, extensive experience with the nu-
merical properties of the model suggests that each pattern is
determined by a unique optimal (in the sense of a best fit to the
observed pattern) set of parameters.
A third assumption is that the parameters evolved in-

dependently of one another on the phylogeny. That assumption is
largely supported by our analysis of phylogenetically independent
contrasts. Correlation in parameters could be accounted for by
using a model of correlated Brownian motion on the phylogeny,
but such a model was not needed for our analysis.
In estimating parameters of ancestral species and predicting

their pigmentation patterns, we have not taken into account the
range of parameters consistent with estimated values for living
species. Parameter values estimated by using maximum likelihood
and a Brownian motion model have associated confidence inter-
vals that could make more than one qualitatively different pig-
mentation pattern for each ancestral species consistent with
patterns in living species. Application of our method to a group of
cone snails with a detailed fossil record—for example, those in
southeastern North America (21)—might allow a more rigorous
assessment of the accuracy of these techniques, and of what degree
of uncertainty should be assigned to them. Usefully and re-
markably, shell pigmentation patterns in fossil Conus can be vi-
sualized under UV light (21). Application of this technique to
Conus fossils could provide a partial validation of our predicted
ancestral patterns.
Our analysis is somewhat similar to that of Allen et al. (11), who

examined spotted patterns in felids by using a morphogen-diffu-
sion model of pattern formation. Allen et al. showed that there is
little phylogenetic signal in the model parameters, indicating that
spotting patterns in felids evolve convergently under ecological
influences. One difference between their study (11) and the
present one is that we found phylogenetic signal in most of the
neural network parameters that produce shell pigmentation pat-
terns. This allowed us to infer ancestral patterns and to identify
lineages in which relatively rapid evolution of some parameters
have taken place.
We found phylogenetic signal in the continuous parameters of

the primary neural network and in the presence/absence of a hid-
den network, suggesting that the model reasonably approximates
the developmental processes underlying pigmentation patterns
in theConus species we considered. In contrast, various features of
the pigmentation patterns, such as the presence of stripes and dots,
do not have significant phylogenetic signal (SI Appendix, Tables
S2–S4). This is in agreement with the conclusion of Hendricks.*
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Supplement A: Neural Network Model for the Conus Shell 
Pigmentation Patterns 

1 Mathematical Formulation 

In this part, we derive a shell model from a general neural model. The shell model consists of 

three parts:  the sensory cell model, the neural model and the secretory cell model. The sensory 

cell model and secretory cell model are derived from first-order dynamics, and neural model is 

derived from the Wilson-Cowan equation (1, 2). First, we derive a continuous model. Then we 

discretize it to get the discrete model that is used for simulations. Finally, we discuss its relations 

to diffusion-reaction models.  

1.1 Deriving a Shell Model from a General Neural Model 

In this section we derive the model equations starting from the Wilson-Cowan model for the 

firing rate pattern of a general excitatory/inhibitory network (1, 2).  

Shell Pattern

Sensory Cells

Neural net

 Secretory Cells

x2

x3

y1
x1

x0

y0 = time{Mantle
Edge

 

Figure S1.  Schematic representation of the coordinate systems used in the derivations. 

To fix our notation, we denote by 0,1,2,3 the shell pattern, sensory, neural, and secretory cells, 

respectively, with coordinate systems shown in Figure S1. Assume the shell is a rectangle with 

coordinates (x0, y0), where 0 ≤ x0 ≤ L and 0 ≤ y0 ≤ Ts. y0 = 0 is the growing edge. The mantle has 

its own coordinates (x1, y1), where 0 ≤ x1 ≤ L and 0 ≤ y1 ≤ TM. We assume these coordinates do 

not change. The sensory cells are distributed on the mantle and ‘taste’ the pigments. The neural 

cells are aligned with the growing edge along the line y0 = 0 or y1=0.  
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1.1.1 The model for sensory cells 

We construct models for the sensory cells, neurons and secretory cells separately (Figure S1). 

The sensory cells are distributed in the mantle with coordinates (x1, y1). A sensory cell at (x1, y1) 

tastes the pigment on the shell at location (x0, y0)  

In general, the activity of the sensory cells at (x1, y1) on the mantle satisfy the Wilson-Cowan 

equations:  

Equation 1  ! (1) "u
(1) (x1, y1,t)

"t
= #u(1) (x1, y1,t) + S

(1) ($ (1) (x1, y1,t))
 

where S(1) (! (1) (x1, y1,t)) is the function computing the firing rate given the input: 

Equation 2  ! (1)(x1, y1, t) = K
(1)(x1, y1)!!u

(1)(x1, y1, t)+M
(1)(x1, y1)  

K (1)(x1, y1)models the recurrent connections between the sensory cells. M (1)(x1, y1) is the input to 

the sensory cell located at (x1, y1). On the neural time scale the pigment on the shell does not 

change, so M (1)(x1, y1)  is independent of time, and is given by the double convolution: 

Equation 3  M (1)(x1, y1) = W (1)(x1 ! x1
' , y1 ! y1

' )
0

Ts

"0
L

" P(x1
' , y1

' ))dx1
'dy1

'  

The recurrent connections make it difficult to compute the steady state of the sensory cells, so we 

assume that there are no recurrent connections between sensory cells. In the steady state, we can 

set!u(1)(x1, y1, t) /!t = 0 , so that 

Equation 4  u(1)(x1, y1) = S
(1)(M (1)(x1, y1))  

Next, we assume that the weight kernel W (1)(x ! x1, y ! y1) is a two-dimensional delta function, so 

that a sensory cell located at (x1, y1)  tastes only the pigment, P, at location (x0, y0 ) = (x1, y1) . Then 

we have 

Equation 5  u(1)(x1, y1) = S
(1)(P(x0, y0 ))  

This will become the sensory input to the neural net.  
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1.1.2 The model for the neural net 

Starting again with the steady state Wilson-Cowan equations: 

Equation 6  ue
(2)(x2 ) = Se

(2)(! e
(2)(x2 ))  

Equation 7  ! e
(2)(x2 ) = Kee

(2)(x2 )!ue
(2)(x2 )"Keh

(2)(x2 )!uh
(2)(x2 )+Me

(2)(x2 )  

Equation 8  Me
(2)(x2 ) = We

(2)(x2 ! x2
' , y2 ! y2

' )
0

TM

"0
L

" P(x2
' , y2

' ))dx2
' dy2

'  

For inhibitory cells, we have similar equations. Me
(2)(x2 ) is the sensory input to the neuron 

located at x2 .  

Again, assume there are no recurrent connections. Then we have the steady state equation: 

Equation 9  ue
(2)(x2 ) = Se

(2)(Me
(2)(x2 ))  

With a similar equation for the inhibitory neurons. 

1.1.3 The model for the secretory cells 

The secretory cells have first order temporal kinetics: 

Equation 10  ! (3) "u
(3)(x3, t)
"t

= !u(3)(x3, t)+ S
(3)(# (3)(x3, t))  

Equation 11  ! (3)(x3, t) = K
(3)(x3)!u

(3)(x3, t)+M
(3)(x3)  

Equation 12  M (3)(x3) = (We
(3)(x3 ! x3

' )ue
(2)(

0

L

" x3
' )!Wh

(3)(x3 ! x3
' )uh

(2)(x3
' ))dx3

'
 

The sensory inputs to the secretory cells are the weighted difference between excitatory neurons 

and inhibitory neurons. If there are no recurrent connections, then the steady state equation is:  

Equation 13  u(3)(x3) = S
(3)(M (3)(x3))  

If we assume that We
(3)(x3) and Wh

(3)(x3)  are delta functions, then we obtain 

Equation 14  u(3)(x3) = S
(3)(ue

(2)(x3)! uh
(2)(x3))  

This is the pigment at the growing edge, i.e.  
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Equation 15  P(x0, 0) = S
(3)(ue

(2)(x3)! uh
(2)(x3))  

1.1.4 The shell model 

Combining the models for sensory, neural and secretory cells, we have the complete shell model: 

Equation 16 Sensory cells:  u(1)(x1, y1) = S
(1)(P(x1, y1))  

Equation 17 Neural cells:  ue,h
(2)(x2 ) = Se,h

(2)( We,h
(2)(x2 ! x2

' ,!y2
' )u(1)(x2

' , y2
' )d

0

TM

"0
L

" x2
' dy2

' )  

Equation 18 Secretory cells: 

 

u(3)(x3) = S(3)(ue
(2)(x3) ! uh

(2)(x3)) 

Equation 19 Pigment:   P(x0, 0) = u
(3)(x0, 0)  

1.2 Discrete Shell Model 

The y-axis is time in the past. Let Δ be the spatial thickness of a single bout of pigment. We also 

use Δ to discretize the sensory cells. Assume TM = QΔ, which means the mantle can sense Q 

bouts of pigments into the past. Denote P(x0, t)as the pigment at position x0  at bout time t (not 

in real time). A(1)(x1, s!, t)  denotes the activity of sensory cell at position (x1, s!)  at bout time t. 

Ae,h
(2)(x2, t)  denotes the activity of excitatory or inhibitory neurons at position x2  at bout time t. 

A(3)(x3, t)  denotes the activity of secretory cell at position x3  at bout time t. Then we have 

Equation 20   P(x0, t) = A
(3)(x0, t)  

Equation 21   A(3)(x3, t) = S
(3)(Ae

(2)(x3, t)! Ah
(2)(x3, t))  

Equation 22  Ae,h
(2)(x2, t) = Se,h

(2)( We,h
(2)(x2 ! x2

' ,!s")A(1)(x2
' , s", t)d

1

Q

#0
L

# x2
' ds)  

Equation 23  A(1)(x1, s!, t) = S
(1)(P(x1, t " s))  

 

The discrete model is like: 

Equation 24   Pn+1(x0 ) = S
(3)(En (x0 )!Hn (x0 ))  

Equation 25  En (x0 ) = Se
(2)( We

(2)(x0 ! x0
' , j)

0

L

"
j=0

Q!1

# S (1)(Pn! j (x0
' ))dx0

' )  
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Equation 26  Hn (x0 ) = Sh
(2)( Wh

(2)(x0 ! x0
' , j)

0

L

"
j=0

Q!1

# S (1)(Pn! j (x0
' ))dx0

' )  

Figure S2 illustrates our discrete network structure. Our network is s simple feed forward 

network.  

 

Figure S2. Illustration of network structure we use. Each neuron connects to all the sensory 
cells. Each secretory cell only connects to the excitatory neuron and inhibitory neuron 
at the same location. 

1.3 Simulation Model 

We assume the two dimensional space-time  We,h
(2)(x2, j)  filter is separable, i.e.  

Equation 27  We,h
(2)(x2, j) = we,h

(2)(x2 )ve,h
(2)( j)  

This widely adapted simplification is to accelerate the simulations. 

In the simulation, we assume the spatial filterwe,h
(2)(x) is a Gaussian kernel 

Equation 28  we,h
(2)(x) =

! e,h
(2)

2"# e,h
(2)2 e

! x2

2# e,h
(2 )2

 

 

The difference of Gaussian kernels can generate a ‘Mexican Hat’, which is necessary for pattern 

formation. In our model, both excitatory and inhibitory neurons have Gaussian kernels. The 

excitatory Gaussian kernel has a narrower variance than the inhibitory Gaussian kernel.  Thus, 

the difference between them results in ‘Mexican Hat’.  The Mexican Hat kernel generates local 

activation and long-range inhibition that can generate periodic patterns. Similarly, the temporal 
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filter ve,h
(2)( j)  is assumed to be a difference of exponential functions that generate a local 

activation and long-range inhibition in time: 

Equation 29  ve
(2)( j) = !e1ce1

j ! !e2ce2
j for j " 0, !e1 = !e2 +1, ce1

j < ce2
j

 

Equation 30  vh
(2)( j) = !h1ch1

j ! !h2ch2
j for j " 0, !h1 = !h2 +1, ch1

j < ch2
j

 

This is equivalent to a refractory period that can generate temporal oscillations.  

We assumeQ = n , which means the mantle covers all of the previous pigment so that sensory 

cells can sense all the previous pigment. We define the temporal convolutions as follows: 

Equation 31  Re,n (x) = (!e1ce1
j ! !e2ce2

j )S (1)(Pn! j (x))
j=0

n!1

"  

Equation 32  Rh,n (x) = (!h1ch1
j ! !h2ch2

j )S (1)(Pn! j (x))
j=0

n!1

"  

Then we have 

Equation 33  Pn+1(x) = S
(3)(Se

(2)(we
(2)(x)!Re,n (x))" Sh

(2)(wh
(2)(x)!Rh,n (x)))  

In order to compute the temporal convolutions efficiently, we define notations: 

Equation 34  Re1,n (x) = !e1 ce1
j S (1)(Pn! j (x))

j=0

n!1

"  

Equation 35  Re2,n (x) = !e2 ce2
j S (1)(Pn! j (x))

j=0

n!1

"  

Equation 36  Rh1,n (x) = !h1 ch1
j S (1)(Pn! j (x))

j=0

n!1

"  

Equation 37  Rh2,n (x) = !h2 ch2
j S (1)(Pn! j (x))

j=0

n!1

"  

Then we obtain the following recursive equations 

Equation 38  Re,n+1(x) = Re1,n+1(x)! Re2,n+1(x)  

Equation 39  Rh,n+1(x) = Rh1,n+1(x)! Rh2,n+1(x)  
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Equation 40  Re1,n+1(x) = !e1S
(1)(Pn+1(x))+ ce1Re1,n (x)  

Equation 41  Re2,n+1(x) = !e2S
(1)(Pn+1(x))+ ce2Re2,n (x)  

Equation 42  Rh1,n+1(x) = !h1S
(1)(Pn+1(x))+ ch1Rh1,n (x)  

Equation 43  Rh2,n+1(x) = !h2S
(1)(Pn+1(x))+ ch2Rh2,n (x)  

So, Equations 33, 38, 39, 40, 41, 42 and 43 are implemented in our Matlab code to generate the 

patterns. 

1.4 Model Parameters 

The mantle’s length is L. When we fix the number of sensory cells in our discrete model, this 

length only influences the interval between cells, which does not affect the patterns. So, we let L 

=1 in all our simulations. 

There is a sigmoid function for the sensory cell, excitatory neuron, inhibitory neuron and 

secretory cell, respectively. So there are four sigmoid functions in our model. In this part, we 

assume all cells belonging to the same type have the same sigmoid function, i.e. all the sensory 

cells have the same sigmoid function, all the excitatory neurons have the same sigmoid function, 

etc. In later sections, we’ll discuss the cases where the cells belonging to the same type have 

different sigmoid functions, which can generate complex patterns. The analytic form of sigmoid 

function is: 

S(x) = !
1+ e"# (x"$ )  

Each sigmoid function has 3 parameters, i.e. !, ", # . !  is the middle point of the sigmoid 

function, 

 

!  is proportional to the slope at the middle point, and 

 

!  is the magnitude of the 

sigmoid function. We set 

 

! =1 for all sigmoid functions in our simulations. So we have 8 free 

parameters for the 4 sigmoid functions. 

The spatial kernels are Gaussians of the form  

we,h
(2) (x) = ! e,h

(2)e
"

x2

2# e,h
(2 )2
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What’s important for the pattern formation is the difference between the excitatory and 

inhibitory kernels, so we set the magnitude parameter !h
(2) = 1 .  This setting leaves us with 3 free 

parameters for the spatial kernels. Since there are 3 free parameters for each temporal kernel, we 

have 6 free parameters for temporal kernels. Thus our model is controlled by 17 free parameters, 

all of which have direct cellular interpretations. It turns out that the region in parameter space 

that generate realistic shell patterns is rather small. So the parameter search to match each shell 

pattern is not as difficult as the dimensionality of the parameter space might indicate. 

1.5 Related Models 

Cellular automata models were first used to reproduce shell patterns (3-5). Although they can 

generate some observed patterns, they cannot explain how these patterns arise in animal 

markings. 

Meinhardt and his coworkers (6-10) used morphogen, or Diffusion-Reaction (DR) models to 

reproduce a wide variety of shell patterns. DR models are inspired by the chemical diffusion of 

morphogens, but there is no experimental evidence found for diffusing morphogens in pattern 

formation for shells. DR models can be viewed as an approximation of neural activity when only 

nearest neighbor neurons communicate (chapter 12.4 in (11)).  

B. Ermentrout et al (12) and A. Boettiger et al (13) proposed neural models to reproduce shell 

patterns. Their models are somewhat different because they have different refractory terms. In 

(13), the refractory term is the temporal convolution of all previous pigment deposition, while 

refractory term in (12) is the temporal convolution of all previous pigments except the previous 

time period. Our model is inspired by these models, but is different in that we do not use an 

explicit refractory term. In the previous models, the pigment is the difference between secretory 

cells’ activities and the refractory term. In our model, the pigment results from the net activity of 

the secretory cells. The previous models can only generate basic patterns, but the current model 

includes ‘hidden’ networks, and so can generate more complex shell patterns. 

2 Pattern Generation 
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2.1 Basic Patterns 

Mathematically, as stated in (13), a Turing bifurcation leads to spatial instability, which 

generates stripes perpendicular to the growing edge; a Hopf bifurcation generates temporal 

instability leading to oscillations, which generate parallel stripes. An infinite saddle-node 

bifurcation probably underlies the travelling waves, but we have not proven this. 

(a) (b) (c)  

Figure S3. Bifurcations. Black indicates pigment. (a) Turing stripes. (b) Hopf bifurcation with 
synchronizing phase. (c) Hopf bifurcation with spatially continuously varying phases 
(Time increases upward) 

Figure S3 (a) illustrates the formation of Turing stripes. In the very beginning, all secretory cells 

have deposited a very small amount of pigment. Then due to the temporal inhibition, the cells go 

through an unpigmented period, except for two small groups of cells on the boundaries. The two 

groups have reached their steady states. The activities of the two groups have lateral inhibition 

on their lateral regions, so their neighboring regions have no pigments. After the unpigmented 

period ends, an array of cells have small pigments. Near the boundary of the array, the cells have 

local activation on both sides, but only have one side of long-range lateral inhibition, so stripes 

come into being near the boundaries. Consors has this kind of pattern. 

Hopf bifurcations can generate two categories of patterns. First, if the cells at different locations 

have synchronizing phase, then we get parallel lines, as shown in Figure S3 (b); second, if the 

cells have spatially continuously varying phase, then we get oscillations, as shown in Figure S3 

(c). 

If Turing bifurcation and Hopf bifurcation happen together, then we get Turing-Hopf bifurcation. 

There are two kinds of Turing-Hopf bifurcations depending on what the Hopf bifurcation is. If 
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the Hopf bifurcation generates parallel lines, then we get checkerboard like patterns. And the 

checkerboard pattern can be in phase or out phase. In-phase checkerboard means all the checkers 

have the same phase in time. Out-phase checkerboard means phases of spatially neighboring 

checkers have 180 degrees difference. Furvus has in-phase checkerboard pattern. The main 

pattern of tessulatus is out-phase checkerboard. If the Hopf bifurcation generates oscillations, 

then we get oscillating Turing-Hopf bifurcation, checkers of which have spatially varying 

phases. The main patterns of orbignyi and stercusmuscarum are oscillating Turing-Hopf 

bifurcation.  

When the secretory cell’s activity represses its future activity while exciting lateral cells, we get 

travelling waves. When two waves collide, they may reflect, singularly annihilate or mutually 

annihilate.  When the secretory cell has slightly wider excitatory range, then waves with 

changing speed emerge. Gloriamaris, omaria, textile, dalli, episcopatus and aulicus have 

travelling waves. 

Travelling waves can also generate triangles and dots. When the speed of waves is very big at 

some time, then there will be a sudden stop of pigment along an array of cells, which is the base 

of the triangle. Then waves starting from the boundaries of the array travel back to the 

unpigmented region, leaving a triangular region without pigment. Ammiralis, marmoreus, and 

bandanus have triangles. Two waves starting at the same point travel outward. At some time, 

they change to travel inward to the unpigmented region, leaving a spot region without pigment. 

Pulicarius, crocatus, arenatus and aurisiacus have spots.  

For Turing stripes, wider excitatory neuron spatial kernels lead to wider pigmented stripes, and 

wider inhibitory neuron spatial kernels generate wider unpigmented stripes. For the Hopf 

bifurcation, a wider excitatory neuron spatial kernel leads to wider pigmented parallel lines or 

oscillations, and a wider inhibitory neuron spatial kernel generates wider unpigmented parallel 

lines or oscillations. For waves, narrower spatial kernels can generate more dense waves.  For 

triangles, narrower spatial kernels can generate more and smaller triangles. For dots, narrower 

spatial kernels can generate more and smaller dots. 

2.2 Patterns with Spatial Pre-pattern 



12/12 

Some shells have more than one basic pattern. For example, ammiralis has triangles and Turing 

stripes. This pattern can be generated using two independent networks, one secretes pigment 

over another. In the current model we need use only one network to generate this complex 

pattern. The ammiralis shell is shown in Figure S4 (a). We view the triangles as the main pattern, 

so we find parameters to generate them. The stripes imply some parameter is different in the 

stripe regions. The simplest way to do this is to spatially vary the sigmoid function of the 

secretory cells. That is, the sigmoid function is assigned a spatial pre-pattern, and this spatial pre-

pattern can be generated by a hidden network that changes the middle points of the sigmoid 

functions along the mantle edge. In this scenario, we say the mid-point of the sigmoid function of 

the secretory cell has a spatial pre-pattern. The pre-pattern and generated shell are illustrated in 

Figure S4 (b). In the main pattern region, the parameters generate triangles. In the stripe region, 

the system reaches uniform steady states. Some of the spatial pre-patterns could be generated by 

a third hidden networ which generates Turing stripes. In our simulations, however, we simply set 

the parameter’s spatial pre-pattern for convenience. ammiralis, tessulatus, laterculatus, 

aurisiacus, stercusmuscarum, and orbignyi are generated with spatial pre-patterns. 

!"#$%#&'"()*"#$$)(+' ,#%+'"#$$)(+-'$(%#+.&)!' .)+)(#$)/'#,,%(#&%!'

!"#$%#&'"()*"#$$)(+'01''

(a) (b)
 

Figure S4. (a) An example showing shells with spatial pre-pattern. (b) Generated ammiralis 
and the spatial pre-pattern of θ(3). 
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2.3 Patterns with Spatio-temporal Pre-pattern 

For some more complex shells, such as textile shown in Figure S5 (a), a spatial pre-pattern only 

is not sufficient. On the textile shell, there are travelling waves, Hopf oscillations and Turing 

strips. What’s more interesting is that travelling waves appear occasionally in the stripe region. 

One may consider using three independent networks to generate the three patterns independently, 

and stack them to get the textile pattern. However, if we do it this way, it is impossible to get 

travelling waves in the stripe region. Therefore, we assume that the sigmoid functions of the 

secretory cells have spatio-temporal pre-pattern(s). For textile, we view the travelling waves as 

the main pattern, so that there are two spatio-temporal pre-patterns: Turing stripes and Hopf 

oscillations. Of course, one could view the Hopf oscillations as the main pattern, and the other 

two as pre-patterns. Any of these different assignment of the main pattern and pre-patterns can 

generate this shell.  

Since we assume the parameter’s spatio-temporal pre-pattern is controlled by hidden network(s), 

we need to discuss how this is generated by the hidden network. Assume there are N hidden 

networks. Each network has its own set of sensory cells, neurons and secretory cells. We cannot 

see activities of the hidden networks directly. But their activities are reflected by the pre-patterns 

on the shell. Besides the N hidden networks, there is one visible network whose activity is the 

pattern on the shell. Another assumption we use is that each network can only sense its own 

activity. This assumption is rational since there are different kinds of sensory cells on our tongue, 

and these cells can sense different stimulus, like spicy, sweet, etc. Based on these assumptions, 

we propose a simple but effective method to couple these networks. 

Use 

 

Pn (x,i) to denote the activity of the ith network’s secretory cell located at x and during the 

nth bout time. Assume 

 

Pn (x)  is the pattern on the shell. We make the parameter 

 

!n
(3)(x) , slops of 

the middle points of the secretory cells’ sigmoid functions varied by the activities of the N 

hidden networks as follows: 

!n
(3)(x) =! (3) ! fi (Pn (x, i))

i=1

N

"  

Where 

 

! (3) is the basic value for 

 

!n
(3)(x) . With this basic value only, the visible network generates 

the main pattern on the shell. The threshold function 

 

fi   is  
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fi(Pn (x,i)) =
ai if Pn (x,i) ! thresi
bi otherwise

" 
# 
$ 

 

This threshold function means that the ith hidden network has only two kinds of impact on the 

visible network. 

Figure S5 (b) shows the pre-patterns of textile. This pre-pattern is generated by 2 hidden 

networks. One generates oscillations and the other generates Turing stripes. On the main pattern 

region, the effect of oscillations is not strong enough to change the travelling waves pattern. In 

the Turing region, the effect is strong enough to change the pattern to stripes. And because of the 

effect of the oscillations, there are also oscillations emerging in the stripe regions. Interestingly, 

travelling waves emerge occasionally in the stripe regions. 

!"#$%&"''()$*%')"+(,,#$-%."+(/
&)(0&"''()$*%12&3%2/4#,,"'#2$/

&)(0&"''()$*%56)#$-%/')#&(/

-($()"'(7%'(8'#,(

/&"'#",0'(!&2)",%&)(0&"''()$%23%

(a) (b)  

Figure S5. (a)An example showing the main pattern and pre-patterns of Textile. (b)Generated 
textile and the spatio-temporal pre-pattern of ! (3) . 

3 Patterns Observed In Nature Correspond to A Small Region of 

Parameter Space 

The ‘Mexican hat’, or ‘center-surround’ neural field is required for pattern formation. Thus the 

inhibition must be longer range than the activation, but with smaller amplitude than the 

excitation. If excitation is long range, but inhibition is short range, there will be no pattern. In 

addition, the strength of the excitation and inhibition must be roughly the same. Indeed, we find 

that real shells have excitatory and inhibitory spatial kernels of limited width, i.e. their range of 

excitation is fairly local, and the excitation and inhibition is roughly balanced.  
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Figure 3(Right) in the main text shows two examples of patterns generated by the neural model 

for which we have found no representative species. Interestingly, patterns such as these are 

generated when the neural net has highly ‘unbalanced’ excitation vs. inhibition. The shell 

patterns in Figure 3(Right)  are unrealistic because the inhibition range is too large. We find that 

unrealistic patterns always have inhibition fields that are too long-range. The parameter region of 

realistic shells and the parameters of unknown A and B shown in Figure 3(Right) are illustrated 

in Table S1 
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e
(2)
! "%!!!!!!!!!!!!!!!!!$,&! %! %!

e
(2)
! "'('$!!!!!!!!!!!'(+&! '($! '($!

h
(2)
! "%!!!!!!!!!!!!!!!!!)'&! %! %!

h
(2)
! "'('#!!!!!!!!!'(+%&! '('#! '('#!

(3)
! "%!!!!!!!!!!!!!!!!!*'&! -! .!

(3)
! "'('+!!!!!!!!!'(+,&! '($%! '($%!

e ! "$(+!!!!!!!!!!!!!!!!,&! )(%! $(%!

e ! "'(''**!!!!!!'('#&! '('%! '('*!

h ! "'('',!!!!!!!!'($-&! '(#! '(%!

e1! "$!!!!!!!!!!!!!!!!!!!!%&! )()-! )()-!

ce1! "'!!!!!!!!!!!!!!!'(*%&! '! '!

ce2 ! "'!!!!!!!!!!!!!!!'(%#&! '(+)! '()-!

h1 ! "$!!!!!!!!!!!!!!!#(-)&! $(,-! $('-!

ch1! "'!!!!!!!!!!!!!!!'($%&! '! '!

ch2 "'!!!!!!!!!!!!!!!'(+)& '(+) '()%  

Table S1 Parameters regions and the parameters for unknown pattern A and B shown in 
Figure 3(Right). The shaded row is the parameter that extends the inhibition to 
unrealistic size. 
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Supplement B: Statistical Methods and Phylogenetic 

Analyses 

4 Software and phylogenetic data 

The statistical and phylogenetic analysis was conducted using the R statistical language (14, 15) 

enhanced with the R phylogenetics packages APE (16), geiger (17), and phangorn (18) and 

custom scripts by N.J.M. (available upon request). 

The phylogeny used for the analysis was that of Nam et al. (19).  It is a well-supported 

phylogeny of the Conus species under study. The phylogeny, shown in Figure S6, is based on 

mitochondrial COI and rDNA sequences and on ITS2 sequences from nuclear ribosomal DNA. 

Nam et al. showed that ITS2 sequences resolved parts of the phylogeny that could not be 

resolved using only the mtDNA. The bootstrap values are sufficiently high that we will assume 

the phylogeny is correct.  

 

Figure S6. (a) DNA-based tree used in this study, digitized from Nam et al. (2009). Taxa not 
used in this study have been excluded.  (b) Ultrametric tree used in the study, 
calculated using NPRS. Absolute time information was not need for this study, so 
branch lengths are in units of relative time, with the root set to age 1. 

The phylogeny was digitized to Newick format using GraphClick 3.0 (http://www.arizona-

software.ch/graphclick/) and an in-house R script, TreeRogue 0.1 (available at: 

https://stat.ethz.ch/pipermail/r-sig-phylo/2010-October/000816.html).  Correspondence of the 

topology and branch lengths of the digitized tree to the original was verified before use.  Taxa 
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from Nam et al. that were not used in this analysis (C. radiatus, C. parius, C. japideus, C. 

vimineus, and outgroups) were dropped from the tree. 

The time-calibrated ultrametric phylogeny was calculated using non-parametric rate scaling 

(NPRS) with the program r8s (20).  Branch lengths are proportional to the total height of the tree; 

only branch lengths giving a relative measure of degree of shared ancestry were necessary for 

this study, rather than a tree calibrated to absolute time. 

5 Test for phylogenetic signal in the parameter estimates 

The estimation of neural network parameters is done manually through successive 

approximation.  Before examining the matter, there was no guarantee a priori that there would 

one unique parameter solution to produce a specific shell pattern, or that the user will find, in a 

19-dimensional parameter space, the single best match to the observed pattern in the living 

species.  Additionally, it was conceivable that there might no phylogenetic signal in shell 

patterns of the living species either for biological reasons (rapid evolution to an equilibrium 

distribution of shell patterns) or technical ones (e.g., nonidentifiability of parameters of the 

neural network model). 

To assess these assumptions, we tested whether or we could reject the null hypothesis of no 

phylogenetic signal in the 19 continuous parameters.  A neighbor-joining phylogeny was 

constructed from the parameters, as follows. (1) each of the neural network parameters was 

normalized to a 0-1 scale; (2) the normalized parameters were used to calculate the pairwise 

Euclidean distance between each pair of species; (3) a phylogeny was inferred from the resulting 

distance matrix via neighboring-joining (16). The parameter-based tree was then compared to the 

DNA-based tree using tree-to-tree distance metrics.  Two metrics were used.  A measure of 

topological distance (considering just tree topology, and ignoring branch length) was provided 

by  Robinson-Foulds topological distance, also known as symmetric difference (dist.topo, PH85 

option in APE).  This measures the number of partitions found in each tree which are not found 

in the other (21-23).  A measure of distance that takes branch lengths into account is provided by 

Robinson-Foulds branch-length difference, which is the sum of changes in branch length that 

would have to be made to made two trees identical (24); dist.topo in APE, BHV01 option). 
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Figure S7. Top: Comparison of the DNA-based phylogeny of cone snails (left, after Nam et 
al. 2009, unrooted for display) and the parameter-based tree (right, this study). Species 
labeled in blue exhibit major changes in topological position in the parameter-based 
tree. Bottom: Although by eye the trees seem rather different, their statistical 
similarity is much greater than expected by chance.  The observed tree-to-tree 
distances (blue arrows) are significantly smaller than expected under a null hypothesis 
of random similarity. Histograms show the distribution of distances between the 
DNA−based tree and the parameter−based tree (both ultrametricized and scaled to the 
same total length) under 10,000 realizations of the null hypothesis of no similarity 
between the trees (species names randomly shuffled in the parameter tree). 
Non−parametric p−value for topological distance = 0.0146; for the branch−length 
difference, p = 4e−04. 

The null distribution of the of DNA-tree-to-parameter-tree distances was constructed by 

randomly shuffling the tip labels on the parameter tree and measuring the distance between it and 

the DNA-based tree.  This was repeated 10,000 times.  For each distance metric, the one-tailed p-

value was obtained by comparing the rank of the observed distance between the parameter tree 

and the DNA tree to the 10,000 ranked distances from the null distribution. For branch-length 

difference, it is possible that the non-ultrametric nature of the DNA tree and the parameter tree, 

and the different total lengths of the trees, could bias the results, so the test (including generation 

of the null trees) was repeated on ultrametricized versions of the DNA tree calculated with 
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nonparametric rate smoothing (NPRS) in r8s (20) and the parameter tree (which was midpoint-

rooted, and then rescaled with NPRS), with no substantial differences in results.  

The observed tree-to-tree distances, and the null distributions on tree-to-tree distances, are shown 

in Figure S7 for the case where both compared trees were ultrametric.  For both distance metrics, 

the observed distance between the DNA tree and the parameter-based tree was significantly 

closer than expected under the null of random similarity between the trees.   

6 Phylogenetic signal in discrete characters 

In order to compare our results to those that might be obtained using more traditional cladistic 

methods where the shell patterns are described with discrete character states, several prominent 

discrete shell-pattern characters were scored in the traditional cladistic manner based on 

photographs of the species.  The characters were scored as follows: stripes: 0=absent, 1=weak, 

2=strong; triangles: 0=present, 1=absent; dots: 0=absent, 1=present; color: 0=black and white 

only, 1=brown/orange and white.  One shell shape character was also scored: conical shape: 

0=strongly rounded, 1=weakly rounded, 2=no rounding (triangular cone).  Additionally, prey 

preference was scored according to Nam et al.’s descriptions (0=piscivore, 1=verminivore, 

2=molluscivore, ?=unknown).  These characters were mapped onto the phylogeny using 

parsimony and maximum likelihood, which gave similar results.  The congruence of these 

characters with the phylogeny was measured with consistency index (CI), retention index (RI), 

and rescaled consistency index (RCI), and the significance of these results was assessed by 

comparison to null distributions of these statistics generated by 1000 reshufflings of the tip data. 

Phylogenetic signal in discrete characters. Parsimony-based summary statistics for the 8 discrete 

characters are shown in Table S2-S5. 
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Table S2 Parsimony summary statistics (CI, RI, RCI) for discrete characters along with the 
inputs to these statistics. Values closer to 1 indicate more congruence between the 
character and the phylogeny. However, these must be compared to null distributions to 
determine if the observed values of the statistics are higher than would be expected 
under the null hypothesis of no phylogenetic signal (see Table S3 and Table S4). 
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Table S3 Means of summary statistics calculated on 1000 draws from the null hypothesis 
where character states have been randomly shuffled on the tips (no phylogenetic 
signal).  
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Table S4 Non-parametric p-values (one-tailed) of summary statistics, based on the rank of the 
observed statistic amongst the ranks of the 1000 null draws of the statistic summarized 
in Table S3. The null hypothesis of only random congruence with the phylogeny 
cannot be rejected at the p=0.05 level for the stripes and dots characters.  No 
Bonferroni correction for multiple tests has been applied; if it is, then s3n_spd, 
triangles, and color also fail to reject the null at the p<0.05 significance level. 

Two discrete characters, stripes and dots, fail to reject the null hypothesis of only random 

congruence with the phylogeny, with one-tailed non-parametric p-values > 0.05 (Table S4). For 

each statistic, a value of 1 indicates perfect congruence with the phylogeny, 0 means no 

congruence.   The statistics for prey preference are all 1, indicating perfect congruence with 

phylogeny (Table S4).  And the discrete characters, all taken together, also exhibit significant 

congruence (Table S4).  However, the variability in stripes and dots indicates substantial 

homoplasy in these characters, despite their obviousness to human observers.  This is likely an 

indication that multiple convergent pathways able to produce these patterns. 
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7 Test of character independence 

Before estimation of ancestral states was attempted, the parameter estimates for living species 

were examined for correlation structure, as the simplest methods of ancestral character 

estimation assume that each character is independent.  Using standard correlation analysis  

(Pearson’s product-moment correlation, p-values produced with t-test), only 10 of 171 parameter 

pairs exhibited statistically significant correlation (p < 0.05 after Bonferroni correction for 

multiple tests).   

Standard correlation analysis is dubious when the data may have correlation due to shared 

phylogenetic structure, so the correlation analysis on the 19 species was repeated on the 18 

available phylogenetically-independent contrasts (PICs) (25).  PICs were calculated using an 

ultrametricized phylogeny derived from the Nam et al. molecular tree by nonparametric rate 

smoothing (NPRS) (20).  Using PICs, only 7 of 171 parameter pairs were statistically 

significantly correlated.  Of these, two pairs were the β parameters of the temporal kernels of the 

excitatory and inhibitory neurons (βe1 and βe2 formed one pair, and βi1 and βi2 the other), which 

were always perfectly correlated in the estimates made on living species (the first parameter of 

the pair is always 1 unit higher than the second).  The others were correlations of about 0.75-0.9 

between parameters of the response functions of the excitatory and inhibitory neurons and the 

parameters of the temporal kernels for the excitatory and inhibitory neurons.  A more elaborate 

analysis might take these correlations into account, or even take into account weak correlation 

structure that exists despite statistical insignificance, but for the present purpose of assessing the 

feasibility of integrating the developmental model with phylogenetic methods, statistical 

simplicity was preferred, and was judged to be a reasonable approximation given the overall 

weak correlation structure. 

8 Model Selection 

Tests for trait correlations using Phylogenetic Independent Constrasts (PIC), and the estimation 

of ancestral states, are most easily performed if the trait data can be modeled as evolving under a 

Brownian motion process.  Under Brownian motion, traits wander without limit such that the 

expected variance (σ2) between lineages increases as a linear function of phylogenetic distance.  
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This may be a valid approximation within a relatively closely-related clade where the traits have 

not yet run up against intrinsic limits (26-28).  The Brownian motion model was tested against a 

variety of other models of continuous trait evolution using parametric methods (likelihood ratio 

test (LRT) and Akaike Information Criterion (AIC), (29) as well as nonparametric methods; the 

latter are expected to be more robust in the situation where the low number of taxa (here, 19) 

mean that the asymptotic assumptions of maximum likelihood inference may not be met in full. 

(30) 

Seven models for the evolution of continuous traits were compared.  The likelihood of the trait 

data under of each of the models was calculated using the R package geiger. (17)  The Brownian 

motion model has two parameters (global mean and rate of variance increase); all of the others, 

except white noise, add one additional parameter so as to model stabilizing selection (Ornstein-

Uhlenbeck, OU), lack of phylogenetic signal on internal branches (lambda), speciational or 

punctuated evolution (kappa), increases or declines in rate across the tree (delta), or an early 

burst of evolutionary change which then declines.  White noise assumes no phylogenetic signal 

and simply models the data as a normal distribution with a mean and variance. (17, 27, 29, 30) 

The log-likelihoods for the neural network parameter data under each model are given in Table 

S5. 
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Table S5 Log-likelihoods of the observed shell pattern parameters as explained under 
different models. Parameter abbreviations on the x−axis correspond to those in Table 
S9, with underscores removed and with the last character being the Latin equivalent of 
the relevant Greek symbol. 

Likelihood-Ratio Tests (LRT). All of the models except for white noise contain Brownian motion 

as a special case and thus can be compared to Brownian motion via a LRT, which is chi-squared 

distributed with 1 degree of freedom. (31) The LRT fails to reject the Brownian motion model at 

the 0.05 significance level for 16/19 neural network parameters.  When Brownian motion loses, 

it loses to the O-U model, which suggests that stabilizing selection is removing phylogenetic 

signal (Table S6). 
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Table S6. P-values of likelihood-ratio tests (chi-squared, 1 d.f.) for each model compared to 
the Brownian motion model.  Tests that are significant at the 0.05 level are bolded.  
No correction for multiple testing was made here; a Bonferroni correction for 95 tests 
makes all results non-significant at the 0.05 level. Parameter abbreviations on the 
x−axis correspond to those in Table S9, with underscores removed and with the last 
character being the Latin equivalent of the relevant Greek symbol. 
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Figure S8. Akaike Information Criterion weights of 7 models for the evolution of neural 
network parameters. The models compared are: Brownian motion (BM, brown); the 
Ornstein−Uhlenbeck (OU, red) stabilizing selection model; the lambda model (orange) 
which rescales internal branch lengths by a linear fraction; the kappa model (green) 
which rescales each branch length by a power equal to the kappa parameter, and which 
becomes a speciational model as kappa approaches 0; delta (yellow) which focuses 
change towards the base or tips; early burst (EB, cyan) which has an initial high rate of 
change that then declines; and white noise (white), where observations are produced 
by a normal distribution with no tree structure, which represents the situation of no 
phylogenetic signal. Brownian motion (BM) has the highest AIC weight for 68% of 
the parameters (13/19). White noise (no phylogenetic signal) is superior for 16% 
(3/24) of the parameters. Parameter abbreviations on the x−axis correspond to those in 
Table S9, with underscores removed and with the last character being the Latin 
equivalent of the relevant Greek symbol. 
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Akaike Information Criterion. All of the models can be compared to each other at once using 

AIC weights (29), shown in Figure S8.  Here, Brownian motion has the heaviest weight for 

13/19 parameters.  Typically this is a plurality rather than a majority weight, which is not 

surprising considering that the weight is being apportioned among seven models, the limited 

number of taxa limits the power to distinguish models, and the fact that the additional parameter 

of the non-Brownian models often converges upon parameter value that produces the Brownian 

model. 

Non-parametric tests. Blomberg et al.’s (32) K is a measure of phylogenetic signal. K is the ratio 

of the observed MSE0/MSE and expected MSE0/MSE, where MSE0 is the mean squared error 

between the phylogenetically correct mean and the tip data, and MSE is the mean squared error 

derived from the variance-covariance matrix calculated from the phylogenetic tree.  The 

observed MSE0/MSE is calculated from the data, and the expected MSE0/MSE is calculated from 

1000 nulls generated by reshuffling the tip data. K=1 indicates that a trait is evolving via 

Brownian motion and that trait data has a variance-covariance matrix that mirrors the 

phylogenetic structure.  K<1 indicates less phylogenetic signal than expected under Brownian 

motion; K > 1 indicates phylogenetic overdispersion in the trait data (28).  
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Table S7. Observed values of Blomberg's K for each neural network parameter, compared to a 
distribution generated under a null hypothesis of no phylogenetic signal (tip data 
randomly reshuffled 1000 times). The proportion of the null distribution beneath each 
observed K is reported; all proportions are above 0.5; 7 are significant at the 0.025 
level. Parameter abbreviations as in previous tables. 

The K statistics calculated for observed trait data were compared to two null hypotheses, one 

generating K statistics under a null hypothesis of no phylogenetic signal (tip data reshuffled 1000 
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times), and a second generating K statistics by simulating data under the Brownian motion fit to 

each trait.  The proportion of the null distribution less than the observed K was calculated for 

each paramter. Under the no-signal null hypothesis, all observed K statistics are in the top 50% 

of the null distribution, indicating that the observed K is always higher than the mean of the null 

distribution. 13/19 observed Ks are in the top 10% of their nulls, 11/19 in the top 5%, and 7/19 in 

the top 2.5%.  This indicates that most traits exhibit more phylogenetic signal than expected by 

chance (Table S7). 

Comparison of the observed K statistic to K statistics generated by simulating under the best-fit 

Brownian model for each trait allow the detection of traits that show significantly more or less 

phylogenetic signal than expected under Brownian motion.  Results are presented in . Only one 

parameter has a significantly lower K (and thus, less phylogenetic signal) than is expected under 

this null distribution (SF_2_e, σe, p=0.019), although the 95% confidence interval is quite broad 

and two other parameters would have significantly low Ks in a one-tailed test (Table S8). 

 

Table S8. Observed values of Blomberg's K for each neural network parameter, compared to a 
distribution generated by simulating each trait under a pure Brownian motion model, 
at the rate estimated by ML for each parameter.  The proportion of the null distribution 
beneath the observed K statistic is reported; Brownian motion can be rejected in only 
1 case at p<0.025 level (two-tailed non-parametric test).  Parameter abbreviations as in 
previous tables. 

As one additional check that the Brownian motion assumption was reasonable to use for PIC and 

ancestral state reconstruction, a variety of diagnostic plots were generated as suggested by (30) 

and D. Ackerly (personal communication). These confirmed that in general the data were 

roughly normally distributed, and that the PICs did not show significant correlations with node 

depth or node value. 



26/26 

Brownian motion models are often run on ln-transformed data, e.g. if the trait distribution is 

highly skewed or varies over several orders of magnitude (as can happen with e.g. body size or 

genome size), or if there is concern that having a lower trait boundary of 0 could violate the 

assumptions of Brownian motion.  Therefore, all of the above tests, and subsequent ancestral 

state reconstruction, were also replicated on a ln-transformed version of the neural net 

parameters. (For a few parameters, this required setting 0 values to 10% of the minimum nonzero 

value for that parameter, before ln-transformation.)  However, this did not produce substantial 

change in results or interpretation and the results of ancestral state estimation were highly 

correlated, as might be expected given that the raw parameter data is roughly normally 

distributed and typically not close to 0. 

9 Ancestral State Reconstruction 

 

Figure S9. Maximum likelihood ancestral parameter estimates for neural net parameter S_2_e, 
ν (excitatory neuron response function, ν parameter; abbreviated s2en). 

Ancestral states were estimated for each continuous parameter using maximum likelihood 

estimation under the Brownian motion model, as implemented in the ace function of the R 

package APE (16). After ancestral parameter values were estimated, shell patterns were 

generated from them using the same model as used for the living species and plotted on the 
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phylogeny.  Discrete characters were also estimated using ML; the color estimation was 

incorporated into the illustrations of the ancestors. 

Results 

ML estimation of continuous parameters. Examples of maximum likelihood estimations of 

ancestral parameter values are shown in Figure S9 and Figure S10. 

 

Figure S10. Maximum likelihood ancestral parameter estimates for neural net parameter 
S_2_e, θ (excitatory neuron response function, θ parameter; abbreviated s2et). 

Inspection of the estimated history of these parameters and the others indicates that many clades 

do show similarities in parameter values with nearby species.  However, as expected, estimates 

for each parameter tend towards the overall (phylogenetically corrected) average as estimates are 

made for ancestors further and further back in time, and uncertainty increases. 

ML estimation of discrete characters.  

In addition to the character mapping described in the main text, other discrete characters were 

also mapped for comparison (Figure S11). Cone shape is fairly scattered but shows some 

uniformity in small clades. Strikingly, prey preference shows extremely high conservation (as 

was clear in the discussion of Nam et al.) compared to shell pattern characters. Each major clade 

is almost completely restricted to a certain prey, and the entire pattern is explained by the 

minimum possible number of transitions.  
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Figure S11 also shows the distributions of dots and color (black versus orange/brown) in this 

group and the maximum likelihood assignment of ancestral states. The presence and absence of 

dots and cone shape are scattered throughout the phylogeny, indicating that they are 

evolutionarily labile, although orange/brown color shows some correlation with large clades. 

 

Figure S11. ML estimation of history of discrete characters.  Character coding: dots 0/1 
present/absent; color: 0=black and white, 1=orange/brown and white; conical: 
0=rounded, 1=slightly rounded, 2=conical; food: 0=piscivorous, 1=vermivorous, 
2=molluscivorous. See text for details. 
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Supplement C: Fitted Parameters 
In this Supplement, we analyze how to generate the shells one by one. And list their parameters. 

In order to do that, we first discuss the notation for the parameters. Take the parameters of 

Furvus as an example. Table S1 shows the vector notation for the parameters used in Matlab™. 

In the following, we first give the parameters for shells with basic patterns, then shells with 

spatial pre-pattern, and finally shells with spatio-temporal pre-patterns. We use hidden networks 

to generate spatio-temporal pre-patterns, so we also list the parameters of the hidden network(s). 

S_1_e=[1   8    0.42] 

� 

[γ (1), ν (1), θ (1)]  Sensory cell’s sigmoid function 
S_2_e=[1   6.7   0.033] 

� 

[γ e
(2), ν e

(2), θ e
(2)]  Excitatory neuron’s sigmoid function 

S_2_i=[1   8.3   0.074] 

� 

[γ h
(2), ν h

(2), θh
(2)]  Inhibitory neuron’s sigmoid function 

S_3_e=[1   31    0.37] 

� 

[γ (3), ν (3), θ (3)]  Secretory cell’s sigmoid function 
SF_2_e=[5    0.006] 

� 

[αe, σ e ]  Excitatory neuron’s spatial kernel 
SF_2_i=[1    0.018] 

� 

[αh , σ h ]  Inhibitory neuron’s spatial kernel 
TF_2_e=[  5   0.02   4   0.01] 

� 

[βe1,ce1,βe2,ce2] Excitatory neuron’s temporal kernel 
TF_2_i=[1.2  0.15  0.2  0.14] 

� 

[βh1,ch1,βh2,ch2] Inhibitory neuron’s temporal kernel 

 Table S1 The notations of the parameters. We always set 

� 

γ (1) = γ e
(2) = γ h

(2) = γ (3) =αh = 1, and 

� 

βe1 = βe2 +1 , 

� 

βh1 = βh2 +1 in our simulations. So we have 17 free parameters. 

1.1 Shells with Basic Patterns 

Furvus has in-phase checkerboard pattern.  

S_1_e  = [1       8.      0.42];  
S_2_e  = [1       6.7     0.033]; 
S_2_i  = [1       8.3     0.074]; 
S_3_e  = [1       31      0.37]; 
SF_2_e = [5       0.006]; 
SF_2_i = [1       0.018]; 
TF_2_e = [5       0.02    4       0.01];  
TF_2_i = [1.20    0.15    0.20    0.14]; 

Consors has Turing strips.  

S_1_e  = [1       10      0.35]; 
S_2_e  = [1       5       0.2]; 
S_2_i  = [1       10      0.15]; 
S_3_e  = [1       6       0.1];  
SF_2_e = [1.5     0.06];  
SF_2_i = [1       0.13];    
TF_2_e = [1       0       0       0]; 
TF_2_i = [1       0       0       0]; 

 

Marmoreus has triangles.  

S_1_e  = [1       15      0.25]; 
S_2_e  = [1       10      0.17]; 
S_2_i  = [1       20      0.35]; 
S_3_e  = [1       40      0.1]; 
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SF_2_e = [6       0.01]; 
SF_2_i = [1       0.18]; 
TF_2_e = [3.79    0.45    2.79    0.56]; 
TF_2_i = [2.47    0.03    1.47    0.25]; 

Bandanus has more and smaller triangles than marmoreus does. So bandanus has narrower 
spatial kernels.  

S_1_e  = [1       15      0.25]; 
S_2_e  = [1       10      0.17]; 
S_2_i  = [1       20      0.35]; 
S_3_e  = [1       40      0.1]; 
SF_2_e = [6       0.007]; 
SF_2_i = [1       0.12]; 
TF_2_e = [3.79    0.45    2.79    0.56]; 
TF_2_i = [2.47    0.03    1.47    0.25]; 

Omaria has travelling waves. 

S_1_e  = [1       15      0.28]; 
S_2_e  = [1       14      0.17]; 
S_2_i  = [1       12.7    0.1]; 
S_3_e  = [1       25      0.1]; 
SF_2_e = [5       0.0065]; 
SF_2_i = [1       0.007]; 
TF_2_e = [3.665   0.21    2.665   0.33]; 
TF_2_i = [1.2     0.085   0.2     0.18]; 

Gloriamaris has more dense travelling waves, so its spatial kernel is narrower than that of 
omaria.  

S_1_e  = [1       15      0.28]; 
S_2_e  = [1       14      0.17]; 
S_2_i  = [1       12.7    0.1]; 
S_3_e  = [1       19.5    0.1]; 
SF_2_e = [4.5     0.005]; 
SF_2_i = [1       0.007]; 
TF_2_e = [3.665   0.21    2.665   0.33]; 
TF_2_i = [1.2     0.085   0.2     0.18]; 

Pulicarius has dots.  

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       8       0.15]; 
SF_2_e = [3.5     0.02]; 
SF_2_i = [1       0.055]; 
TF_2_e = [2.28    0       1.28    0.32]; 
TF_2_i = [1.78    0       0.78    0.32]; 

Arenatus has smaller and more dots than pulicarius does. So arenatus has narrower spatial 
kernels.  

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       8       0.15]; 
SF_2_e = [3.5     0.0044]; 
SF_2_i = [1       0.012]; 
TF_2_e = [2.28    0       1.28    0.32]; 
TF_2_i = [1.78    0       0.78    0.32]; 

Crocatus has fewer dots than pulicarius does. So crocatus has wider spatial kernels.  

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       7.9     0.14]; 
SF_2_e = [3.5     0.02]; 
SF_2_i = [1       0.1]; 
TF_2_e = [2.28    0       1.28    0.32]; 
TF_2_i = [1.78    0       0.78    0.32]; 
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1.2 Shells with Spatial Pre-pattern 

The parameter 

� 

θ (3), the middle point of the secretory cells’ sigmoid functions, shown in this section has a spatial pre-pattern. We show its basic 
value as did in previous section. Moreover, we show the spatial pre-pattern of

� 

θ (3). 

Tessulatus’s main pattern is out-phase checkerboard. But at some stripe regions, the checker 
has different color. At these strip regions, parameter 

� 

θ (3) is different.  

S_1_e  = [1       8       0.42]; 
S_2_e  = [1       6.7     0.033]; 
S_2_i  = [1       8.3     0.074]; 
S_3_e  = [1       30      0.4]; 
SF_2_e = [5       0.015]; 
SF_2_i = [1       0.029]; 
TF_2_e = [5       0.02    4       0.01]; 
TF_2_i = [1.20    0.15    0.20    0.14]; 

Pre-pattern of 

� 

θ (3):  

 

Aurisiacus’s main pattern is dots. But there are also stripes. At these strip regions, parameter 

� 

θ (3)  is different. 

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       8       0.15]; 
SF_2_e = [3.1     0.015]; 
SF_2_i = [1       0.041]; 
TF_2_e = [2.28    0       1.28    0.3]; 
TF_2_i = [1.78    0       0.78    0.29]; 

Pre-pattern of 

� 

θ (3):  

 
 

Ammiralis’s main pattern is triangles. And there are stripes. At these strip regions, parameter 

� 

θ (3)  is different. 

S_1_e  = [1       15      0.19]; 
S_2_e  = [1       17      0.3]; 
S_2_i  = [1       3       0.54]; 
S_3_e  = [1       20      0.37]; 
SF_2_e = [5       0.008]; 
SF_2_i = [1       0.041]; 
TF_2_e = [3.96    0       2.96    0.17]; 
TF_2_i = [6.82    0       5.82    0.04]; 

Pre-pattern of 

� 

θ (3): 

 

 

Orbignyi’s main pattern is oscillating Turing-Hopf bifurcation. But at some stripe regions, the 
checkers have different color. At these strip regions, parameter 

� 

θ (3)  is different. 

S_1_e  = [1       8       0.42]; 
S_2_e  = [1       6.7     0.033]; 
S_2_i  = [1       8.3     0.074]; 
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S_3_e  = [1       30      0.4]; 
SF_2_e = [5       0.008]; 
SF_2_i = [1       0.015]; 
TF_2_e = [5       0.02    4       0.01]; 
TF_2_i = [1.20    0.15    0.20    0.14]; 

Pre-pattern of 

� 

θ (3): 

 

Laterculatus’s main pattern is oscillations. But at some stripe regions, the oscillations 
disappear. At these strip regions, parameter 

� 

θ (3)  is different. We may also view this pattern as 
oscillating Turing-Hopf bifurcation, but the parameter region is relatively small, because the 
Turing bifurcation in this case is not regular. 

S_1_e  = [1       6       0.3]; 
S_2_e  = [1       5       0.01]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       5       0.1]; 
SF_2_e = [2.5     0.009]; 
SF_2_i = [1       0.03]; 
TF_2_e = [3.28    0       2.28    0.3]; 
TF_2_i = [2.58    0       1.58    0.4]; 

Pre-pattern of 

� 

θ (3): 

 

Stercusmuscarum’s main pattern is oscillating Turing-Hopf bifurcation. At some stripe 
regions, Turing bifurcation disappears, so only oscillations remain.  

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       22      0.03]; 
SF_2_e = [1.3     0.0067]; 
SF_2_i = [1       0.009]; 
TF_2_e = [2.28    0       1.28    0.3]; 
TF_2_i = [1.78    0       0.78    0.29]; 

Pre-pattern of 

� 

θ (3) : 

 

1.3 Shells with Spatio-temporal Pre-pattern 

The parameter 

� 

ν (3) , the slope of the middle point of the secretory cells’ sigmoid functions, shown in this section has a spatio-temporal pre-
pattern. We show its basic value as did in previous section. The pre-pattern of 

� 

ν (3)  is generated by hidden network(s). So we also show the 
parameters of the hidden network(s), and the threshold functions used to couple visible networks and hidden networks. 

Episcopatus’s main pattern is travelling waves. And there are some patches.  

Visible network (generate travelling waves and patches): 

S_1_e  = [1       15      0.28]; 
S_2_e  = [1       14      0.17]; 
S_2_i  = [1       12.7    0.1]; 
S_3_e  = [1       19.5    0.1]; 
SF_2_e = [4       0.0065]; 
SF_2_i = [1       0.007]; 
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TF_2_e = [3.665   0.21    2.665   0.33]; 
TF_2_i = [1.2     0.085   0.2     0.18]; 

Hidden network (generate patches): 

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       8       0.15]; 
SF_2_e = [2.5     0.01]; 
SF_2_i = [1       0.3]; 
TF_2_e = [2.28    0       1.28    0.33]; 
TF_2_i = [1.78    0       0.78    0.37]; 

Threshold function: 

thres1 = 0.2, a1 = 0, b1 = 5.7  

 

Aulicus’s main pattern is travelling waves.  

Visible network (generate travelling waves and patches): 

S_1_e  = [1       15      0.28]; 
S_2_e  = [1       14      0.17]; 
S_2_i  = [1       12.7    0.1]; 
S_3_e  = [1       19.5    0.1]; 
SF_2_e = [4       0.006]; 
SF_2_i = [1       0.007]; 
TF_2_e = [3.665   0.21    2.665   0.33]; 
TF_2_i = [1.2     0.085   0.2     0.18]; 

Hidden network (generate patches): 

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       8       0.15]; 
SF_2_e = [2.5     0.01]; 
SF_2_i = [1       0.3]; 
TF_2_e = [2.28    0       1.28    0.33]; 
TF_2_i = [1.78    0       0.78    0.33]; 

Threshold function: 

thres1 = 0.2, a1 = 0, b1 = 7  

 

Dalli’s main pattern is travelling waves. There are two spatio-temporal pre-patterns, i.e. 
oscillations and Turing stripes. They are generated by two independent hidden networks. 

Visible network (generate travelling waves, Turing stripes and oscillations): 

S_1_e  = [1       15      0.28]; 
S_2_e  = [1       14      0.17]; 
S_2_i  = [1       12.7    0.1]; 
S_3_e  = [1       19.5    0.1]; 
SF_2_e = [7       0.006]; 
SF_2_i = [1       0.007]; 
TF_2_e = [3.665   0.21    2.665   0.33]; 
TF_2_i = [1.2     0.085   0.2     0.18]; 

Hidden network1 (generate oscillations): 

S_1_e  = [1       6       0.3]; 
S_2_e  = [1       5       0.01]; 
S_2_i  = [1       4       0.06]; 
S_3_e  = [1       3.5     0.1]; 
SF_2_e = [2.5     0.005]; 
SF_2_i = [1       0.2]; 
TF_2_e = [3.28    0       2.28    0.3]; 
TF_2_i = [2.58    0       1.58    0.4]; 

Hidden network2 (generate Turing stripes): 
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S_1_e  = [1       10      0.4]; 
S_2_e  = [1       5       0.2]; 
S_2_i  = [1       10      0.15]; 
S_3_e  = [1       6       0.1]; 
SF_2_e = [1.5     0.06];  
SF_2_i = [1       0.241];  
TF_2_e = [1       0       0       0]; 
TF_2_i = [1       0       0       0]; 

Threshold functions: 

thres1 = 0.3, a1 = 0, b1 = 5.5  

thres2 = 0.3, a2 = 0, b2 = 7  

 

Textile is similar to dalli. 

Visible network (generate travelling waves, Turing stripes and oscillations): 

S_1_e  = [1       15      0.28]; 
S_2_e  = [1       14      0.17]; 
S_2_i  = [1       12.7    0.1]; 
S_3_e  = [1       19.5    0.1]; 
SF_2_e = [4.5     0.006]; 
SF_2_i = [1       0.007]; 
TF_2_e = [3.665   0.21    2.665   0.33]; 
TF_2_i = [1.2     0.085   0.2     0.18]; 

Hidden network1 (generate oscillations): 

S_1_e  = [1       6       0.3]; 
S_2_e  = [1       5       0.01]; 
S_2_i  = [1       4       0.06]; 
S_3_e  = [1       3.5     0.1]; 
SF_2_e = [2.5     0.005]; 
SF_2_i = [1       0.2]; 
TF_2_e = [3.28    0       2.28    0.3]; 
TF_2_i = [2.58    0       1.58    0.4]; 

Hidden network2 (generate Turing stripes): 

S_1_e  = [1       10      0.4]; 
S_2_e  = [1       5       0.2]; 
S_2_i  = [1       10      0.15]; 
S_3_e  = [1       6       0.1]; 
SF_2_e = [1.5     0.06];  
SF_2_i = [1       0.241];  
TF_2_e = [1       0       0       0]; 
TF_2_i = [1       0       0       0]; 

Threshold functions: 

thres1 = 0.3, a1 = 0, b1 = 5.5  

thres2 = 0.2, a2 = 0, b2 = 4.5  

1.4 Inferred Ancestral Shells’ Parameters 
Number 20: 
S_1_e  = [1       10.799  0.35]; 
S_2_e  = [1       5.936   0.085]; 
S_2_i  = [1       -7.855  0.107]; 
S_3_e  = [1       20.447  0.248]; 
SF_2_e = [4.244   0.012]; 
SF_2_i = [1       0.037]; 
TF_2_e = [3.836   0.065   2.836   0.17]; 
TF_2_i = [1.621   0.081   0.621   0.195]; 
  
Number 21: 
S_1_e  = [1       12.017  0.319]; 
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S_2_e  = [1       9.377   0.108]; 
S_2_i  = [1       5.901   0.121]; 
S_3_e  = [1       20.314  0.181]; 
SF_2_e = [3.915   0.014]; 
SF_2_i = [1       0.047]; 
TF_2_e = [3.33    0.084   2.33    0.24]; 
TF_2_i = [1.804   0.051   0.804   0.219]; 

 
Number 22: 
S_1_e  = [1       12.236  0.318]; 
S_2_e  = [1       10.675  0.115]; 
S_2_i  = [1       8.032   0.137]; 
S_3_e  = [1       22.89   0.193]; 
SF_2_e = [4.304   0.013]; 
SF_2_i = [1       0.048]; 
TF_2_e = [3.583   0.113   2.583   0.247]; 
TF_2_i = [1.821   0.062   0.821   0.206]; 
  
Number 23: 
S_1_e  = [1       12.856  0.307]; 
S_2_e  = [1       10.488  0.129]; 
S_2_i  = [1       9.367   0.157]; 
S_3_e  = [1       24.307  0.182]; 
SF_2_e = [4.551   0.011]; 
SF_2_i = [1       0.051]; 
TF_2_e = [3.643   0.147   2.643   0.277]; 
TF_2_i = [1.9     0.063   0.9     0.202]; 
  
Number 24: 
S_1_e  = [1       13.354  0.3]; 
S_2_e  = [1       12.035  0.142]; 
S_2_i  = [1       7.041   0.151]; 
S_3_e  = [1       22.283  0.18]; 
SF_2_e = [4.644   0.009]; 
SF_2_i = [1       0.037]; 
TF_2_e = [3.702   0.141   2.702   0.269]; 
TF_2_i = [1.909   0.069   0.909   0.187]; 
  

  
Number 25: 
S_1_e  = [1       14.026  0.283]; 
S_2_e  = [1       12.541  0.167]; 
S_2_i  = [1       2.056   0.175]; 
S_3_e  = [1       20.813  0.175]; 
SF_2_e = [4.848   0.008]; 
SF_2_i = [1       0.028]; 
TF_2_e = [3.717   0.148   2.717   0.277]; 
TF_2_i = [2.193   0.067   1.193   0.17]; 

  
  

Number 26: 
S_1_e  = [1       14.425  0.268]; 
S_2_e  = [1       13.657  0.188]; 
S_2_i  = [1       4.523   0.212]; 
S_3_e  = [1       20.985  0.186]; 
SF_2_e = [5.102   0.008]; 
SF_2_i = [1       0.025]; 
TF_2_e = [3.741   0.141   2.741   0.274]; 
TF_2_i = [2.651   0.061   1.651   0.153]; 
  
  
Number 27: 
S_1_e  = [1       14.62   0.272]; 
S_2_e  = [1       13.074  0.182]; 
S_2_i  = [1       9.359   0.174]; 
S_3_e  = [1       19.664  0.157]; 
SF_2_e = [5.322   0.007]; 
SF_2_i = [1       0.019]; 
TF_2_e = [3.715   0.164   2.715   0.293]; 
TF_2_i = [2.158   0.069   1.158   0.162]; 
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Number 27 is assumed to have two hidden networks as its decedents do. We use 
phylogenetically independent contrasts method to infer the parameters of the two hidden 
networks. 

Hidden network1: 

S_1_e  = [1       6       0.3]; 
S_2_e  = [1       5       0.01]; 
S_2_i  = [1       4       0.06]; 
S_3_e  = [1       3.5     0.1]; 
SF_2_e = [2.5     0.005]; 
SF_2_i = [1       0.2]; 
TF_2_e = [3.28    0       2.28    0.3]; 
TF_2_i = [2.58    0       1.58    0.4]; 

Hidden network2: 

S_1_e  = [1       10      0.4]; 
S_2_e  = [1       5       0.2]; 
S_2_i  = [1       10      0.15]; 
S_3_e  = [1       6       0.1]; 
SF_2_e = [1.5     0.06];  
SF_2_i = [1       0.241];  
TF_2_e = [1       0       0       0]; 
TF_2_i = [1       0       0       0]; 

Threshold functions: 

thres1 = 0.3, a1 = 0, b1 = 5.5  

� 

thres2 = 0.25, a2 = 0, b2 = 5.75  

 
  
Number 28: 
S_1_e  = [1       13.185  0.31]; 
S_2_e  = [1       11.499  0.132]; 
S_2_i  = [1       12.518  0.125]; 
S_3_e  = [1       21.853  0.183]; 
SF_2_e = [4.546   0.009]; 
SF_2_i = [1       0.034]; 
TF_2_e = [3.738   0.13    2.738   0.255]; 
TF_2_i = [1.675   0.077   0.675   0.19]; 
  
  
Number 29: 
S_1_e  = [1       14.012  0.299]; 
S_2_e  = [1       11.978  0.141]; 
S_2_i  = [1       14.718  0.108]; 
S_3_e  = [1       18.892  0.15]; 
SF_2_e = [4.359   0.01]; 
SF_2_i = [1       0.033]; 
TF_2_e = [3.532   0.14    2.532   0.288]; 
TF_2_i = [1.531   0.07    0.531   0.203]; 
  
  
Number 30: 
S_1_e  = [1       14.08   0.298]; 
S_2_e  = [1       11.781  0.14]; 
S_2_i  = [1       15.007  0.106]; 
S_3_e  = [1       18.569  0.148]; 
SF_2_e = [4.352   0.01]; 
SF_2_i = [1       0.035]; 
TF_2_e = [3.493   0.138   2.493   0.29]; 
TF_2_i = [1.528   0.068   0.528   0.206]; 
  
  
Number 31: 
S_1_e  = [1       14.417  0.291]; 
S_2_e  = [1       11.844  0.153]; 
S_2_i  = [1       10.032  0.105]; 
S_3_e  = [1       18.977  0.13]; 
SF_2_e = [4.212   0.008]; 
SF_2_i = [1       0.022]; 
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TF_2_e = [3.587   0.169   2.587   0.305]; 
TF_2_i = [1.395   0.076   0.395   0.194]; 
  
Number 31 is assumed to have one hidden network. 

Hidden network (generate patches): 

S_1_e  = [1       15      0.3]; 
S_2_e  = [1       5       0.1]; 
S_2_i  = [1       5       0.06]; 
S_3_e  = [1       8       0.15]; 
SF_2_e = [2.5     0.01]; 
SF_2_i = [1       0.3]; 
TF_2_e = [2.28    0       1.28    0.33]; 
TF_2_i = [1.78    0       0.78    0.35]; 

Threshold function: 

� 

thres1 = 0.2, a1 = 0, b1 = 6.35
 

 
Number 32:  
S_1_e  = [1       14.823  0.255]; 
S_2_e  = [1       9.807   0.167]; 
S_2_i  = [1       19.971  0.334]; 
S_3_e  = [1       38.701  0.107]; 
SF_2_e = [5.88    0.009]; 
SF_2_i = [1       0.142]; 
TF_2_e = [3.778   0.425   2.778   0.537]; 
TF_2_i = [2.423   0.033   1.423   0.246]; 
  
Number 33:  
S_1_e  = [1       11.98   0.316]; 
S_2_e  = [1       8.451   0.105]; 
S_2_i  = [1       5.623   0.108]; 
S_3_e  = [1       18.181  0.161]; 
SF_2_e = [3.519   0.016]; 
SF_2_i = [1       0.047]; 
TF_2_e = [3.034   0.06    2.034   0.243]; 
TF_2_i = [1.813   0.036   0.813   0.235]; 
  
Number 34:  
S_1_e  = [1       11.711  0.312]; 
S_2_e  = [1       8.779   0.093]; 
S_2_i  = [1       7.91    0.096]; 
S_3_e  = [1       16.032  0.153]; 
SF_2_e = [3.401   0.014]; 
SF_2_i = [1       0.043]; 
TF_2_e = [2.96    0.045   1.96    0.26]; 
TF_2_i = [1.895   0.027   0.895   0.265]; 
  
Number 35:  
S_1_e  = [1       14.359  0.302]; 
S_2_e  = [1       7.307   0.099]; 
S_2_i  = [1       5.719   0.067]; 
S_3_e  = [1       9.967   0.151]; 
SF_2_e = [3.481   0.013]; 
SF_2_i = [1       0.035]; 
TF_2_e = [2.413   0.009   1.413   0.308]; 
TF_2_i = [1.803   0.005   0.803   0.309]; 
  
Number 36:  
S_1_e  = [1       12.609  0.318]; 
S_2_e  = [1       4.275   0.125]; 
S_2_i  = [1       1.819   0.101]; 
S_3_e  = [1       12.908  0.121]; 
SF_2_e = [2.572   0.024]; 
SF_2_i = [1       0.058]; 
TF_2_e = [2.287   0.024   1.287   0.207]; 
TF_2_i = [1.611   0.015   0.611   0.2]; 
  
Number 37:  
S_1_e  = [1       13.691  0.31]; 
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S_2_e  = [1       3.745   0.114]; 
S_2_i  = [1       8.045   0.082]; 
S_3_e  = [1       13.409  0.107]; 
SF_2_e = [2.404   0.018]; 
SF_2_i = [1       0.043]; 
TF_2_e = [2.284   0.013   1.284   0.249]; 
TF_2_i = [1.688   0.008   0.688   0.241]; 
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