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Abstract—We study the problem of reconstructing a sparse and with modCS. Other somewhat related work includés [7],
signal from a limited number of linear measurements, when [10], [11], [12].
a part of its support and the signal estimate on it are known. This paper is organized as follows. We introduce reg-mod-
The support and signal estimate can be obtained from prior BP in S Wi different strategies to obtain the exact
knowledge, e.g., in a real-time dynamic MRI application, they ec._ - Ve u_s_e erent strateg eg 0 obta € exac
could be the support and signal estimate from the previous time reconstruction conditions and reconstruction error bsuiitle
instant. We propose regularized Modified Basis Pursuit (Reg- exact reconstruction condition is obtained using a similay
mod-BP). We also provide the exact reconstruction conditions as [1] in Sec. lll. In Sec. IV, we bound the reconstruction
and we argue that they can be weaker than modified-CS. We grror when exact reconstruction can not occur in a fashion

then bound its reconstruction error when exact reconstruction .
can not happen and we show that the bound is much smaller as in [5]. We do not use the method dfl [SL] [6] to get

than modified-CS when the available measurements are few, €Xact reconstruction conditions in Sec. Il because it can
We also use Monte Carlo to verify that reg-mod-BP has better not give better conditions. Finally, simulations are shown
exact reconstruction conditions than other methods with very f&r  to demonstrate reg-mod-BP gets better exact reconstnuctio

measurements. We also compare the average errors when exactoqonditions and smaller reconstruction errors in Sec. V.
reconstruction can not be achieved and show that the errors are

smaller than other methods.
Il. REGULARIZED MODIFIED BASIS PURSUIT

In [d], we proposed modCS which only used partially
known support. ModCS solves

i c ty=A 1
I. INTRODUCTION mﬁmHﬁT 1, sty B (1)

In this work, we study the problem of sparse reconstructidhowever, modCS puts no constraint any. Thus, when
with partial, and partly erroneous, knowledge of suppod arf€W measurements are available; can be arbitrarily large
of the signal values on the “known” support. In practicdlesulting in very bad reconstruction. Hence, we propose reg
applications, this may be available from prior knowledge, ¢nod-BP to also constrainy by bounding||lzr — pi7 ||, i.€.
in recursive reconstruction applications, e.g. recurdiramic 1, sty =AB, |Br — prlle < p )
MRI, and one can use the support and signal estimate from
the previous time instant for this purpdse[2]. whereT is the support estimate and- is the signal estimate

The problem of sparse reconstruction with partial knowbn 7'. Let N denote the support of. DefineA £ N\ T and
edge of support was first simultaneously introduced in oux. £ 7'\ N. The cost function is to find the sparsest solution
work (modified-CS)[[1] and in[[9]. An earlier work[8] pro- outside T and the first constraint gives the data constraint
posed an approach similar to modified-CS but did not analyméile the second one imposes the closeness &dongT'.
it and also did not show careful numerical or real experiment
either. Denote the support “knowledge” . Modified-CS [Il. EXACT RECONSTRUCTION
finds a signal that is sparsest outsideZofand satisfies the In this section, we try to obtain exact reconstruction con-
data constraint. The work of[9] puts a probabilistic priar oditions for reg-mod-BP that are weaker than those for mod-
the support and obtains a solution. Both [1] ahd [9] obtai@S in terms of the number of measurements required. The
exact reconstruction conditions for the respective apgres. key idea is to use the following fact which is observed from

When both partial support knowledgé, and signal value simulation experiments. If one or more of the prior consitisi
estimates on this support,r are available, modCS can be||fr — ur|« < p, are active, then reg-mod-BP needs fewer
augmented by also imposing a constraint onfthedistance of measurements for exact reconstruction. Hence, let us define
the solution fromup. We refer to this as “reg-mod-BP”. In thisthe following active setq,,,T,, and the inactive s€t;,,.
work, we derive its exact reconstruction condition and ltbun

Index Terms—Compressive sensing, Sparse reconstruction

min
i ||Br
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the reconstruction error. We provide both exact reconstmic Ta, R {Z' €T wi — i = p}
comparisons with existing work as well as reconstructianrer T, = {i€T: 2 —pi=—p}
comparisons. We also show comparisons with the worklof [9] T = {i €T : |z — ) < p}



and their sizes = |T|, u = |A|, ki, = |Ti|. Then we can As long as the truer is always part of the feasible set of

obtain the following Theorem. @), i.e. as long agrr — ur|e < p, the above lemma also
Theorem 1 (Exact Reconstruction Conditions): Given  a holds for reg-mod-BP. In the next lemma we also use this
sparse vectory, whose support, prior constraint to obtain another error bound for reg-nBi)-

which is tighter than that of Lemma 1 wheris small enough,

N=TUA\A, @ R an
i.e. prior information is strong.
where A andT are disjoint andA, C 7. Also, z satisfies Lemma 2. Let & solve [2) and|azr — prlloc < p. If 020 <
V2 — 1 anddy42, < 1 hold, then
y= Az (4)
. 2V kdk 420
- <(———m+2 10
Let [l x|‘2_(1—(\/§+1)52u+ )p (10)
M 21— Ar, (A, Ar, ) 'AL (5) Combining the above two lemmas, we have the following
i i . ) Theorem to bound the error for reg-mod-BP.
x is the unique minimizer of{2) if Theorem 2 (Reconstruction Error Bound): Let # solve [2).
1) u is such that h;] lzr — prllee < p and if 6o, < V2 —1 and 40, < 1,
then
To, CTy ={i €T : AAMAN(ANMAN) tsgn(za) > 0}
3 ’ ’ 1 ||$ — f‘”g < min{Bl,Bg}, where
T, CT_={i €T : AAMAA(ANMAA)” sgn(za) < 0} /oo
N k+2u
[ (6) B Ve TP
2) n is large enough such that B, 2 i 1= 0\7 4214 2l ozl
Sy < 1 aNAGs, + 0 + 07 4, < 1 s STASE (V2 Dhdaa 4
andag (2u, u) + ak,, (u,u) <1 (") The complete proof is in the Appendix. Clearly the bound for
., 05 g+ % modCS isB;y since modCS is a special case of reg-mod-BP
whereay (S, S) = —95‘ (8) whenp = 0o and B; = ~ in this case. Therefore, reg-mod-
1—0ds5— -6y BP bound, which isnin{By, B2}, will never be larger than
Recall thatk 2 |T|, u 2 [Al, kin 2 |Tinl. modCS bound. One particular case is whgn,, < v2 — 1

The proof is given in Appendix. Notice that modCS is reg@‘nOI In this case3, = 0 which implies that exact reconstruc-

mod-BP with p — oco. Thus, for modCSj;, — k. Wit tion occurs for both modCS and reg-mod-BP. However, when
p = oo and k;, = k, the ab,ove result is, tlﬁe same as th pe number of measurements is very S.mb"u”“ will be much
of Theorem 1 of([l]. When < oo, and if one or more of the arger thany’2 — 1. Thus, || and |A| in modCS boundB;

prior constraints are active, thé, < k. In this case, reg- must be small such tha%lﬁl& < V2 — 1. However, the
mod-BP needs weaker conditions on the measurement maset (T U A)C becomes larger resulting ,M to be
than modCS. But, it also needs that (a) the constraint iseacti,ery |arge. Hence, modCS bound will be vé/rﬁarge. But for
on a part ofT" and (b) the active set§,, and 7., satisfy reg-mod-BP, if the signal estimater is good which allows a

condition [®). In other words, it needs a very specific type mall p, then By < B resulting a much smaller bound than
prior information is available. This fact is also verified byr  0dcs.

simulations.
Requiring thatu satisfy these conditions is somewhat re- V. EXPERIMENTAL RESULTS
strictive. But as we show in the next section and also in our

simulations, the error bound for reg-mod-BP is smaller than In this section, we use simulations to verify the conclusion
that for modCS (and for other methods) even without rquiriﬁrom previous sections. We compare reg-mod-BP with modCS

any constraint to be active. and Welght_edﬁl_ reconstruction as well as CS. Weightéd
reconstruction is to solve

IV. RECONSTRUCTIONERRORBOUND min [|Brelli +7l8rll - sty =Ap (11)

When exact reconstruction cannot be achieved, we wanti§ first demonstrate that reg-mod-BP can obtain exact recon-

bound the error of = 7 —x. We adapt the approach &f [5]] [6] Struction with much fewer measurements under which other
to bound thefs norm of the errof|h/|». First consider modCs, Methods can not. Then, we will show the reconstruction srror

i.e. (). When exact reconstruction condition does not rbtel, aré smaller for reg-mod-BP than other methods.
following lemma provides one way to bound the error.
Lemma 1: Pick a A € A and a7 C 7T such that A Exact Reconstruction Comparisons

H\th?]leﬁr\] < V2 1. Denote as the unique minimizer of We compare the smallest number of measurements for
' exact reconstruction of reg-mod-BP with that of modCS and

|z — 2|2 < weighted/; reconstruction. We use the following procedure to
/ o compare all four algorithms when exact reconstruction a
4 1+6\Tl+2IA\ 1*5|T'\+2\A| ) 2H$(TUA)cH1 P g g

€ = (9) occurs, for a giverd (i.e. we average over the joint distribution
1= (V2+ D870 1= (V24 D710 VIA| of z andy given A). In the following simulation steps, the



. . . a) n = 0.11m,|A| = |Ae| = 10%|N|,po = 0.1
notation z ~ iid(4a) means that we generateas an i.i.d. (
(+a) 9 modCS | wf; (0.1) | wéy (0.01) | RM(0.5p4) | RM(pa) | RM(1.5p4)

random vector and each element is either or —a with 04559 | 0.3984 0.38 0.0734 0.0958 0.1249
probability 1/2, while z ~ wunif(a,b) generates a uniform
random variable distributed ifu, b].

(0) n = 0.15m,|A| = |Ae| = 10%|N|,pa = 0.1
modCS | wé; (0.1) | wé; (0.01) | RM(05pa) | RM(pa) | RM(1.5pa)

1) Fix signal length,,m = 256, its support sizeJN\ = 0.1152 0.1365 0.1245 0.0489 0.034 0.0661
0.1lm = 26 andu = 0.04|N|, e = 0.1|N|. Selectn, . TABLE I
2) Generate they x m random-Gaussian matrix4d (gen- RECONSTRUCTION ERRORN-RMSE) COMPARISON OF MOLCS,

: : . . : WEIGHTED #1 AND REG-MOD-BP. IN BOTH CASES REG-MOD-BP HAS
erate ann x m matrix with mdependent 'demlca”y MUCH SMALLER ERROR THAN THOSE OF MOBCS AND WEIGHTED ¢; FOR

distributed (i.i.d.) zero mean Gaussian entries and nor- DIFFERENT CHOICES OFp.
malize each column to unit, norm)

3) Repeat the following tot 100 times B. Reconstruction Error Comparisons

a) Generate the suppory, of sizes, uniformly at We use the same simulation approach as above but with

random from(1, n]. .
T . steps 3e and 3f replaced by = = + unif(—pa, po) Where
b) t(rs]ene;rateAtof ?V'Zeu uniformly at random from pa = 0.1, i.e. the restrictive assumption qn is removed.
Ge eens:ﬁr] S? S formlv at random f We also fix|A| = |A.| = 10%|N| and use different choices
c) Generated, of sizee, uniformly at random from of p and ~ for reg-mod-BP and weighted; each to test

the elements ofl,n] \ N. :
’ their robustness to parameters. Then we compute N-RMSE
d) Let T = N U Ae \ A Genel’ateszT ~ Zld(il) E[Hi—z“g] p . . p
(1/ =5—=2). The results are summarized in Talble Il. We

and xa ~ 4id(£0.25). Setzy. = 0. Generate E=]2] )
y = Az. can see that reg-mod-BP has the smallest reconstruction err

e) Generatd}, uniformly in T with |T},| = 0.4|N]. for different choices op when the measurements= 0.11m

ComputeT’, and7_ as in [8) and seT},, + 7.\ ©fn=0.1om.
Ty @andT,, < T_\ Tip.
f) Fix p =0.1. Generat§ir, = x7, —pandir,, = VI. CONCLUSIONS
ar,, +p. Foranyj € Ty, generatgir, ~ o1, +  \we proposed a modification of the modified-CS idea, called

0.9p x unif(~1,1). Setjire = 0. , regularized modified Basis Pursuit, for sparse reconstmict
g) Run CS, modCS and reg-mod-BP to obtaigs, when a part of the support and the signal estimate on it

H LmodC's ang LregmodBP- ) h diff are known. We obtained the exact reconstruction conditions
) Rhur} we|gf tedgl reconstrhuctlonAwn different fo, reg-mod-BP and bounded its reconstruction error when
choices ofy and store each one ;. exact reconstruction cannot be achieved. We demonstrated

4) Estimate the probability of exact reconstruction usingpat reg-mod-BP can have better exact reconstruction than
CS by counting the number of timés-s was equal to modCS and weighted; reconstruction as well as CS when
x (“equal” was defined a§ics — z|l2/||z]]2 < 107°) the signal estimate satisfies the required structure. We the

and dividing by tot= 100. also showed that reg-mod-BP has the smallest reconstnuctio
5) Do the same for modCS, reg-mod-BP and weighted bounds and reconstruction errors and this does not require

reconstruction for each. the specific type of signal estimate. In summary, reg-mod-BP
6) Repeat for various values af significantly improves upon modCS, weightéd and CS in

. terms of reconstruction error bound with fewer measurement
We tabulate our results in Takble I. We can see that reg—mcﬁ— e S . )
) a very specific prior information is available so that thréop
BP only needd4 1% measurements for exact reconstruction, but L . S .
X constraint is active on part af and satisfied {6), then it also
both modCS and weighte need17% measurements and of _ . X
ac(t}|eves exact reconstruction with fewest measurements.
course CS needs much more measurements. Hence, reg-mod-
BP can give better exact reconstructiong ineets the specific
requirements as i }6).But if we compute the probability of
exact reconstruction using a given small number of measufe- Key Lemmas
ments, then weighted, has a higher probability than that of To obtain Theorem 1, we need the following three lemmas
modCS but lower than that of reg-mod-BP. For example, whes complete the proof of Theorem 1.
n = 0.14m, the probability of exact reconstruction for modCS [emma 3: The sparse signat;, is the unique minimizer of
is 0.8 and weighted; has 0.88 while reg-mod-BP achievegp) if di7/+|a] < 1 and if we can find a vectow satisfying

VII. APPENDIX

100% probability of exact reconstruction. the following condition
1) wA; >0if jeT,, andw'A; <0if j €T,
CS modCS | w/; RM 2) w'Aj =0if j €Ty,
n | 0.42m | 0.17m | 0.17m | 0.11m 3) w’Aj _ sgn(xj) if je A
TABLE | 4) |wA;| <1if j¢TUA

MINIMUM NUMBER OF MEASUREMENTS REQUIRED TO ACHIEVE wals 21 _
EXACT RECONSTRUCTION ALWAYS FORCS,MODCS,WEIGHTED Lemma 4. Given the known part of the suppoff, of size

{1 AND REG-MOD-BP. k.LetS, S be such thak+5+S < n andds+0,+07 ¢ < 1.

Let ¢ be a vector supported on a $gf, that is disjoint with



T, of size |T;] < S. Then there exists a vectar and an If x is a minimizer of this problem, then we can get

exceptional setF, disjoint withT'U Ty, s.t. 1) Forj € T, w'A; = Aij — Ao, where \;; > 0 and
Aj'w = 0,VjeT A2,; > 0 and they also satisfy
A]ig; - g e - Mg =g —p) =0 Agj(=zj +pj —p) =0 (21)
<
1A @l < an(S, §)llcllz 2) Forj € A, w'A; = sgn(za)

ar (S, §) 3) Forj ¢ TUA, [w'4;| <1

!~ k . . .

|A; ] 3 llell2 Vi ¢ TUTaUE and Now, we need to prove that is the minimizer by showing
that given the conditions of Lemnid 3, a unique minimizer

IN

[@llz < Ki(S)llell2 (13 - ° o ! I
_ exists which is equal t@. Assume there is another minimizer
whereay (S, S) is defined in[(B) and 3, thus,
T+o [Brells < lzzells = ) |25l (22)
Ki(S) = Lﬁgk (14) Z J
1 —0s — 175 Then, we try to prove thatzr:||; < HﬁTL
Lemma 5: Given the known part of the suppoff, of size [Brells = o+ (B —x)l+ Y 18]
k and givenT;,, C T, T,, C T andT,, C T which are as jea IETUA
defined in Theoreril1. Also lét, u, k;, and the matrix)/ be >3 o+ )+ D wAB;
as defined in Theoreld 1. L&t S be such that+ S+ S < n. JEA JETUA
Let ¢ be a vector supported on a sEf, that is disjoint with > Z sgn(z;)(z; + (85 — x;)) + Z w' A;B;
T, of size|Ty| < S. If 65 + 6 + 07 5 < 1 and if iea JETUA
T, C T2 {ieT: A{MAp,(Ay MAg) 'c > 0}, = z;|l’j| + z;w,Aj(ﬁj —z;) + ¢;AwlAj(ﬁj - z;)
JjE Jj€ JETU
A g LAl / —1
Ta2 - T_—{ZET.AiMATd( TdMATd) C<O} (15) +Zw/Aj(/8j_xj)_Zw/Aj(/Bj
then, there exists a vectarand an exceptional sek, disjoint JET JET
with T'U Ty, s.t. = [lore|l + w'(AB — Az) = > w' Ay
A" = 0,V j €T et
Ali > 0,V j €T, = [lwzellr — jez;()\l,j = A2,5) (B — pj + py — ;) (23)
./ 7 y
Ajluj <0, J€ Tas By 1), we know) -, (A1,j — Ao i) (1 — ;) = —p(A; +
Ajw = ¢j, VjeTy (16) ), ;). Hence, [ZB) becomes
E| < S
,l | 3 lzrelli =Y Ay =A2) (B — i)+ > p(A1j+A2;) (24)
lA"Dll2 < ak,, (S, 5)lcll2 jer jer
|A,"w| < C”“""\%’&IICQ Vj¢ TUT,UE and Since|A1; — Ag | < Arjy+ Aoy and|f; — py| < p, we get
l@le < K, (S)|cll an 2O = A2) (B =) + D p(Aa +Ae) 2 0 (25)
3 JET JET
whereay(S, S) is defined in[(8) and Therefore, we get
Ki(S) = m (18) ||6TC||1 > |xT“”1 (26)
g ' 1 §a— %% This can only happen whelysr:||y = ||zz<||:. Consider the
57 T-h first inequality, sincgw’A;| < 1 for j ¢ TUA, theng; =0

The proof of Lemmd13 is given in the next subsection. THE" all j ¢ T'U A. Since A3 — Az = 0 and they are both
proof of Lemmd# is inl[1] and the proof of Lemrfih 5 is giverfupported oril” U A, we know Arua(frua — 2rua) = 0.

in the long versiof[13]. Sinced|r|+a] < 1, Arua has full rank. Thereforefrya =
' rrua. Finally, we can conclude that = z, thus,z is the

B. Proof of Lemma[3 o unique minimizer.
The Lagrange multiplier is Now, by complementary slackness, we knaw; = 0 and

J(B) £ ||Bre | +AL(Br—pr—pL)+Ab(—Br+pr—pl)+w' (y—AB) A2 = O if |z; — py| # p. Therefore,w'A; = 0 for j ¢
_ (To, UTq, ). Whenz; —p; = p, Agj = 0; whenzj —p; = —p,
whereA; = 0 and A, > 0. Also, we have for any € T A1, = 0. Define

Mg (B =mg =p) =0 das(=Bi+p=p) =0 (A9 1 = fja; —py=p), To={j:a;—uj=—p} @7)

Therefore, for this convex problem, the minimizérsatisfies Therefore, we know

the following equality ' N\ ifieT (28)
W Aj = Al1,5 LI ARSI 3

O L
VJ(B) = | sgn(Ba) | + { (A1O;CA2) } —A'w=0 (20) w'Aj f -2 j I.f j €T, (29)
9(TUA)e wA;=01if j €T, (30)



Finally, we can get Lemmf 3. Using [35),
C. Proof Outline of Theorem[I] | < Ahauna,, Ah>|=0 (38)
To prove Theorem 1, apply Lemrih 4 iteratively, in a fashioHsing RIP and[(35),
similar to that of the proof of [[1],Theorem 1]. The main < Ah Aha > | < < Aha. Aha. >
idea is as follows. At iteration zero, apply Lemrih 5 with |j§ auss Aha; > [ < |j§ ar Ao, > |
Ty = A (so thatS = u), ¢; = sgn(x;) V j € A (so R -
)i € Aha,, Aha, > | < V28200 h 39
that |[c]; = /), and with S = u, to get aw; and an H;< auAha; > | < Vahullhaon llkallz - (39)
exceptional sefl;; 1, disjoint with 7" U A, of size less than _. o
S = u. Lemma[® can be applied because+ o5 + 67, < 1 Finally, using RIP and({31),
(follows from conditior[¥) and conditiol 6 holds. At iterai | < Ahava,, Ahy > | < Skqoullhava, |2]|hr]l2 (40)
r >0, apply Lemmd# withl;; = AU T, (so thatS = 2u), < Surzullhava, [220VE (41)
c;=0VjeAN ¢ =A'w VjeT,, andS = u to get o _
w,41 and an exceptional séf, ... Lemmal% is applicable COmbining the abové equations, we get
in the above fashion because conditidn 7 of Theorem 1 holds.
1— 65, < 201 42upVE + V200, || h 42
Definew := 2 (—1)"'w, .We then argue that if condition ( 2u)lhauva ll2 kP zullhall2 - (42)
[ of Theorem 1 holdsy satisfies the conditions of Lemmausing [|ha|l2 < [|haua, ||z and simplifying,
B. Applying LemmdB, the result follows. We give the entire
proof in the long versiof[13]. 1hava,llz < 2\/E6$p, where
1— (V2 +1)024
D. Proof of Lemma 2 Combining with [35) and[(31), we get
et 4 denate the sct of Indices af with the |8 fargest lhllz < lIhaoayllz + heroavapslle + Iarlz  (43)
values outside of’ U A and A, denote the indices of the < 9hava,|lz +2p < By (44)

next |A| largest values and so on. We bound the erroB in
parts: hr, haua, and h¢ruaua,)- and we can obtain the

following theorem. First, we boun by using our second
g ther 2 by using REFERENCES

constraint. Sincec and % are both feasible, so

Ihrllz < llor — prlle + |ir — prlla < 20VE (31)
Next, we bound|2ruaua,)e|l2-
1
Iheroavanllz <D llha;ll2 < ﬁ”h(TUA)CHI (32)

Jj=2

Sincez = x + h is the minimizer of[[R) and since bothand
z are feasible,

lzrells > |[(x+ R)rellr
> lzally = [halls + hroayellr = lzroa)e |1 (33)
and sincezr(rua)e = 0 then
Ihruaylln < lhallx (34)

Combining this with[3R), and usin&% < ||hall2, we get

< Y llhayllo < halls
j=2

||h(TuAuA1)c 2

Next, since bothr and z are feasible,

Ah=A(& —2)=0 (35)
To upper bound|haua, ||2, use RIP to get
(1= G2u)l[hava, 3 < [|Ahava, II3 (36)

To bound the right hand side of the above, notice that

Ahaun, = Ah — 222 Ahpa; — Ahr and thus

|[Ahava, |I§ =< Ahava,,Ah > —
Z < AhAuAl,AhAj > —< AhAuAl,AhT >

Jj=2

37

[1] N. Vaswani and W. Lu, “Modified-CS: Modifying Compressive
Sensing for Problems with Partially Known Support”, IEEE
Trans. Signal Processing, Sept. 2010.

[2] W. Lu and N. Vaswani, “Modified Compressive Sensing for
Real-time Dynamic MR Imaging”, IEEE Intl. Conf. Image Proc
(ICIP), 2009

[3] W. Lu and N. Vaswani, “Modified Basis Pursuit Denoising
(Modified-BPDN) For Noisy Compressive Sensing With Par-
tially Known Support”, ICASSP, 2010.

[4] E. Candes and T. Tao, “Decoding by Linear Programming”,
IEEE Trans. Info. Th., 51(12):4203 - 4215, Dec. 2005.

[5] E. Candes, “The restricted isometry property and its implications
for compressed sensing”, Compte Rendus de |Academie des
Sciences, Paris, Serie |, pp. 589C592, 2008

[6] L. Jacques, “A short Note on Compressed Sensing with Partially
Known Signal Support”, ArXiv preprint, arXiv:0908.0660v1,
2009.

[7] A. Carmi and P. Gurfil and D. Kanevsky, “A simple method for
sparse signal recovery from noisy observations using Kalman
filtering”, IBM Technical report, Dec. 2008

[8] R.von Borries, C. J. Miosso, and C. Potes, “Compressed sgnsin
using prior information”, CAMSAP, 2007.

[9] A. Khajehnejad, W. Xu, A. Avestimehr, B. Hassibi, “Weighted
11 Minimization for Sparse Recovery with Prior Information”,
IEEE Intl. Symp. Info. Theory(ISIT),2009

[10] M. Asif and J. Romberg, “Dynamic updating for sparse time

varying signals”, CISS, 2009.

[11] D. Angelosante, E. Grossi, G. B. Giannakis, “Compressed

Sensing of Time-varying Signals”, DSP 2009

[12] V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy,&aB

niuk, and R. Chellappa, “Compressive sensing for background
subtraction”, Eur. Conf. on Comp. Vis. (ECCV), 2008

[13] W.  Lu, N. Vaswani, “Exact Reconstruction Condi-
tions and Error Bounds for Regularized Modified
Basis Pursuit (Reg-Modified-BP)”, long version,

http://lwww.ece.iastate.edulwei/modcs/regmodBPlong.pdf


http://www.ece.iastate.edu/~luwei/modcs/regmodBPlong.pdf

	Introduction
	Regularized Modified Basis Pursuit
	Exact Reconstruction
	Reconstruction Error Bound
	Experimental Results
	Exact Reconstruction Comparisons
	Reconstruction Error Comparisons

	Conclusions
	Appendix
	Key Lemmas
	Proof of Lemma 3
	Proof Outline of Theorem 1
	Proof of Lemma 2

	References

