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Abstract— We consider the problem of tracking the boundary
contour of a moving and deforming object from a sequence
of images. If the motion of the “object” or region of interest
is constrained (e.g. rigid or approximately rigid), the contour
motion can be efficiently represented by a small number
of parameters, e.g. the affine group. But if the “object” is
arbitrarily deforming, each contour point can move indepen-
dently. Contour deformation then forms an infinite (in practice,
very large), dimensional space. Direct application of particle
filters for large dimensional problems is impractical, due to
the reduction in effective particle size as dimension increases.
But in most real problems, at any given time, “most of the
contour deformation” occurs in a small number of dimensions
(“effective basis”) while the residual deformation in the rest
of the state space (“residual space”) is “small”. The effective
basis may be fixed or time varying. Based on this assumption,
we modify the particle filtering method to perform sequential
importance sampling only on the effective basis dimensions,
while replacing it with deterministic mode tracking in residual
space (PF-MT). We develop the PF-MT idea for contour
tracking. Techniques for detecting effective basis dimension
change and estimating the new effective basis are presented.
Tracking results on simulated and real sequences are shown
and compared with past work.

I. INTRODUCTION

L

estimate can be computed once the posterigfX;)
p(X:¢|Y14), is computed or approximated, e.g. MAP or
MMSE. The general problem formulation is depicted in
Fig. 1. The state dynamics is assumed to be Markovian.
The observed image is assumed to be a noisy and possibly
nonlinear function of the contour. The image likelihoodegiv

the contour (“observation likelihood”) may be multimodal
or heavy tailed. Since the state space model is nonlinear
and multimodal, we study particle filtering(PF) [1], [2],][3
solutions to the tracking problem.

A continuous closed curve (contour)[4] is the smooth
locus of points traced out by the mapping of the unit
interval into R2. Deforming contoursoccur either due to
changing region of partial occlusions or when the object
of interest is actually deforming its shape over a time or
space sequence of images. An example of the first kind is
shown in Fig. 5(a), where the contour representing the left
part of the car deforms as it moves under the pole. Examples
of the second kind are a beating heart, moving animals or
humans, or the cross-sections of different parts of a 3D
object like the brain, in consecutive MRI slices, e.g. Fig. 6
Most biological images contain deforming objects/regions
Contour tracking has many applications in medical image

We would like to causally segment a moving/deformingyaysis, e.g. sequential segmentation of volume imaggs (F
object(s) from a sequence of images. This is formulz_ited as6§: tracking heart regions [5], [6] or image guided surgery.
problem of tracking the boundary contour of the object, i.e." the ghservation likelihood is often multimoddie to
computing an “optimal” estimate of the state (contour an@laciground objects (clutter) which are partially occluded
contour velocity) at the current time using all observa&uonby the “object of interest” (e.g. see Fig. 2) or due to an

(images) until the current time. We denote the state at timgyiect which partially occludes the “object of interest'de

t by X, and the observation by;. Any “optimal” state
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Fig. 1. Problem Formulation

the two contour modes shown in Fig. 5(a), 5(b)) or due
to low contrast imagery (e.g. see Fig. 6 or [6]). Heavy
tailed or multimodal observation likelihoods occur whee th
observation noise has occasional outliers (e.g. see Fig. 3)
Early work on contour tracking [7], [8], [9], [10] used
the Kalman filter to track a fixed number of marker points
[11] uniformly chosen on the initial contour or a fixed
parametric representation, such as B-spline control p¢#jt
The Kalman filter can only handle additive and unimodal
observation noise and so the observation needs to be an
observed contour extracted from the image by searching in
the vicinity of the predicted contour. The seminal work of
[12] (Condensation) introduced particle filters (PF) [4],[
[3] to tackle multimodal (and possibly nonlinear) obseiwmat
likelihoods that occur due to clutter or occlusions. It akal
directly using the image (or the edge map) as the observation
But it only tracked on the 6-dim space of affine deformations.
Many recent works on contour tracking, e.g. [13], [14], [6]



use the level set representation [15], [16] of a contour angpaces (or LDSS)” property, introduced in [17], [19], apgdli
propose different types of approximate linear observers fato deforming contours. In other words, the deformation
contour deformation and/or for global motion. The level setsignal” is approximately bandlimited (spatially), withne
method [15], [16] provides a way to implicitly represent andapproximate cut-off frequency being much smaller than the
deform a continuous contour on a fixed pixel grid and thumaximum measurable frequency, 0.5Hz. This idea is detailed
automatically handles changes in contour length or topologin [20].
Specifically, [13] computes the current contour estimate as Using the LDSS property, we proposed to modify the PF
an approximate linear combination of the predicted contounethod to perform sequential importance sampling [2] only
and the observation likelihood mode nearest to it (andn the effective basis dimensions, while replacing it with
similarly for global motion). We call this general techngu deterministic mode tracking (MT) in residual space [17],
a Posterior Mode Tracker [17], since it can be understood §89]. In this work, we develop the PF-MT idea for contour
computing the modeX;, of p*(X;) £ p(X,|X,_1,Y;) and tracking using global translation and deformation velpeit
approximating the posteriorr;, by a Dirac delta function subsampled contour locations interpolated using a B-splin
() at X;. Setting,mt—1(X¢—1) =~ 06(X¢—1 —Xt,l), one can basis as the effective basis. Detecting change in effective
easily see that;(X;) ~ p*(X;) i.e. X, is also the mode of basis dimension (when contour length or deformation fre-
the posterior. Thus itmplicitly assumes that the posterior is quency changes) and estimating the new effective basis is
effectively unimodalhas only one significant mode which discussed. In practice, explicitly tracking local defotioa
is nearX,_,). This may not hold when there are multiple(even with deformation velocity tracked at onlf = 6
distinct or overlapping objects. locations around the contour) is extremely beneficial as can
In [18], we combined the ideas of [12] and [13] to handlébe seen from the last rows of Figs. 2 and 3.
more general situations. A PF was used to track affine defor- We stress the difference from Condensation [12] which
mations, while an approximate linear observer was defined tses B-spline control points to approximate the contour
estimate the non-affine deformation for each affine deformatself and hence requires many more sample points for
contour particle. In doing this, thenplicit assumption is that accurate representation. This is because the maximunakpati
the posterior of non-affine deformation is unimadahis is frequency of deformation cannot be larger (is usually much
valid for many practical problems shown in [18] where thesmaller) than that of the two contodirérom which it is
non-affine deformation per frame is small, e.g. a rigid objeccomputed. Also, our effective basis is similar to that of][21
tracked by a perspective camera with frequent viewpointhich proposed an annealing based technique for segmenta-
changes, or approximately rigid objects, e.g. human bodion. Another PF method that also improves effective pkrtic
contour from a distanceBut in other situations, where local size by reducing PF dimension is Rao-Blackwellization [22]
deformation per frame are large, there may be more than orgut it requires that a part of the state have a linear Gaussian
non-affine mode for the same affine deformation value arsfate space model. PFs with time-varying dimension have
the same image, i.e. posterior of non-affine deformation mdpeen used in other contexts cited in [19].
be multimodal.This is demonstrated in Fig. 2 (overlapping The paper is organized as follows. We give the form of
objects separated by non-affine deformation) and in Fig. tBe state space model in Section Il. The PF-MT algorithm
(multiple modes due to outlier image and due to overlappinfpr contour tracking and PF-MT-TV for dealing with time-
objects). Another example is the car sequence of Fig. Barying effective basis is explained in Section Ill. Experi
where one may want to either track the whole car or only themental results on simulated and real sequences are given in
portion to the left of the street light (the two contour modesSection IV. Conclusions, open issues are given in Section V.
are separated by non-affine deformation). [18] tracked the

full car by using a special occlusion handling method (which Il. STATE SPACE MODEL

penalized deviations from a rigid car template). The observation at time (image and edge map &} is
] denoted byY; and the state &t(contour, contour velocity) is
A. Main Idea denoted byX;. A block diagram is shown in Fig. 1. The con-

To address the problems of [18], we need an importandeur att can be represented & = C;(p) = [C¥(p), CY (p)],
sampling step [2] in the PF that also samples from thg € [0,1]. The parametrization is not unique, i.e. all re-
space of non-affine deformations. For deforming objectgarameterizations of the parameteof the formp = f(p),
each contour point can move independently and hence tidere f : [0,1] — [0,1] is continuous and strictly mono-
contour deformation forms an infinite (in practice, verytonic, yield the same contour [4]. The ou_t}ward normal to
large), dimensional space. PF on such a large dimensior@intourC} atp is denoted byN (Cy(p)) or by N (p). Denote
space is impractical due to the reduction in effective pkati the space of contours [23] kY. Then the tangent space o
size [2] as dimension increases. But in most real problemat C; will be [23] the space of all non-tangential velocities
at any given time, “most of the contour deformation” occurs(velocities along the normal t@”; at each point), since
in a smaller number of dimensions (“effective basis”) while
the deformation in the rest of the state space (space of The radius of the osculating circle [4] as a function of anglix is
« . . . » . . treated as the contour “signal”. Deformation (along the connhormal) is
residual deformations ) is “small”. The effective baS|say the difference of the two consecutive contour “signals”. Wiperforming
be fixed or time varyingThis is the “large dimensional state a linear operation, new frequencies cannot be introduced.



tangential velocity only re-parameterizes the contour\W¢ by allocating one velocity sample to one quadrant of the x-y
usew; to denote the vector of normal velocities. Also, we us@lane and smoothing across quadrant boundaries using B-

the notation\ (z; i, ¥) £ ﬁ‘zle—”’%*l“‘. We represent spline interpolation. Thus
the contourC; using the level set method [15]. Contour B.(C A B (OO where
dimension at is denoted by)/;. (Cn)() 8 )(Cg;(;)(li))/z}

6(C(p)) £ arctan| 12 —Fn 6
A. System Model (Cn(p)) = are an[Cﬁ{(p) - ,u%] ©)

The state at any timg consists of the contour, its normal and the vectord™ contains K basis points (called “knots”
deformation velocity, and the global translational vetypci [24]) which are uniformly chosen at angular distance=
Because of the LDSS property (described in Section Br/K apart.Bs(6")(p) contains theX B-spline basis func-
A), “most of the contour deformation” occurs in a smallertions for a closed cubic B-spline [24] with knofs.
number of dimensiongs, which form the “effective basis”. A geometric basis automatically handles changes in con-
Thus, we splitv, as v,(p) = Bs(p)us + Br(p)v,» +  tour topology.But it cannot be used if one would like to
ﬁt(p)Tpt where B, denotes the effective basis directionsgndependently deform two or more points of a contour that
for contour deformation (with translation removed) whilehave the same radial angle, but are far if one moves along
B, denotes the basis spanning the residual space.v;., the contour arclengthSuch applications can be handled by
denote the corresponding coefficients. € R? denotes & parametric effective basisvhich parameterizes velocity
the global x-y translation vector. We use velocity &t based on the arclength [4] of the contour poist,(p)),
subsampled locations interpolated onto the entire contoWr.t. an initial starting point. The basis points split the
using B-spline interpolation functions as the effectivesiba contour arclength intoX™ regions and a velocity sample,
This is explained in Section II-B. We assume thaf v;,  Vns;j:J = 1,2,..K, is assigned to each region. We initially
follow a first order autoregressive (AR) model, whilg, is ~ place the basis points (*knots”) on the contour uniformly at
assumed temporally independent. as = L/K arclength distance apart whefeis the contour

Let the observations arrive evertime instants, i.e. arrive length. As the contour deforms, the knots also move on the
att = nr, n = 1,2,... Denote X,,» by X,,. The system contour. Thus

dynamics ofX,, = [C},, vy s, Un.r, pn] CAN De expressed as: B(Ch)(p) 2 By(s(z", C))(s(Cn(p))) @

Cp=0Ch+ Br(cn—l)vn,rﬁ(én) (1)  wherez;, has components;’, ;,j = 1,2,..K which denote

~ ~7 ~ the x-y location of thg*" knot. The vectos has components
n — Un— B n— n,s N —1Pn an 2 . . . . A

Cn = Cn1 + [Bs(Cn1)vns + N1 1@ sj,J = 1,..K which denote the arclength location of thé

Un,s = Astn—1,s + Vns, Vns ~ N(0,%5) () knot w.rt. a fixed starting point. Given a contou¥, there
Unyr = Unyry, Uy ~N(0,5;) (4) is an invertible mapping between* and s. The forward
Pn = AppPrn-1+ Vnp, Vnp~ N(O, Ep) (5) mapping,s(z”) is: 5, (2", ) = 0 and

. . 1
yvhereBS £ B,(C,_,) is defined by (6) or by (7). Notey, ,  s,(z",C) =5;_4 + Earclen(gj,g_l, ), forj=2,3,.K
is actually not part of the state vector (since no elemerti®f t

next state,X, 1, depends omw, ). The above discretization m;

assumes that arclen(z}, 2 1,C) = > [|C(pm) — C(pm—1)||, where
Assumption 1:The observation iTnterva1 is small enough m=m;_1

(compared taB,vy, s + Byvpr + N, _1pn) S0 thatN,,_; is mj £ arg min [|z7 — C(pm)|| (8)

also approximately normal t6',,. )
PP y Here arclen() is the arclength [4] between the two consec-

B. Geometric and Parametric Effective Basis utive knot locationsz, z;_;. The inverse mapping is:

Contour motion using the level set method is naturally im- z3(s,C) = C(s;). (9)
plemented using a B-spline basis that parameterizes weloci
of a contour point based on its location on the x-y plam?
(geometric effective basisThere are many possible ways 0
tq defin_e a geometric b_asi_s, e.g. see [21]. For examp!e, ongr . =ux' +v*(pj)ﬁ(pj), pj = s;
dimensional parameterizations can be obtained by using the o7
turning angle (angle made by the tangent with the x axis) ar*(p) = Bs(p)vn,s + N,,_;(p)p, is the term insidg ] on
the radial angle (angular coordinate of the contour point.w. the right hand side of (2). After sometime, some knots may
the centroid of the contour’s inside regidpY, 12]) as the come “too close” to each other, while others may go “too
parameter. In our implementations, we use the radial angdlar”. This requires a change in effective basis (SectioBI|l
(angular coordinate of the contour point w.r.t. the centroi The parametric basis is useful when change in topology
of the contour’s inside regiornu¥, u¥]), as the parameter. is not allowed. In implementation, we can detect topology
A velocity samplev, s ;,j7 = 1,2,..K{ is assigned to each change of contour particles and assign a zero likelihood to
angular region. For e.g., a four dimensional basis is obthin particles for which topology change occurs.

The knot locationsg;, move along with the contour, i.e.
rall j=1,2,. K, they follow:

(z)_1,Cn=1) (10)

Ln—1>»



C. Observation Model residual spacey™* (defined below), is unimodal.
U:z,sv piw XriL—lv Y;l)
o p(Y,|Ch + Brvnmﬁ) N(pr;0,%,) (11)

The observation at time:, Y,,, is the image at. and P (nr) 2 p(ogr
the edge map derived from it. We assume thgt depends
only on C,, (and not on the velocity), i.e. the observation
likelihood, p(Y,,|X,) = p(¥,|Cy). Many observation mod-
els have been proposed - these can be classified as “regihen Assumption 2 holds, one can use the following im-
based”, e.g. [25], [18], [6], or “edge based”, e.g. [12] Oportance sampling strategy [17]: samplg,, pi, from their
“motion based”, e.g. [10lsing a good observation model state transition priors; comput€’ using (2); and sample
is a critical issue, but we have not addressed it hdre. i from a Gaussian approximation [26) (mi,, S ), to
this paper, we use a product of the simple region-basgﬁi,z‘ about its modeyn!,. Finally, computeC?, using (1).
observation likelihood of [18] which was motivated by thenow, by conditional variance identity [27]Ey- [Sig] ~
Chan and Vese model [25] and the edge-based obsenvation [v/qriance(p*i)] < %,. Thus if the following as-
advantages of a region based approach (robustness todlurfg(,,i i ) by [17] deterministically setting . = mi .
edges and ability to select the object of interest) with €hoSye call this the Mode Tracking (MT) approximation.
of an edge based approach (ability to deal with intensity assumption 3:The total residual deformation variance,
variations across the sequence and with errors in learh®g ta, . — ¢rqce(S,) is small enough, i.eAw; < Avotind,

foreground or background object intensities). The combines, that with high probability, there is little error in repiag
model is multimodal with a strong mode at the object of yandom sample fromV/ (mé,, 330 ) by mi..

interest (high region and edge likelihood) and a weaker mogg,seq on the above ideas, we develop the PF-MT algorithm

at any “object” (high edge likelihood only). for contour tracking.
1) Importance Sampling on Effective Basis Dimensions:
1. PE-MT-TV (PARTICLE FILTER WITH MODE This involves sampling?, , andp!, from their state transition
TRACKER AND TIME VARYING BASIS) priors, N(Asvi_l,s,Es) and NV'(A,p,_,,%,) respectively

We first explain a generic particle filtering (PF) algorithmand computing, using (2),¥i = 1,2, .N. We implement
[1], [3], [2]. A PF outputs at each time, a cloud of N (2) using the level set method [16], [15].
particles { X? } with weights{w’ } whose empirical measure  The contourC,, is represented as the zero level set of a
™ (X,) 2 Z{\il wi §(X, — X') closely approximates the “level set function”, denotedb,, i.e. C;, is the collection
true posteriorr, (X,) 2 p(X,|Yi..). Hered(X —a) denotes  Of all points {z € R? : ¢,(x) = 0} [15], [16] (z
the Dirac delta function at. It starts with samplingV imes ~ dénotes the x-y coordinates). The direction of the gradient
from m, atn = 0 to approximate it byt (X,). For each ©Of ¢n, Von(z), is along the normalN,,. The level set
n > 0, it approximates the Bayes recursion for going fronfvolution corresponding to contour evolution given by (&),

J— 7

7N, to 7 using importance sampling. This consists of: @ (%) = @)1 (%) +Veatend(7)[| Vo), 1 (2)|| Wherevegiena

. . . —T .
1) Importance Sampling (ISSampleX? ~ ¢(X?), for is the normal extension [15], [16] @ (p)v,, ;+N,,_;(p)p},
i =1,2...N. The importance sampling density, can ONto non-zero level sets. This implementation assumes that

depend onX’ , andY,. Assumption 1 holdslf it does not hold (eitherr large or
2) Weighting: Compute the weightsw!, — Nw;~(j), motl_on fast), _then (_2)_W|II have to be_ m_plemented using
_ R ey Wn multiple iterations within one observation interval. Algb
wherew! = wi XX Xn)pXalXn 1) the narrowband level set method [15], [16] is used, multiple
n n— q

=D , o . . ;
3) ResamplingReplicate particfes in proportion to their iterations may be required to implement (2), depending on
weights & resetw’ [2]. Setn «— n+ 1 & go to step the velocity magnitude and the narrowband width.

1. B; and its extension onto all level sets need to be
computed at each step. This can be done without computing
A. PE-MT (Particle Filter with Mode Tracker) the zero level set (contour) for the geometric baBisr the

) ) ] ] o _parametric basis, at each iteration, (i) the contour needs t
Since the effective particle size decreases with increasirpq computed; it needs to always be traversed in the same

system noise dimension, direct application of PF becomegqer (say clockwise); and starting point correspondence
impractical for large dimensional problemé/e propose t0 naeds to be maintained; (ii) the basis points need to be

replace th_e PF by th(—_} following: importance samp_le only ofhoved along with the contour using (10) and (iii) the B-
the effective basis dimensions, and replace the importanggine interpolation functions need to be recomputed using
sampling step by a deterministic Mode Tracking (MT) Stegye cyrrent arclength distance between the basis points.

in the residual space [17]This idea, which we call PF-MT, 2) Mode Tracking on Residual Spachis involves com-
assumes that the effective basis dimendiois large enough uting the modem’, of p™i: setting v’ . = mi: and

. . nt n,r n? 1

to ensure that Assumptions 2 gnd 3, given bglow, hqld [17 omputing . using (1), Vi = 1,2..N. Computing m’,
Assumption 2:The total residual deformation variance,

Asor = trace(X,) is small enough so that the posterior in  2if the requirement of normal extension velocities [15], [16]rélaxed



Algorithm 1 PF-MT-TV: PF-MT for a Time Varying Effective Basis. Going from )" to 70 (X»), X, = [C}, phs Vhy o V0]
1) Importance Sample (IS) on effective bask,
samplev;, , ~ N(Avl_ ,, %), samplepi, ~ N (A,pl,_1,%,) and computeC?, using (2).
2) Mode Tracking (MT) in residual spaceYi,
(exact) computen;, (mode ofp*** defined in (11)), set}, . = m}, and compute’, using (1). Or
(approximate) computé by starting withCZL & running k iterations of Gradient Descent to minimiZe(C,,)
_IOg[p(Ynlcn)]' .
3) Weight & Resample:Computew!, using (14) and resample [2].
4) Detect Effective Basis Changas explained in Section IlI-B. If needed, go to step 5, else n + 1, go to step 1.
5) Change Effective Basis:

a) ComputeK,., = L/as whereL is the length of the most likely contour particle and is the desired distance
between basis points. .
b) Vi, reallocate the knots uniformly and evaluate the new bBsis, (C,(J)) £ Br,oui

new,t*
c) Vi, projectv;, , into the new basisv}, ; — (B,  ;Bk,....) ' Bk, B, , and setB; — Bk
d) n«<—n+1and go to step 1.

L

new;? new;t"

and C? requires being able to computB,. But B, is a constant (can be removed). Thus, the weights can be
the solution of B,BI = I — B,(BTB,)"'BT. Since B, computed as:
depends onC?_,, it will need to be computed at each s o i
. . . . . . w : : ; (Cn-Crn)
n and for allz, which is very expensive. By using some w, = —"—, @, = w, _1p(Y,|C})e” — 2

approximations, we avoid having to compufg.. Define Zj:l an

E(Cy) = —log[p(Yy|Cy)]. We have shown [17] that if g fime varying Effective Basis: PF-MT-TV

Assumption 2 holdsyn!, can be computed by starting with

vn,» = 0 as initial guess and runnirigiterations (for some)

of gradient descent to minimizE(C’; + Byvp,r) WLL vy .

If we also allow change alon@,, the & gradient descent

iterations to minimizeX as a function ob,, . can be replaced

by k gradient descent iterations to minimizeas a function

of C,, (skips the need to comput8,.). This assumes that:
Assumption 4:We replace (1) and (4) by:

(14)

The effective basis dimension needs to be large enough so
that the mode tracking approximation in residual space can
be justified at each, i.e. we need to satisfy Assumptions
2 and 3 at eacln. Assume that we know the maximum
allowable value of the distance between consecutive basis
points, s to ensure thath,,; < Ao png and it remains
constant with time. Computingys is discussed in [20].
For a givena,, K = L/a, and thusK needs to change

Cp = Cop + 00 s N(C), v ~ N(0, Al (12) when contour length changes significantly. As the contour
deforms, both its total length and arclength distance betwe
consecutive basis points changes. For the parametric, basis

Gradient descent is implemented using the standard level $gere is a need to change effective basis if this distance
method([15], [16]. We start with(") = ¢/, (level set function pecomes significantly smaller (starting to estimate ndise)

corresponding taC}) as initial guess and ruk iterations  or significantly larger (residual deformation too largejrih

of gradient descent to minimiz€, i.e. run k iterations of . This is done as follows. Choose@s7mm < g and

the typeg(" ™) = 6(") + v ptend||Vod || Wherevepiend IS oy e > . We declare a need to change dimension,

normal extension [15], [16] of V¢ E) onto non-zero level whenever the following occurs for “most” (more than 50%)

sets. Afterk iterations, we get i%),. Its zero level seti€’,.  of the contour particles: the arclength distance betwegn an

3) Weighting and ResamplingThis involves computing two consecutive basis points exceeds,, . or goes below
the weights,w;,, Vi = 1,2..N, and resampling [2]w;, IS ... We evaluate the new effective basis as follows:

computed as: ComputeK = [L/a,] for the most likely contour particle.
i ; ; Uniformly allocate theK basis points on the arclength of
. i . . Y, |C! i0,%, : ; :
wi = i Ay P(YalCh) N (v ). (13) all contour particles and compute the new effective basis

n N - n n—1 i o ] . . . . . . .
> j=1 Wn N (miy; miy, Xig) functions.Entire algorithm is summarized in Algorithm 1.

Using Assumption 4, the above only requires knowin%_ Flor g?ometgc ba:{slf,ldeforrTatltzr |sthaB_f;nctlon 9f ra-
|[v, .||*. Since in the mode tracking step we minimize 'al angie and so fotal anhgular ‘lengtrn=sm remains

directly over C?, we never compute’ . We can replace fixed.The only time K changes is when,=1/(2fmin)

nl n,r*

i i ist i
||Un,r|~| ) by any easily qomputa}ble d_IStanC‘ﬁ’ between(/ﬁ% SAssumptions 2 and 3 requir¢o; < Agor pna Which only translates
and C}, (or betweeng!, and ¢:) without much error in to an upper bound on the distance between consecutive baisits ..

practice. In our experiments, we use the set symmetrﬁ'}“r in practice, if the distance between basis points besdo@small, the
di Al incedt. [y ’< > hen 3. i I PF starts estimating noise (demonstrated in Fig. 4) becaeseetbcities
Istance.Also, sinc Yn[ IS] S 2p, WNEN 2. 1S SMall, gt the different basis points are assumed to be uncorrel@teds, distance

one can replac&’y by ¥,. This makes the denominator becoming too small also needs to be detected and corrected.



changes.Change in contour length results in change in freest possible results were obtained. The sequence of Fig.
guency response of deformation as a function of radial angl2(b) was simulated in a manner similar to Fig. 2(a), with
the difference that now knot locations 3 and 5 were made to
IV. SIMULATION AND EXPERIMENTAL RESULTS move inside, i.ep = [0 0 1 0 1 0]7 is added to the RHS of
Since the posterior can be multimodal, plotting the “av{3). Here again Affine PF-MT[18] loses track.
erage” contour is not useful. In all figures, we plot two . . .
contours with the largest posterior (largest weights). The The sequence of Fig. 3 was generated using a parametric
largest weight contour is shown as a solid cyan line, thBasis wWith X" = 6 basis points. Starting with a circle, one
second one as a dotted yellow line. In Figs. 2 and 3, w0t was made to move inside by adding a non-zero drift

_ T i
demonstrate some examples of situations where [18] wiif™ # = [0 0 0 0 0 2|7, to the RHS of (3). Outlier
not work. We simulated the image sequence of Fig. z(agbservatlons similar to the one shown in the second column

as follows. The contour of the white (light grey) objectVere simulated at every even frame starting at 10. This

in the background was simulated by starting with a circld/@s done by increasing the observation noise and by setting

atn = 0 and using the system model described in (2)¥2 = u0 = 85. Beforen = 10, the grey object is well
(3) with K = 6 knots defining a geometric basis. weapproximated by affine deformation of a circle and hence

usedy, = I, A, = 0.5] and ¥, = 0.25I. The residual is in track'using both algorithms. But after; 10, [18] .
deformation was assumed to be zero, i.e. weGset= C,. 9€tS stuck in the wrong mode due to the outlier observation.
The intensity of each pixel inside the contour was taken to beince it does not generate samples for local deformatids, it
i.i.d Gaussian distributed with mear2 — 130 and variance Unable to getto back to the correct mode fast enough (csitlier
o2, = 100. The contour of the grey deforming object (objeci@Ppear every other frame). For this example, increasing GD
of interest) was also simulated with a model similar to thdf€rations will only worsen the loss of track. On the other

one above with the difference that a non-zero drift termf?@nd, Algorithm 1 is able to get back to the correct mode
1 =1000002T was added to the right hand side (RHS) ofduickly, because it samples the space of local deformations

(3). This introduced a non-zero bias in the velocity dynamic
of the 6 knot, resulting in an inward motion with non-zeroy,
average velocity at any. The mean intensity of this object

In Fig. 4, we demonstrate the need to change the effective
asis dimension, /K. In the image sequence shown, the
7 i contour length keeps reducing because of inward motion
wasu0 = 85 and variance was agair,,, = 100. The outer ¢ ynots 3 and 5 (simulated by adding a non-zero drift
(black) background had mean intensity) = 45 and same 1=1001010]T) to (3). We used a parametric basis here

variance. _ , o and a;, = 35. While generating the sequenck, reduces
We tracked the grey object using the particle filter defom 6 to 4 atn = 15 and to 3 atn — 23. While tracking

scribed in Algorithm 1 withV = 45 particles andK fixed. using Algorithm 1, we detected the need to redéicdrom
During tracking, we used all simulation parameters with thg ,5 at;, — 14 from 5 to 4 atn — 17 and to 3 atn = 23.
exception that we st = 0. Instead, to track the non-zero e resyits are shown in the first three columns. In the last
bias in tt}t:e velocity, we increased the system noise variangg|ymn, we show what happens if we do not allow change in
of the 6™ knot to 5, i.e. we used, = diag([1 1 1 115]). i (ysek — 6). When the knots come too close, independent
Residual deformation was tracked using the Mode Trackings|ocity samples at these points often erroneously reault i
step of Algorithm 1 withk = 1 GD iteration. Observation 5 contour with self-intersections (which breaks). All such

likelihood was defined as explai_ned in Section II-C and it hadiours get assigned zero weights. The contour particles
a strong mode at the grey object and a weak mode at g, remain with non-zero weights are those which started
white (light grey) object (due to the edge-based componengxmndmgI erroneously.

Some frames of the tracked sequence are shown in the second

row of Fig. 2(a). In the first row, we show tracking of Fig. 5 shows a moving car going under a street pole which
the same sequence using Affine PF-MT (algorithm of [18])partially occludes it for some frames. One may want to track
This algorithm used the space of affine deformations as tliee full car or track the portion to the left of the pole or the
effective basis. All non-affine deformation was treated asght portion of the car. We demonstrate the first two cases.
“residual deformation” (tracked using a method similar torhe tracking of the full car is not as accurate because we
Mode Tracking of Algorithm 1). Since there are two distinctdo not enforce closeness to a rigid car template as is done
OL modes with roughly the same affine deformation (w.r.t. & [18] and [14]. A geometric basis was used. Fig. 6 shows
circle) and since non-affine deformation per frame is largesequential segmentation of a set of MRI slices of different
the posterior of non-affine deformation is multimodal. Saross-sections of the brain. We show results on segmenting
the contours often get stuck to the wrong mode in the Moderain tumor (grey-white region) in Fig. 6(a). A geometric
Tracking stepk = 4 GD iterations were used for tracking basis was used. The low contrast in the images results in a
the residual (non-affine) deformation. As demonstrated ilarge number of weak observation likelihood modes, very
[20], increasing GD iterations does not improve trackingnear the true one. There is intensity variation across the
We would like to clarify that we did not learn the affine sequence and hence the edge likelihood helps remain in
deformation parameters (and hence it is not a fair compatirack. Preliminary results on sequentially segmenting the
son), but we did change the values a nhumber of times untight ventricle (inside black region) are shown in Fig. 6(b)



[18]'s algorithm:

Algorithm 1:
(a) Simulation sequence 1 (b) Simulation sequence 2

Fig. 2. Multiple local deformation modes & large non-affine deformation pem&gsimulation examples). First row: using Affine PF-

MT[18] with k£ = 4 GD iterations. Second row: using Algorithm 1 with= 1 GD iteration.The solid contour is the particle with largest
posterior weight, the dotted one has the second most largest weight.

Affine PF-MT[18]:

Algorithm 1:
Both in track Both out of track [18] out of track [18] out of tia
(Outlier image)
Fig. 3. Tracking through outlier observations (simulation example). At and affei0, every even frame was an outlier observation

similar to frame 10 shown in the second column above. First row: usifiggAPF-MT[18] withk = 4 GD iterations. Second row: using
Algorithm 1. First three plots usk = 0 GD iterations. Last plot uses = 1 GD iteration.

20

Frame 13, K=6 Frame 14, K=5 Frame 20, K=4 Frame 20, K=6

Fig. 4. The need to chang& . The grey object deforms and keeps reducing in size which requdeing K. The tracking is not great
because only N=15 particles were used. In the last column, we showhapaens if we keep tracking witR® = 6 all the time. Some
contours develop self intersections resulting in zero weight assignedrto(tit shown). The ones with non-zero weight are those which
did not self-intersect because they started expanding instead (shown)

V. CONCLUSION AND OPENISSUES dimension of the effective basis may change over time. Note
that the proposed algorithm can also be used with other types
A new algorithm for tracking deforming contours is pro-of effective basis, e.g. PCA basis [28], [6] and also witheoth
posed, which uses the fact that in most problems, at amgpresentations of the contour (other than level sets).
given time, most of the contour deformation occurs in a small There are many open issues. The appropriate choice of
number of dimensions (effective basis) while the defororati effective basis is not clear. A second issue is the choice of
in the rest of the dimensions (residual space) in small. Theffective basis dimensiory’, and how to chang&” for both
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(a) Tracking the contour for the car to left of the pole
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(b) Tracking the full car

Fig. 5. Tracking a car through partial occlusion by a pole.

(a) Tracking the tumor (grey-white region)

(b) Attempt to track the right ventricle (black region in thenter)

Fig. 6. Tracking the tumor (grey-white region) and the ventricle (black regionéncimter) in a brain MRI sequence. Sequence provided
by Dr. Viren Amin of lowa State University.

types of bases. When changit§ while tracking, one also [12]
needs to deal with errors in estimatig, for e.g. using the

ideas introduced in [19]. A very important implementatior‘[ls]
issue is the choice of observation models and the use of

efficient resampling techniques [3], for large dimensional
problems. Application to medical image sequence segmen-

14]

tation problems, e.g. tracking different regions of an arga[15]
such as the brain or the heart, from an MRI sequence rflrs]
from a more noisier ultrasound sequence, is currently beirng
explored. For most medical image sequences, large amoufitg
of hand-segmented training data can be obtained and hence
learning the system dynamics can greatly improve the rsesulhs]
This is discussed in [20].
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