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Abstract

In this paper we present a linear pattern classification algorithm,
Principal Component Null Space Analysis (PCNSA) which uses
only the first and second order statistics of data for classification
and compare its performance with existing linear algorithms. PC-
NSA first projects data into the PCA space in order to maximize
between class variance and then finds separate directions for each
class in the PCA space along which the class has the least variance
(in an ideal situation the null space of the within class covariance
matrix) which we define as the “approximate null space” (ANS) of
the class. To obtain the ANS, we calculate the covariance matrix
of the class data in PCA space and find its eigenvectors with least
eigenvalues. The method works on the assumption that an ANS of
the within-class covariance matrix exists, which is true for many
classification problems. A query is classified as belonging to the
class for which its distance from the class mean projected along
the ANS of the class is a minimum. Results for PCNSA’s superior
performance over LDA and PCA are shown for object recognition.

1. Introduction

Within the last several years much progress has been made
towards recognizing faces under small variations in light-
ing, facial expressions and pose. Both linear and non-
linear algorithms have been proposed. Among linear pat-
tern classification algorithms the most common one is prin-
cipal component analysis (PCA) [1] which yields projection
directions that maximize the total scatter across all classes
but does not minimize the within class variance of each
class and also sometimes retains directions with unwanted
large variations due to lighting. An algorithm which en-
codes discriminatory information by finding directions that
maximize the ratio of between class scatter to within-class
scatter is linear discriminant analysis (LDA) [2]. [3] com-
bines PCA and LDA to propose a subspace LDA (SLDA)
based classification algorithm for face recognition which

uses PCA first for dimensionality reduction and then LDA.
[4] also uses subspace LDA for view based image retrieval
from a database of real world objects. In [5] performance of
PCA and LDA for classification is compared and superior
performance of PCA for small or non-uniformly sampled
training data is shown. Murase and Nayar [6] propose a
compact representation of object appearance in which each
object class is represented in the PCA space by a spline
manifold. Independent Component Analysis (ICA) is com-
pared with PCA in [7] for face recognition.
We present a new linear algorithm, principal component
null space analysis (PCNSA) which finds separate direc-
tions for each class to minimize the within class scatter of
the class and thus performs better than SLDA for applica-
tions like object recognition in which different classes have
very different covariance matrix structures.

2. Motivation

PCA is optimal as a classification algorithm for applications
where the within class noise can be modeled as white with
the same variance in all classes. This is because PCA can
filter out only out-of-band noise and not reduce noise in sig-
nal subspace. But this is the best that can be done if the
noise in signal space is also white (all directions of signal
space have same amount of noise). When the noise is col-
ored but the noise (within-class variance) covariance ma-
trix for the different classes is similar, LDA which finds
common directions to simultaneously minimize the aver-
age within-class covariance matrix and maximize the be-
tween class covariance matrix (maximize signal to noise ra-
tio) works best. Subspace LDA is a better solution because
in most high dimensional(image ) applications, there are a
lot of directions with just noise and very little signal power
(out of band noise) which can be thrown out by the initial
PCA.
PCA and LDA are suitable for the ‘apples from apples’ type
of classification problems where the noise covariance ma-
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trices of all classes are similar (colored or white). In the
‘apples from oranges’ type applications like object recog-
nition where this assumption is not satisfied, the minimum
variance direction for one class might be a maximum vari-
ance direction for the other and hence all classes would
not have really low variance along the common LDA di-
rection. Within class variance occurs in image classifica-
tion applications because of translations, rotations or affine
deformations of the original template. PCNSA works on
the assumption that the effect of these is not uniform in
all directions (not white noise) and for all classes(different
within class matrices) and finds for each class individually
the directions along which the effect of these deformations
is minimal. This is done by obtaining a 3-4 dimensional
approximate null space (ANS) of the within-class noise co-
variance matrix for each class.

3. Problem Formulation
3.1. Noise Model
In this paper we assume that the data from each class has
the most general Gaussian distribution (unequal means and
unequal, non-white covariance matrices). Query belonging
to classi (Ci),Qi has a normal distribution

Qi ∼ N(M i,Σi) (1)

M i =
(

µi

µ

)
(2)

Σi =
(

Σiw 0
0 Σn,out

)
(3)

whereM i is the class mean,Σiw is noise covariance matrix
in signal subspace (directions along whichµi’s are differ-
ent) [8] andΣn,out is the out of band noise (noise along di-
rections where there is no inter-class mean variation) which
is filtered out by performing PCA. Hence, the query pro-
jected in the PCA space,Xi = Qi.WPCA has a distribu-
tion

Xi ∼ N(µi,Σiw) (4)

3.2. Motivation
PCA is optimal as a classification algorithm for applications
where the within class noise can be modeled as white i.e.
Σiw = σ2

i I and hence there is no minimum noise direction
in signal subspace. When the noise is colored but direc-
tions of minimum and maximum noise variance are same
for all classes i.e. the eigenvalue decomposition (EVD) of
Σiw = UTΛiU , SLDA is the optimal solution. But for ‘ap-
ples from oranges’ type classification applications like ob-
ject recognition this assumption is not satisfied. The mini-
mum variance direction for one class might be a maximum

variance direction for the other, and all classes do not have
really low variance along the common set of LDA direc-
tions. PCNSA addresses such applications by finding for
each class separately, directions along which its noise vari-
ance is smallest. It exploits the fact that in most ‘apples
from oranges’ type applicationsΣiw is ill-conditioned i.e.
the minimum variance is very close to zero and hence these
directions can be said to form an ‘approximate’ null space
(ANS) for the class. We use the distance from class mean
projected along class ANS (di(X) = ||(X−µi)T .N i||2) as
the classification metric.N i is an orthogonal basis for the
ANS of classi.
PCNSA works for the most general class covariance matrix,
Σiw = UTi ΛiUi as long as (1)Σiw ’s are ill-conditioned and
hence an approximate null space exists for all classes and
(2) The distance between class means projected in ANS of
any class is non-zero. If (2) is not satisfied and if two classes
have identical ANS’s thendi(X)’s would be always equal
for any queryX belonging to these two classes and the al-
gorithm would fail for all queries from these two classes.

4. Algorithm
The stepwise PCNSA algorithm is given below.

• Obtain PCA Space: If D is aP 2 length observation
vector, obtain a sample estimate ofMD = E(D), and
Σ = Cov(D) theP 2×P 2 covariance matrix. Perform
EVD to obtain the principal directions(PCA) , i.e. get
WPCA such that

WPCATΣWPCA = ΛmaxL (5)

whereWPCA is theP 2 × L PCA matrix and
ΛL = Diag{λ1, λ2, ...λL} are the top L eigenvalues.

• Project the data of each class in PCA space and esti-
mate sample mean and covariance of the class in PCA
subspace i.e. for each classi, estimate

µi = E[(Di −MD)WPCA] (6)

Σiw = Cov[(Di −MD)WPCA] (7)

whereDi is an observation of the i-th class.

• Obtain Class ANS:Do an EVD onΣiw and keep the
M least variance components i.e. obtainN i such that

N iTΣiwN
i = Λmini (8)

whereN i is theL ×M orthonormal basis of ANS of
class i andΛmini is theM ×M matrix containing the
M least eigenvalues of the EVD,M ≈ 3, 4.



• Obtain Valid Classification Directions in ANS: A
null space direction of classi, ei can be used in the
classification metric only if condition (2) in section 3.2
is satisfied, which is equivalent to

|(µi−µj)T ei| > cos θ0||µi−µj ||, ∀j 6= i, |θ0| < 90o

(9)

• Classification: Project the query Q first in PCA space
to getX = Q.WPCA and choose the most probable
class using the following distance metric

Class = arg min
i
||(X − µi)T .N i||2 (10)

• New Class Detection:If distances from two or more
classes are roughly equal, we conclude that the query
belongs to a ‘new’ (untrained) class. This is because
a query will have a very sharp minimum in its own
class’s ANS and if there is no such sharp minimum,
then one can say that it does not belong to any of the
trained classes. The metric we use for this isdmin >
tdi, ∀i 6= imin with thresholdt set at0.5.

4.1. Discussion
We have derived error probability bounds for PCNSA and
SLDA in [9] for a two class classification scenario with
one ANS per class and one LDA direction.P (ENSA1 ),
P (ELDA1 ) are probability of a query from class 1 being
classified as belonging to class 2 using PCNSA, SLDA re-
spectively. For PCNSA an upper bound has been evalu-
ated while for SLDA an exact expression is obtained, hence
showing the PCNSA bound to be lower than SLDA error
probability suffices to show that PCNSA would have lower
error probability.
The error probability expressions are:

P (ENSA1 ) ≤
∫ α+∆

σ

α−∆
σ

N(z; 0, 1)dz (11)

where

α
4
= |(µ1 − µ2)TN2|

σ
4
=
√
N2TΣ1

wN
2

∆
4
= k

√
λ1 (12)

λ1 is eigenvalue (variance) along ANS of class 1 (NS-1).
λ1 is very small and hence∆ is also very small.

P (ELDA1 ) =
∫ ∞
α̌
σ̌

N(z; 0, 1)dz (13)

where

W ≡WLDA

α̌
4
=
|(µ2 − µ1)TW |

2

σ̌
4
=
√
WTΣ1

wW (14)

To compare the two methods, assume thatα and α̌ are
roughly equal and large. Consider a case where the max-
imum within-class variance direction of class 1 is the null
space (NS) direction of class 2 and vice versa. In such a

case, as has been discussed in [9], bothσ =
√
N2TΣ1

wN
2

andσ̌ =
√
WTΣ1

wW would be large. Soα̌σ̌ would be small
leading to high SLDA probability. This is the worst case
for SLDA. But for PCNSA, the error probability depends
on bothασ and ∆

σ . Even thoughασ would be small, but be-
cause∆ is small andσ is high, ∆

σ will be even smaller and
hence the region of integration will be very small leading
to a low error probability. In fact for largeσ the PCNSA

error probability can be approximated as
√

2
π e
−α2

2σ2 ∆
σ . For

the other extreme case where NS-1 and NS-2 directions co-
incide, bothσ andσ̌ would be very small and both methods
would have very small error probabilities as long asα is
large. But if equation (9) is not satisfied,α = 0 and so PC-
NSA would fail.
New(untrained) classes can be detected most easily using
PCNSA because when a query belongs to a trained class
its distance from class mean along that class’s ANS is a
very sharp minimum while a query belonging to a new class
will have no such sharp minimum. Detecting new classes is
more difficult with LDA because trained classes will also
not have very sharp minimum distances from their own
class means along LDA directions.
One problem with finding ANS directions for PCNSA is
that one needs large amount of training data to correctly find
directions along which there is almost no variation. Train-
ing data size per class should be at least 2-3 times the di-
mension of the PCA space to correctly estimate the lowest
eigenvalues (and corresponding eigenvectors) of the class
covariance matrix. This fact becomes more evident from
figure 2.

The extra overhead for obtaining PCNSA or SLDA sub-
space in PCA space (highly reduced dimension data) is neg-
ligible compared to the initial principal eigenvectors calcu-
lation done onN2 dimensional image data. The more im-
portant query classification time is proportional to the num-
ber of inner products (equal to total number of projection di-
rections) to be taken. For a K class application, withL dim
PCA space and 3 ANS directions per class, LDA requires
a maximum of ‘K − 1’ N2- dim inner products, PCNSA
‘3K ’ N2-dim inner products while PCA requires ‘L’ N2-



dim inner products. ‘L’ will be larger than ‘3K ’ for most
applications. Hence PCNSA time complexity for classifi-
cation is lower than that for PCA but higher than that for
SLDA

5. Results
We compare the performance of PCNSA with that of SLDA
and PCA for object recognition which is an example of the
‘apples from oranges’ type of problems for which PCNSA
outperforms LDA and PCA.
The algorithm was tested on the Columbia Object Image
Library (COIL) which contains 20 different objects and 72
views of each object taken at 5 degree apart orientations.
Due to the entirely different covariance matrix structures
of different objects, PCA and SLDA do not work too well
while PCNSA performs very well.
Sequential testing was done by choosing 10 frames per class
at a time for testing and the rest 62 for training and in this
way a total of 1400 tests were carried out by choosing dif-
ferent test and training samples every time. Sample images
from the 20 classes are shown in figure 1(a).
Table 1(a) shows the error probability (percentage of to-
tal data which got misclassified) when all 20 classes were
trained and data from the same 20 classes was used for
testing and new class detection was not done. In 1(b) we
show results for the same data but with new class detected
enabled. Now total error increases since some queries get
wrongly classified as new. The probability that queries from
trained classes get classified as ‘new’ is termed as ’miss
probability’. ‘Total error probability’ is the total misses plus
misclassifications and ‘error (excluding misses)’ is only
misclassifications. In 1(c) we show results for training 16
classes and testing on data from all 20. ’New & Detected’
is the percentage of new class queries that got detected as
’new’.
Error percentage both with and without new class detection
is lowest for PCNSA and more than two times higher for
SLDA and PCA. Miss probabilities are also lowest for PC-
NSA. In table 1(c), new class detection is best for PCNSA
followed by SLDA and PCA.

6. Conclusions
A new linear algorithm for classification in colored noise,
principal component null space analysis (PCNSA) is pre-
sented and its performance compared with that of PCA and
subspace LDA. Superior performance of PCNSA is shown
for applications with vastly different within-class covari-
ance matrices (‘apples from oranges’ type problems) like
object recognition for which PCA and SLDA fail. Compu-
tational complexity of PCNSA for classification is shown to
be smaller than or equal to that of PCA but a little worse
than SLDA. But PCNSA fails for small training data or

Figure 1: Samples from the different classes used for object
recognition

Figure 2: Error probability variation with reduced training data
sizes per class

when number of classes is very large.
Performance of PCNSA can be improved further by com-
bining it with LDA i.e. finding for each class, directions
which not only minimize its variance but also maximize its
distance from means of other classes.
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