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Abstract—The aim is to model “activity” performed by a group
of moving and interacting objects (which can be people, cars, or
different rigid components of the human body) and use the models
for abnormal activity detection. Previous approaches to modeling
group activity include co-occurrence statistics (individual and joint
histograms) and dynamic Bayesian networks, neither of which is
applicable when the number of interacting objects is large. We
treat the objects as point objects (referred to as “landmarks”)
and propose to model their changing configuration as a moving
and deforming “shape” (using Kendall’s shape theory for discrete
landmarks). A continuous-state hidden Markov model is defined
for landmark shape dynamics in an activity. The configuration of
landmarks at a given time forms the observation vector, and the
corresponding shape and the scaled Euclidean motion parameters
form the hidden-state vector. An abnormal activity is then defined
as a change in the shape activity model, which could be slow or
drastic and whose parameters are unknown. Results are shown
on a real abnormal activity-detection problem involving multiple
moving objects.

Index Terms—Abnormal acitivity detection, activity recognition,
hidden Markov model (HMM), landmark shape dynamics, particle
filtering, shape activity.

I. INTRODUCTION

I N THIS paper, we develop models for the configuration
dynamics of a group of moving landmarks (point objects)

in shape space. Shape of a group of discrete points (known as
“landmarks”) is defined by Kendall [1] as all the geometric
information that remains when location, scale and rotational
effects (referred to as “motion parameters” in this paper) are
filtered out. There has been a lot of work in learning the
statistics of a dataset of similar shapes and defining probability
distributions in shape and preshape space, [2] provides a good
overview. Statistical shape theory began in the late 1970s and
has evolved into viable statistical approaches for modeling the
shape of an object with applications in object recognition and
matching. In this work, we extend these static classification
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approaches to defining dynamical models for landmark shape
deformation. Also, we consider here the shape formed by a
configuration of point objects instead of that of a single object.

For a dataset of similar shapes, the shape variability can be
modeled in the tangent hyperplane to the shape space at the
mean shape [2]. The tangent hyperplane is a linearized version
of the shape space linearized at a particular point known as the
pole of tangent projection. Typically, one uses the Procrustes
mean [2] of the dataset as the pole. The tangent plane is a vector
space, and, hence, techniques from linear multivariate statistics
can be used to model shape variability in tangent space. In this
work, we model shape dynamics by defining an autoregressive
(AR) model in the tangent plane at the mean shape. To model the
configuration dynamics, we also define motion models (models
for translation, isotropic scaling and rotation). We use the term
“shape activity” to denote a continuous-state hidden Markov
model (HMM) (also referred to as a “partially observed non-
linear dynamical model” or a “stochastic-state space model” in
different contexts) for the shape deformation and motion in the
activity.

Previous approaches to modeling activity performed by
groups of point objects include co-occurrence statistics (e.g.,
[3]) and discrete-state dynamic Bayesian networks (DBNs)
(e.g., [4]). Co-occurrence statistics involves learning indi-
vidual and joint histograms of the objects. Joint histograms
for modeling interactions is feasible only when the number of
interacting objects is small. Our approach on the other hand
implicitly models interactions and independent motion of a
group of objects with any number of interacting objects. DBNs
define high level relations between different events and typi-
cally use heuristics for event detection. Our algorithms can be
used to provide a more principled strategy for event detection
using DBNs. Another advantage of our framework is that using
shape and its dynamics makes the representation invariant to
translation, in-plane rotation or sensor zoom. The idea of using
“shape” to model activities performed by groups of moving
objects is similar to recent work in literature on controlling
formations of groups of robots using shape (e.g., [5]).

One example of a stationary shape activity, that we discuss in
this paper, is that of people (treated as point-objects) deplaning
and moving toward the terminal at an airport [see Fig. 2(a)].
Our framework can be used to model normal activity and de-
tect abnormal activity as a deviation from the normalcy model.
We are able to detect both spatial and temporal abnormalities
(terminology borrowed from [3]). The “landmark” could also
be a moving vehicle and one could model traffic in a certain
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region as the normal activity and define lane change as the “ab-
normality.” Our framework can also be used to model the dy-
namics of articulated shapes like the human body (the different
rigid parts of the human body forming the landmarks) and, thus,
represent different actions [6]. This has application in classi-
fying or tracking a sequence of actions and also in detecting
motion disorders. Also, our approach is sensor independent. The
same framework could be used for point location observations
obtained from other sensors, e.g., infrared, acoustic, radar, or
seismic, and only the observation model would change.

A. Organization of the Paper

This paper is organized as follows. We discuss related work
in the next subsection. Some definitions and methods for shape
analysis are presented in Section II. The shape dynamics for
stationary shape activity and the training algorithm to learn
its parameters is described in Section III-A. The noise in
the observed configuration makes the state (shape, motion)
partially observed (or hidden). The partially observed model
is discussed in Section III-B. The nonstationary shape activity
model is given in Section III-C. The particle filtering algorithm
to estimate the hidden state from the observations is discussed in
Section III-D and its advantages are discussed in Section III-E.
The abnormality-detection problem and its formulation as a
change-detection problem is discussed in Section IV. The
strategy to deal with time-varying number of landmarks is
given in Section V. Experimental results on the airport terminal
abnormal activity-detection problem are presented in Section VI.
Extensions of our framework to tracking observations and to
activity sequence identification and tracking are discussed in
Section VII. Conclusions are given in Section VIII.

B. Related Work

Shape Representations: Some of the commonly used rep-
resentations for shape are Fourier descriptors [7], splines [8],
and deformable snakes all of which model the shape of con-
tinuous curves, but, in our work, we are attempting to model
the dynamics of a group of discrete landmarks (which could
be moving point-objects or moving parts of an articulated ob-
ject like the human body). Since the data is inherently finite
dimensional, using infinite-dimensional representations of a
continuous curve is not necessary, and, hence, we look only
at the representation of shape in (modulo Euclidean simi-
larity transformations), which was first defined by Kendall in
1977. Active shape models introduced by Cootes et al. [9] also
consider the shape of points in . In [10], they define point
distribution models which are principal component models for
shape variation using Procrustes residuals.

Modeling Shape Change: There has been a lot of work in
defining probability distributions in (Kendall’s) shape and pre-
shape space and also in analyzing datasets of similar shapes in
the tangent space at the mean (discussed in [2, Ch. 6, 7, and 11],
[11]–[13], and references therein). Many models for shape de-
formation of one shape into another have been proposed which
include affine deformation, thin plate splines, and principal and
partial warp deformations (discussed in [2, Ch. 10]), but none
of these define dynamical models for time seqeunces of shapes.
We propose in this paper, a partially observed dynamical model

(which also satisfies the HMM property, and, hence, we refer to
it as an HMM in the rest of the paper) for stationary and non-
stationary shape activities. Our model for nonstationary shape
activities is similar in spirit to those in [14] and [15] where the
authors define dynamical models for motion on Lie groups and
Grassmann manifolds, respectively, using piecewise geodesic
priors and track them using particle filtering.

Modeling Activity: There is a huge body of work in com-
puter vision on modeling and recognition of activities, human
actions and events. The work can be classified (based on the
formalisms used) as Bayesian networks (BNs) and DBNs [16],
[4]; finite-state HMMs for representing activity [17], [18];
stochastic grammars [19]; and factorization method based
approaches [20], [21]. In [3], the authors perform clustering
to learn the co-occurrence statistics of individual objects and
their interactions with other objects. [22] is another work which
treats events as long spatiotemporal objects and clusters them
based on their behavioral content. In [23], action “objects” are
represented using generalized cylinders with time forming the
cylinder axis. Now, [3] and [20]–[23] are nonparametric ap-
proaches to activity/event recognition, while HMMs, stochastic
grammars, BNs, and DBNs are model based approaches.
Our work also defines a parametric model (but it is a contin-
uous-state HMM) for activity performed by a group of objects
and there are some other differences. First, we treat objects as
point-objects, and, hence, we can get our observations from low
resolution video or even from other sensors like radar, acoustic,
or infrared. Second, we provide a single global framework for
modeling the interactions and independent motion of multiple
moving objects by treating them as a deformable shape.

Particle Filters (PFs) and Change Detection: PFs [24] have
been used extensively in computer vision for tracking a single
moving object in conjunction with a measurement algorithm to
obtain observations [25]–[27]. In [28], particle filtering is used
to track multiple moving objects but they use separate state vec-
tors for each object and define data association events to asso-
ciate the state and observation vectors. In this paper, we repre-
sent the combined state of all moving objects using the shape
and global motion of their configuration and define a dynamic
model for both shape and motion. We use a PF to filter out the
shape from noisy observations of the object locations and use
the filtered shape for abnormal activity detection. We define an
abnormal activity as a change which could be slow or drastic
and whose parameters are unknown. An algorithm for change
detection in nonlinear systems using PFs is given in [29], but it
assumes that the changed system’s parameters are known and it
deals only with sudden changes. In this paper we use a statistic
called ELL for detecting slow changes, with unknown parame-
ters [30], [31].

II. PRELIMINARIES AND NOTATION

We would first like to clarify that the terms partially observed
dynamical model and HMM are used interchangeably for
“shape activity” models since the partially observed dynamic
model that we define is also an HMM. We use “ ” to denote
the angle of a complex scalar as well as in “ ” for the
argument minimizing a function, but the meaning is clear from
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the context. is used to denote conjugate transpose. is
used for the Euclidean norm of a complex or real vector and

for the absolute value of a complex scalar. denotes the
identity matrix and denotes a -dimensional vector of

ones. Also note that, to simplify notation, we do not distinguish
between a random process and its realization. We review below
the tools for statistical shape analysis as described in [2].

Definition 1: [2] The configuration is an ordered set
( -tuple) of landmarks (which in our case is the -tuple of
point–object locations). The configuration matrix is a
matrix of Cartesian coordinates of the landmarks in di-
mensions. For two-dimensional data ( ), a more compact
representation is a -dimensional complex vector with and

coordinates forming the real and imaginary parts. The con-
figuration space is the space of all -tuples of landmarks, i.e.,

.
Translation Normalization: The complex vector of the

configuration ( ) can be centered by subtracting out the
centroid of the vector, thus yielding a centered configuration,
i.e.,

where (1)

Definition 2: [2] The preshape of a configuration matrix (or
complex vector) is all the geometric information about

that is invariant under location and isotropic scaling. The
preshape space is the space of all possible preshapes. is
a hyper-sphere of unit radius in , and, hence, its dimen-
sion is (a unit hyper-sphere in has dimension

).
Scale Normalization: The preshape is obtained by nor-

malizing the centered configuration, , by its Euclidean norm,
(known as scale or size of the configuration), i.e.,

.
Definition 3: [2] The shape of a configuration matrix (or

complex vector) is all the geometric information about
that is invariant under location, isotropic scaling, and rota-

tion, i.e.,
. The shape space is the set of all possible shapes. For-

mally, the shape space is the orbit space of the noncoin-
cident point set configurations in under the action of
Euclidean similarity transformations. The dimension of shape
space is . It is easy to see that

, i.e., is the quotient space of under
the action of the special orthogonal group of rotations .

Rotation Normalization: Shape is obtained from
a preshape by rotating it in order to align it to a ref-
erence preshape . The optimal rotation angle is given
by , and the shape,

.
In this paper, we deal with -dimensional shapes, and,

hence, the configuration vector is represented as a -dimen-
sional complex vector and the shape space dimension is .

Distance Between Shapes: A concept of distance be-
tween shapes is required to fully define the non-Euclidean
shape metric space. We use the Procrustes distance which is
defined as follows.

Definition 4: [2] The full Procrustes fit of onto is

where

If and are preshapes, it is easy to see that the matching
parameters are [2, result 3.1] , ,

.
Definition 5: [2] The full Procrustes distance between pre-

shapes and is the Euclidean distance between the Procrustes
fit of onto , i.e.,

(2)

Definition 6: [2] The full Procrustes estimate of mean
shape (commonly referred to as full Procrustes mean) of a
set of preshapes is the minimizer of the sum of squares of
full Procrustes distances from each to an unknown unit size
mean configuration , i.e.,

(3)

i.e., is given by the set of complex eigenvectors corre-
sponding to the largest eigenvalue of [2,
result 3.2].

Shape Variability in Tangent to Shape Space: The struc-
ture of shape variability of a dataset of similar shapes can be
studied in the tangent space to the shape space. We shall con-
sider the tangent projections to the preshape sphere after nor-
malizing for rotation (w.r.t. the pole), which form a suitable tan-
gent coordinate system for shape. The tangent space is a lin-
earized local approximation of shape space at a particular point
in shape space which is called the pole of tangent projection.
Thus, Euclidean distance in tangent space is a good approxima-
tion to Procrustes distance, for points in the vicinity of the pole
(see [2, Ch. 4] for more details).

Definition 7: [2] The Procrustes tangent coordinates of a
centered configuration, , taking as the pole, are obtained by
projecting (the shape of aligned to ) into the tangent
space at , i.e.,

(4)

The inverse of the above mapping (tangent space to centered
configuration space) is

(5)
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Fig. 1. SSA and NSSA on the shape manifold which is depicted using a circle (M), instead of a complex C sphere. In (a), we show a sequence of shapes
from a SSA; at all times, the shapes are close to the mean shape, and, hence, the dynamics can be approximated in T (tangent space at �). In (b), we show a
sequence of shapes from an NSSA, the shapes move on the shape manifold, and, hence, we need to define a new tangent space at every time instant.

The shape space is a manifold in , and, hence, its dimension
is . Thus, the tangent space at any point of the shape space is
a -dimensional hyperplane in (or, equivalently, a

-dimensional hyperplane in ) [2].

III. MODELING SHAPE DYNAMICS

The distinction between motion and deformation of a de-
formable shape is not clear. We separate the dynamics of a
deforming configuration into scaled Euclidean motion (trans-
lation, rotation, and uniform scaling) of the mean shape and
nonrigid deformations. This idea is similar to that suggested
in [32] for continuous curves. We define a continuous-state
HMM for the changing configuration of a group of moving
landmarks (point-objects) with the shape and scaled Euclidean
motion parameters being the hidden-state variables and the
noisy configuration vector forming the observation. We refer to
it as a “shape activity.” A “stationary shape activity” is defined
as one for which the shape vector is stationary, i.e., the mean
shape1 remains constant with time and the deformation model is
stationary while in a “nonstationary shape activity,” the mean
shape changes with time.

We discuss below the stationary and nonstationary shape ac-
tivity models and also the particle filtering algorithm to estimate
the shape from the noisy configuration observations. The entire
discussion assumes a fixed number of landmarks, but in certain
applications like the airport scenario with people deplaning, the
number of landmarks varies with time. We deal with this by re-
sampling the curve formed by joining the landmarks to a fixed
number of points. This is discussed in Section V. Also, note that
in this representation of the shape of discrete landmarks, corre-
spondences between landmarks are assumed to be known across
frames. Since the number of landmarks is usually small (
in this case), this is easy to ensure.

A. Stationary Shape Activity: Shape Deformation Model in
Tangent Space

A sequence of point configurations from a stationary shape
activity (SSA), with small system noise variance, would lie
close to each other and to their mean shape [see Fig. 1(a)].

1In the entire paper, “mean shape” is used to refer to the full Procrustes mean
calculated over samples from the given probability distribution.

Hence, a single tangent space at the mean is a good approximate
linear space to learn the shape deformation dynamics for a SSA.
We represent a configuration of landmarks by a complex vector
with the and coordinates of a landmark forming the real and
imaginary parts.2 We discuss the training algorithm, i.e., how
to learn the shape dynamics given a single training sequence
of configurations. Given a sequence of configurations with
negligible observation noise , we learn its Procrustes
mean and evaluate the tangent coordinates of shape (using the
Procrustes mean as the pole), as follows:

(6)

(7)

Since the tangent coordinates are evaluated w.r.t. the mean shape
of the data, assuming that they have zero mean is a valid as-
sumption. We string the complex tangent vector components as
a -dimensional real vector and define a linear Gauss–Markov
model on it to model the shape deformation dynamics. Note that
since we are assuming small variations about a mean shape, a
first-order Gauss–Markov model is sufficient to model the shape
dynamics in this case, i.e.,

(8)

where is i.i.d. Gaussian system noise. The deformation
process is assumed to be stationary and ergodic. Under this as-
sumption the above is a first-order autoregressive (AR) model.
Thus, , and is the au-
toregression matrix with . Thus, all the three parameters

2Note that all transformations between the configuration space to shape space
and tangent to shape space are defined in C (k-dimensional complex space) but
the dynamical model on tangent coordinates is defined in < by vectorizing
the complex vector. This is done only for compactness of representation. The
entire analysis could instead have been done in < .
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can be learned using a single training sequence of tangent co-
ordinates, , as follows [33]:

where

and

(9)

and the joint pdf of is given by

(10)

Note that the asymptotically stationary case where but
, so that , only for large time instants

( ), can also be dealt with in the above framework. In
that case, is defined using a priori knowledge, can be
learned exactly as in (9), and can also be learned as in
(9), but by excluding the summation over the initial (transient)
time instants.

B. Stationary Shape Activity: Partially Observed (Hidden)
Shape Dynamics

In the previous subsection, we defined a dynamic model on
the shape of a configuration of moving points. We assumed that
the observation sequence used for learning the shape dynamics
has zero (negligible) observation noise associated with it (e.g.,
if it were hand picked), but a test sequence of point configu-
rations will usually be obtained automatically using
a measurement algorithm (e.g., a motion-detection algorithm
[34]). It will, thus, have large observation noise associated with
it, i.e., , where is zero mean i.i.d.
Gaussian noise, . If the different land-
marks are far apart, the noise can be assumed to be i.i.d. over the
different landmarks as well (i.e., white ). Now, transla-
tion normalization is a linear process, and, hence,
is also Gaussian3 with observation noise , given by

(11)

[ is the centering matrix defined in (1)], but the mapping from
centered configuration space to the tangent space is nonlinear
(scaling by followed by rotation to align with mean), and,
hence, it is not possible to obtain a closed-form expression for
the pdf of the tangent coordinates given that there is observation
noise in the configuration vector. To deal with this, one solution
is to define a partially observed dynamical model which can then
be tracked using a PF to estimate the distribution of the tangent
coordinates of shape given the noisy observations. The observed
centered configuration, , forms the observation vector and the
shape, scale and rotation form the hidden-state vector. We dis-
cuss the PF in Section III-D and its advantage over an EKF in
Section III-E.

3Note that, here, we have assumed Gaussian observation noise � , but,
in general, a PF can track with any kind of noise; however, for non-Gaussian
� , it is, in general, not possible to define a distribution for � , and one would
have to treat the translation as part of the state vector.

Now, we have the following observation model for a “sta-
tionary shape activity” with the observation vector being
the centered configuration vector and the state vector

where (12)

Defining scale and rotation (motion parameters) as part of the
state vector implies that we need to define prior dynamic models
for them (motion model). The motion model can be defined
based on either the motion of the shape if it is a moving con-
figuration or based on motion of the measurement sensor if the
sensor is moving (e.g., a moving camera or just an unstable
camera undergoing a slight random motion) or a combined ef-
fect of both. A camera on an unstable platform, like an un-
manned air vehicle (UAV), will have small random - motion
(translation), motion in direction (scale change) and rotation
about the axis (rotation angle change). The translation gets
removed when centering . The scale and rotation can be
modeled in this case by using an AR model both for log of scale
and for the unwrapped rotation angle4, i.e.,

(13)

The motion model parameters can be learned using the training
sequence values of and given by (6).
will have to be the unwrapped value of the rotation angle to learn
a Gaussian model. Also, one can either assume wide sense sta-
tionarity, in which case and can be
learned using Yule–Walker equations [33], or assume a random
walk motion model(set and ), depending on the
application.

The shape deformation dynamics [(8) in Section III-A] and
the motion model defined above (13) form the system model
while (12) defines the observation model. Thus, we have defined
a continuous-state HMM (partially observed dynamic model)
for a “stationary shape activity.” The model is nonlinear since
the mapping is nonlinear.

C. Nonstationary Shape Dynamics

For a “nonstationary shape activity” model (first proposed
in [6] and [39]), the mean shape is time varying and, hence,
modeling the shape dynamics requires a time-varying tangent
space [see Fig. 1(b)] defined with the current shape as the pole.
Note that, modulo reflections, there is a one-to-one mapping
between the tangent space at any point on the shape manifold
and the shape manifold, but the distance between two points on
a tangent plane is a good approximation to the distance on the
shape manifold only for points close to the pole of the tangent
plane. Hence, the assumption of i.i.d. system noise to go from
shape at to shape at is valid only for shapes in the vicinity

4Since we are modeling only random motion of a camera, a first-order linear
Markov model for log of scale and rotation is sufficient in this case.
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of the pole. Thus, when the shape variation is large (for NSSA),
there is a need to define a tangent space with the current shape
being the pole.

The state space now consists of the mean shape at time ,
, the “shape velocity coefficients” vector and the motion

parameters (scale , rotation ), i.e., state .
Denote the tangent space at by . We then have the following
dynamics: The tangent coordinate of in [denoted by

] defines a “shape velocity” (time derivative of
shape) vector. We perform a singular value decomposition [33]
of the tangent projection matrix to obtain an
orthogonal basis for the -dimensional tangent hyperplane

. Denote the orthogonal basis matrix for by .5

The -dimensional vector of coefficients along these basis
directions, denoted by , is a coefficients vector for
the “shape velocity ” , i.e., . The shape at
, is obtained by “moving” on the shape manifold

as follows: “Move” an amount (from origin) in and
then project back onto shape space. This is done as follows:

.
We define a linear Gauss–Markov model on shape velocity

which corresponds to a linear Gauss–Markov model for . We
can then summarize the shape dynamics as follows:

orthogonal basis

(14)

If we assume a time invariant AR model on , i.e.,
, then we have a time-varying Gauss–Markov

model on with

and

(15)

Note that a Markov model on the shape velocity corresponds to a
second-order Markov model on shape, (hence, the subscript
“2” on the parameters). Some special cases are or
i.i.d. velocity (first-order Markov model on shape),
which corresponds to i.i.d. shape acceleration and
or stationary shape velocity.

The motion model (model on , ) can be defined exactly as
in (13), but, now, is the rotation angle of current configuration
w.r.t. the current mean shape , and, hence, is a mea-
sure of rotation speed. As before, one can assume the motion
model to be stationary or nonstationary. The shape and motion
model, (14) and (13)), form the system model. The observation
model is as follows:

where (16)

5The basis vectors fu g are arranged as column vectors
of a matrix U(z ), i.e., U = [u ; u . . .u ].
U = orthogonal basis(T ) is evaluated as U = U Q, where
U SU = [I � z z ]C and Q = [I ; 0 ]

1) Training: Given a training sequence of centered (trans-
lation normalized) configurations, , we first evaluate

as follows:6

(17)

Assuming a time invariant AR model on shape velocity , one
can learn its parameters ( , ), as in (9), and then define
the time-varying Markov model for using (15).

D. Particle Filtering Algorithm

The problem of nonlinear filtering is to compute at each
time , the conditional probability distribution, of the state

given the observation sequence ,
. Now, if the system and obser-

vation models are linear Gaussian, the posteriors would also be
Gaussian and can be evaluated in closed form using a Kalman
filter. For nonlinear or non-Gaussian system or observation
model, except in very special cases, the filter is infinite dimen-
sional. Particle filtering is a sequential Monte Carlo technique
for approximate nonlinear filtering which was first introduced
in [24] as Bayesian bootstrap filtering.

Let the initial state distribution be denoted by , the
state transition kernel by and the OL given
the state, by . For the SSA model, the state

, the transition kernel is defined by (8) and
(13) and is defined by (12). For NSSA,
and is given by (14) and (13). The PF [24] is a recursive
algorithm which produces at each time , a cloud of particles

, whose empirical measure closely “follows” .
It also produces an approximation of the prediction distribution,

.
It starts with sampling times from the initial state

distribution to approximate it by
and then implements the Bayes’ re-

cursion at each time step. Now, given that the distribution
of given observations upto time has been ap-
proximated as , the

prediction step samples the new state from the distri-
bution . The empirical distribution of this new
cloud of particles is an
approximation to the conditional probability distribution of

given observations upto time . For each particle, its
weight is proportional to the likelihood of the observation given
that particle, i.e., .

is then an estimate
of the probability distribution of the state at time given
observations uptil time . We sample times with re-
placement from to obtain the empirical estimate

6Note, the last equation c = U z holds because

c =U v = U [I � z z ]z

=U [I � z z ]Cz = U U U z = U z :
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. Note that both and
approximate , but the last step is used because it increases
the sampling efficiency by eliminating samples with very low
weights.

E. Particle Filtering Versus Extended Kalman Filtering

We discuss here the need for a PF and why it is better than an
extended Kalman filter (EKF). An EKF [35] linearizes the non-
linear system at each time instant using Taylor series and runs a
Kalman filter for the linearized system. For the Taylor series ap-
proximation, to be accurate, one requires the initial guess (point
about which you linearize) to be close to the actual value at every
time instant. Typically, linearization is done about the predicted
state. This means that one poorly estimated state will cause more
error in the linearization matrices for the next prediction and this
error will propagate (causing the EKF to lose track). A poorly
estimated state can occur due to an outlier observation, mod-
eling error, large system noise, or large linearization error. A PF,
on the other hand, is stable under mild assumptions [36], [37],
and, hence, error due to one poorly estimated state does not in-
crease over time (and, hence, does not lead to complete loss of
track).

Also, an EKF is unable to track non-Gaussian systems, in
particular, systems with multimodal priors or posteriors, while
a PF can. Multimodal system models are required to model a
sequence of activities or multiple simultaneous activities. In
particle filtering, the number of particles , required to achieve
a certain performance guarantee on estimation error, does not
increase much with increasing dimension of the state space
[25]; it depends only on the total randomness in the system.
For a system which is more random (larger system noise or
observation noise), the PF performance can be improved by
increasing .

IV. ABNORMAL ACTIVITY DETECTION

An abnormal activity (suspicious behavior in our case) is
defined as a change in the system model, which could be slow
or drastic, and whose parameters are unknown. Given a test
sequence of observations and a “shape activity” model, we
use the change-detection strategy discussed in [30] and [6] to
detect a change (observations stop following the given shape
activity model). The cases of negligible observation noise
(fully observed) and nonnegligible observation noise (partially
observed) are discussed separately. We consider only stationary
shape activities in this paper.

A. Fully Observed Case

The system is said to be fully observed when the function
is invertible and the observation noise is zero (negligible

compared to the system noise ). For such a test sequence, the
shape dynamics of Section III-A fully defines the “shape ac-
tivity model.” We can evaluate the tangent coordinates of shape
( ) directly from the observations using (7). We use log-likeli-
hood to test for abnormality. A given test sequence is said to be
generated by a normal activity iff the probability of occurrence
of its tangent coordinates using the pdf defined by (10) is large
(greater than a certain threshold). Thus, the distance to activity

statistic for an length observation sequence ending at time
, is the negative log likelihood of the sequence of tan-

gent coordinates of the shape of the observations (first used by
us in [38]). We can test for abnormality at any time by evalu-
ating for the past frames. is defined as
follows:

(18)

Note, here, that is always rank deficient since lie in a
-dimensional hyperplane of , and, hence, the inverse

defined above actually represents the pseudoinverse.

B. Partially Observed Case

In a partially observed system, the observation noise in the
configuration landmarks’ measurements is nonnegligible and it
is defined by the observation model discussed in Section III-B.
The PF is used to estimate the posterior distribution of shape
at time given observations upto (prediction) and upto

(filtering). We use the change-detection strategy described in
[30], [6].

1) If the abnormality is a drastic one it will cause the PF, with
large enough to accurately track only normal activities,

to lose track. This is because under the normal activity
model [(8) and (13)], the abnormal activity observations
(which do not follow this model) would appear to have
a very large observation noise. Thus, the tracking error
(TE) will increase for an abnormal activity (very quickly
for a drastic one) and this can be used to detect it. The
TE or prediction error is the distance between the current
observation and its prediction based on past observations,
i.e.,

Also, instead of TE, observation likelihood (OL) can also
be used and as discussed in [6, Ch. 2], OL TE for white
Gaussian noise.

2) For the case when the abnormality is a slow change (say
a person walking away slowly in a wrong direction), the
PF does not lose track very quickly (the TE increases
slowly), or if it is a short duration change, it may not
lose track at all. The TE will, thus, take longer to detect
the change or it may not detect it at all. For such a case,
we use the expected (negative) log likelihood (ELL) [31],
[30], . Note that the ELL is a
posterior expectation of the right-hand side of (18) with

. In general, one could use a sequence of past
shapes ( ) in this case as well. The expression for
ELL is approximated by as follows:

where
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Fig. 2. Airport example: Passengers deplaning.

As explained in [6] and [30], ELL uses the tracked part
of the change to detect it and hence is able to detect slow
changes when they become ‘‘detectable” [30].

Thus, to detect any kind of abnormality (slow or drastic) without
knowing its rate of change, we use a combination of ELL and
TE. We declare a sequence of observations to be abnormal when
either ELL or TE exceeds its corresponding threshold.

V. TIME-VARYING NUMBER OF LANDMARKS

All the analysis until now assumes that a configuration of
points is represented as an element of where is a fixed
number of landmarks. Now, we consider what happens when the
number of landmarks (here the point-objects) is time varying,
even though the curve formed by joining their locations remains
similar. For example, a group of people (or also a group of
vehicles) moving on a certain path with fixed initial and final
points but number of people on the path decreases by one when
a person leaves and increases by one when someone enters. In
such a case, we linearly interpolate the curve by joining the land-
mark points in a predefined order and then resample the inter-
polated curve to get a fixed number of landmarks. The inter-
polation depends on the parametrization of the curve, which is
an ill-posed problem when the data is inherently discrete. We
have attempted to use two different schemes which exist in the
literature: “arc-length resampling” (also known as “equidistant
sampling”) and “uniform resampling” which use two different
parameterizations.

In “arc-length resampling,” one looks at the curve formed
by joining the landmarks in a predefined order and parame-
terizes the and coordinates by the length of the curve,
upto that landmark. Let be one-dimensional func-
tions of the curve length and seen this way the discrete land-
marks , , are
nonuniformly sampled points from the function
with , . We
linearly interpolate using these discrete points to estimate the
function and then resample it uniformly at points

, ( is the total length,
) to get a fixed number of uniformly spaced

landmarks. Thus, for every configuration of landmarks, we
get a new configuration of uniformly sampled (and, hence, uni-
formly spaced) landmarks. The linear interpolation and re-
sampling stages can be approximated as a linear transformation

(a matrix) applied to the original points. The co-
variance of observation noise in the resampled points becomes

.
“Uniform resampling,” on the other hand, assumes that

the observed points are uniformly sampled from some process
, i.e., it assumes that the observed points are param-

eterized as , with .
We linearly interpolate to estimate and resample
it uniformly at points to get a fixed number of
landmarks, . Assuming the observed points to be uniformly
sampled makes this scheme very sensitive to the changing
number of landmarks. Whenever the number of landmarks
changes, there is a large change in the resampled points’ con-
figuration. This leads to more false alarms while performing
abnormal activity detection, but, unlike “arc-length resam-
pling,” this scheme gives equal importance to all observed
points irrespective of the distance between consecutive points
and so is more quick to detect abnormalities in shape caused
even by two closely spaced points. We discuss an example in
Section VI-D.

VI. EXPERIMENTAL AND SIMULATION RESULTS

A. Dataset and Experiments

We have used a video sequence of passengers deplaning and
walking toward the airport terminal as an example of a “sta-
tionary shape activity.” The number of people in the scene varies
with time. We have resampled the curve formed by joining
their locations using “arc-length resampling” (described in Sec-
tion V) in all experiments except the temporal abnormality [3]
detection, where we use “uniform resampling.” As we needed
observation noise-free data to learn the system model, we used
hand-marked passenger locations for training. The mean shape

and the tangent space Gauss–Markov model parameters,
, , and , were learned using this data (as discussed in

Section III-A). Also, the motion model parameters (which in
this case model random motion of the camera) were estimated
with this data. Simulated test sequences were produced by
adding observation noise to the hand-marked data. We did this
to study robustness of the method to increasing observation
noise. We also tested with real observations obtained using
a motion-detection algorithm [34]. Both real and simulated
observation sequences were tracked using the PF described in
Section III-D with the number of particles .
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Fig. 3. ELL and TE plots: simulated observation noise, � = 9 (three-pixel noise).

Fig. 4. ELL and TE plots: real observations. Abnormality was introduced at t = 5. The ELL is able to detect slow changes better while the TE works better for
drastic changes. The plots are discussed in Section VI-B.

This video was provided to us by the transport security ad-
ministration (TSA) and did not have any instances of abnormal
behavior. Abnormal behavior was simulated in software by
making one of the persons walk away in an abnormal direction
(in the results shown one person was made to walk away at
an angle of 45 to the axis, see Fig. 2(b); Fig. 2(a) shows
a normal activity frame). Now, the person could be moving
away at any speed which will make the abnormality a slow or
a drastic change. We have simulated this by testing for walk
away speeds of 1, 2, 4, 16, and 32 pixels/time step in both and

directions. The average speed of any person in the normal
sequence is about 1 pixel/time step. Thus, walk-away velocity
of 1 pixel/time step, denoted as , corresponds to a slow
change, which does not go out of track for a long time while

is a drastic change that causes the PF to lose track
immediately.

We show change-detection results and tracks using real ob-
servations of the passengers’ locations in each frame obtained
using a motion-detection algorithm described in [34]. The
ability of our algorithm to deal with temporal abnormalities [3]
is demonstrated as well. We also plot the receiver operating
characteristic (ROC) curves for change detection using the
ELL, the TE and a combination of both.

B. ELL Versus TE: Slow and Drastic Changes

Fig. 3 shows ELL and TE plots for simulated observation
noise and Fig. 4 shows the plots for real observations. Real ob-
servations are obtained using a motion detector [34]. Observa-
tion noise is because of the sensor noise and motion-detection
error. Now, Fig. 9(b) shows a slow abnormality ( ) in-
troduced at which is tracked correctly for a long time [TE
plot is shown in Fig. 4(b)] and hence we need to use ELL to de-
tect it [ELL plot is shown in Fig. 4(a)]. Fig. 9(c) shows a drastic
abnormality ( ] which was also introduced at but
loses track immediately. In this case, the abnormal observations
are ignored and the PF continues to follow the system model.
As a result, the ELL [plot shown in Fig. 4(a)] confuses it for a
normal sequence and fails completely, while TE [plot shown in
Fig. 4(b)] detects it immediately. In Fig. 4(a), we show the ELL
plot for increasing rates of change. With , the abnor-
mality (introduced at ) gets detected at , and with

, it gets detected at . For , the ELL is
unable to detect the abnormality. The TE [Fig. 4(b)] detects this
abnormality immediately (at ) while it misses detecting
the slow abnormality ( ).

This demonstrates the need to use a combination of ELL and
TE to detect both slow and drastic changes (since the aim is to
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Fig. 5. ROCs for change detection using ELL. Blue circles, red stars, magenta triangles, and cyan diamonds plots are for � = 3, 9, 27, and 81, respectively.
Note that the two plots have different y-axis ranges. The ELL completely fails for drastic changes. Detection delays in (b) are very large (60 time units) while for
the slow-change maximum detection delay is only seven time units. Plots are discussed in Section VI-C.

Fig. 6. ROCs for change detection using TE. Blue circles, red stars, magenta triangles, and cyan diamonds plots are for � = 3, 9, 27, and 81, respectively.
Please note that the two plots have different y-axis ranges. TE does not detect slow changes easily. Detection delays in (a) are large (maximum delay is 28 time
units) while drastic changes are detected almost immediately with delay � 4 time units. Plots are discussed in Section VI-C.

be able to detect any kind of abnormality with rate of change
not known). As explained earlier, we declare an abnormality if
either the ELL or the TE exceeds its corresponding thresholds.
The ROC curves for this combined ELL/TE strategy are shown
in Fig. 7. As is discussed below, by combining ELL and TE, we
are able to detect all slow and drastic changes with detection
delay less than seven time units.

C. ROC Curves and Performance Degradation With Increasing
Observation Noise

The intuition discussed above is captured numerically in
the ROC curves [33], [40] for change detection using ELL
[Fig. 5(a) and (b) for slow and drastic changes, respectively],
using TE [Fig. 6(a) and (b)], and using a combination of both
[Fig. 7(a)–(d)]. Please note that every figure in the ROC plot
has a different -axis range. The blue circles, red stars, magenta
triangles, and cyan diamonds are the ROC plots for simulated
observation noise with increasing variances of 3, 9, 27, and

81 square pixels. The ROC for a change-detection problem
[40] plots the average-detection delay against the mean time
between false alarms by varying the detection threshold. The
aim of an ROC plot is to choose an operating point threshold
which minimizes detection delay for a given value of mean
time between false alarms.

For the slow change ( ), the detection delay is much
lesser using ELL than using the TE while the opposite is true
for the drastic change ( ). The detection performance
degradation of ELL for slow change and of TE for drastic
change with increasing observation noise is slow. In Fig. 5(a)
(ELL for slow change), detection delay is less than or equal to
two time units for and seven time units for .
In Fig. 6(b) (TE for drastic change), the detection delay is less
than or equal to three time units for and four time
units for . Since the aim is to be able to detect all
kinds of abnormalities (abnormality parameters are assumed
not known), we propose to use a combination of the ELL and
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Fig. 7. ROCs for change detection using the combined ELL tracking error. In this case, for each observation noise variance (in each subfigure), there are multiple
curves, since one needs to vary thresholds for both ELL and TE to get the ROC. A single curve is for the ELL threshold fixed and TE threshold varying. We have a
set of curves for varying ELL thresholds. The maximum-detection delay is two and three time units for � = 3 [(a) and (b)], 7, and 4 time units for � = 81
[(c) and (d)]. Plots are discussed in Section VI-C.

the TE and declare a change when either exceeds its threshold.
In Fig. 7, we plot the ROC curves for slow and drastic change
detection using a combination of ELL and TE. In this case,
for each observation noise variance, there are multiple curves,
since one needs to vary thresholds for both the ELL and the
TE to get the ROC. A single curve is for the ELL threshold
fixed and TE threshold varying. We have a set of curves for
varying ELL thresholds. We plot the low and high observation
noise cases in two separate plots. As can be seen, the combined
strategy has better performance than either ELL or TE for all
rates of change and for all observation noises (detection delay
less than seven time units in all cases).

D. Temporal Abnormality [3] Detection

We also tested our method for detecting what is referred to
in [3] as a temporal abnormality (one person stopped in his or
her normal path). It gets detected in this framework because
there is a change in shape when the person behind the stopped
person goes ahead of him (curve becomes concave). We used
“uniform resampling” (discussed in Section V) which detected
temporal abnormality easily using ELL (Fig. 8). “Arc-length re-
sampling” does not work too well in this case. This is because it
tends to average out the locations of two closely spaced points,

Fig. 8. ELL plot for temporal abnormality detection. Abnormality was
introduced at t = 5. The plot is discussed in Section VI-D.

thus smoothing out the concavity which needs to be detected.
“Uniform resampling,” on the other hand, assumes the observed
points are uniformly sampled and, hence, gives equal weight
to all the observed points irrespective of the distances between
them. Thus, it is able to detect concavity caused even by two
closely spaced points. Another way to detect temporal abnor-
mality would be to use a NSSA model and look at deviations
from the expected value of shape velocity.
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Fig. 9. Tracks: real observations. Plotting the observed and tracked positions of the landmarks (passengers) on the x–y plane. The plots are discussed in
Section VI-E.

E. Tracks

Fig. 9(a) shows a normal observation frame (circles) and the
corresponding tracked configuration (stars) for real observations
obtained using a motion detector [34] on the image sequences.
The observation noise was modeled to be Gaussian (although
the PF can filter non-Gaussian noise, as well) and its covari-
ance was learned from a training sequence of observations ob-
tained using the motion detector. This shows the ability of our
model to potentially be used for “tracking to obtain observa-
tions.” Fig. 9(b) and (c) shows tracking of a slow ( ) and
drastic ( ) abnormality both introduced at . As can
be seen, the drastic abnormality has lost track at while the
slow one is not totally out of track even at . The NSSA
model tracks abnormality better [6]. Note that, since we use only
a point-object abstraction for moving objects (here persons), we
show observed and tracked point–object locations only without
showing the actual images.

VII. EXTENSIONS

We discuss here two extensions of our work; see [6] and [39]
for more details.

A. Tracking to Obtain Observations [39]

In the entire discussion until now, we used a PF in the fil-
tering mode to estimate the probability distribution of shape
from noisy observations and used this distribution for abnor-
mality detection, but the PF also provides at each time instant
the prediction distribution , which can be used to
predict the expected configuration at the next time instant using
past observations, i.e., .
We can use this information to improve the measurement algo-
rithm used for obtaining the observations (a motion detector [34]
in our case). Its computational complexity can be reduced and
its ability to ignore outliers can be improved by using the pre-
dicted configuration and searching only locally around it for the
current observation.7 As we show in Section VI-E, the observed

7One thing to note here is that, in certain cases (for example, if the poste-
rior of any state variable is multimodal), evaluating the posterior expectation
as a prediction of the current observation is not the correct thing to do. In such
a case, one can track the observations using the CONDENSATION algorithm
[26], which searches for the current observation around each of the possible
h(�x ), i = 1; 2; . . . ; N .

configuration is close to its prediction when there is no abnor-
mality or change, and, hence, the prediction can be used to ob-
tain the observation. An SSA model can track a normal activity
while the NSSA is able to track abnormality as well (shown in
[6]).

If used in this “tracking observations and filtering” frame-
work, a lot of drastic abnormalities can be detected at the mea-
surement stage itself because no observations will be found in
the “vicinity” (region of search defined using observation noise
variance) of the predicted position, but an outlier might get con-
fused with a drastic abnormality since even for an outlier we
will not find any observation in the “vicinity.” The difference is
that outliers would be temporary (one or two time instants and
then the PF comes back in track), while a drastic abnormality
will appear to be an outlier for a sequence of frames. Thus, by
averaging the number of detects over a sequence of past time
instants, we can separate outliers from real abnormalities.

Also, if the configuration is a moving one, then the predicted
motion information can be used to translate, zoom, or rotate the
camera (or any other sensor) to better capture the scene but in
this case, one would have to alter the motion model to include
a control input.

B. Activity Sequence Identification and Tracking [39]

Consider two possible situations for tracking a sequence of
activities. Assume that each activity is represented by an SSA
model so that the sequence of activities is characterized by a
piecewise stationary shape activity model (discussed in [6]). The
mean shape of each SSA component is known but the transition
times are assumed unknown.

1) First, consider the simple case when there are just two
possible activities and their order of occurrence is known,
only the change time is unknown. In this case, one can de-
tect the change using ELL (before the PF loses track) and
then start tracking it with the second activity’s transition
model.

2) Now, consider the general case when a sequence of activ-
ities occur, and we do not know the order in which they
occur. In this case, we can use a discrete mode variable
as part of the state vector to denote each activity type.
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We make the state transition model a mixture distribu-
tion and keep the mode variable as a state. Whenever a
change occurs, it takes the mode variable a few time in-
stants to stabilize to the correct mode. One could replace
the multimodal dynamics with that of the detected mode
once the mode variable has stabilized. Also, in this case,
we can declare an activity to be abnormal (i.e., neither
of the known activity types) if the ELL w.r.t all known
models exceeds a threshold.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have presented a “shape activity model,”
which is a continuous-state HMM for the changing configura-
tion of a set of moving landmarks. The shape and global motion
parameters constitute the hidden-state vector and the observed
landmark locations form the observation vector. The state dy-
namics and the mapping between the state and the observation
is nonlinear, and, hence, the shape is estimated from the noisy
observations using a PF. Abnormal activity detection is formu-
lated as a change-detection problem with change parameters
being unknown and change being slow or drastic. We have used
a change-detection strategy using PFs which has been proposed
and analyzed by us in past work [30], [31], [41]. Experimental
results have been shown for abnormal activity detection in an
airport scenario.

As part of future work, we hope to implement joint tracking
and abnormality detection and tracking a sequence of activities
(discussed in Section VII). Also, in this work, we have exper-
imented only with stationary shape activities. We are currently
studying the nonstationary case (discussed in Section III-C) in
more detail. We hope to characterize (define a pdf for) spe-
cific instances of a normal activity in the nonstationary case and
to define the abnormality-detection problem. The nonstationary
shape activity model provides the flexibility to model and track a
much larger class of group activities. We are also experimenting
with a piecewise stationary shape activity model which can be
used along with ELL for activity sequence segmentation and
tracking.

The issue of a time-varying number of landmarks needs to be
studied more rigorously by first defining the optimality criterion
to make the interpolation problem well posed and then deciding
the best strategy. Also, the current shape space ( modulo
Euclidean similarity transformations) can be replaced by gen-
eral shape spaces, for example, the affine shape space ([2, Ch.
12]) would be useful to make the activity invariant to an affine
camera’s motion. Finally, we plan to apply our framework to
many other applications (discussed in Section I).
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