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Tracking Deforming Objects Using Particle
Filtering for Geometric Active Contours

Yogesh Rathi, Member, IEEE, Namrata Vaswani,
Allen Tannenbaum, and Anthony Yezzi

Abstract—Tracking deforming objects involves estimating the global motion of the
object and its local deformations as a function of time. Tracking algorithms using
Kalman filters or particle filters have been proposed for finite dimensional
representations of shape, but these are dependent on the chosen parametrization
and cannot handle changes in curve topology. Geometric active contours provide a
framework which is parametrization independent and allow for changes in topology.
In the present work, we formulate a particle filtering algorithm in the geometric
active contour framework that can be used for tracking moving and deforming
objects. To the best of our knowledge, this is the first attempt to implement an
approximate particle filtering algorithm for tracking on a (theoretically) infinite
dimensional state space.

Index Terms—Tracking, particle filters, geometric active contours.
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1 INTRODUCTION

THE problem of tracking moving and deforming objects has been a
topic of substantial research in the field of active vision; see [1], [2], [3]
and the references therein. In this paper, we propose a scheme which
combines the advantages of particle filtering and geometric active
contours realized via level set models for tracking deformable
objects.

The possible parameterizations of shape are of course very
important. Various finite dimensional parameterizations of contin-
uous curves have been proposed, perhaps most prominently the B-
spline representation used for a “snake model” as in [2]. Isard and
Blake (see [1] and the references therein) use the B-spline
representation for contours of objects and propose the CONDEN-
SATION algorithm [4] which treats the affine group parameters as
the state vector, learns a prior dynamical model for them and uses a
particle filter [5] to estimate them from the noisy observations. Since
this approach only tracks the affine parameters, it cannot handle
local deformations of the deforming object. The approach in [2], [6],
[7] uses a Kalman filter in conjunction with active contours (using
marker particle representation of curves) to track nonrigid objects.

Another approach for representing contours is via the level set
method [8], [9] where the contour is represented as the zero level set
of a higher dimensional function, usually the signed distance
function [8], [9]. For segmenting an object, an initial guess of the
contour (represented using the level set function) is deformed until
it minimizes an image-based energy functional. Most level set
methods track by segmenting the object at each frame and do not
utilize the temporal coherency of the deforming object. As a result,
such methods fail to track large changes in the spatial location (rigid
motion) of the object. Some previous work on tracking using level
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set methods is given in [10], [11], [12], [13], [14], [15], [16], [17], [18].
Most of these works formulate contour tracking as the problem of
computing the MAP estimate of the contour using a Bayesian
formulation (with an image likelihood energy and a prior term). In
[16], [14], the prior is only a smoothness prior while in [10], it is a
distance from a finite set of possible contour exemplars. The work of
[15] uses a shape energy term only when occlusion is detected. In
[11], [17], the object detection step at each time is separated from the
tracking step. There is, of course, a huge literature devoted to visual
tracking and, thus, the work sampled above is by no means
exhaustive.

The work in this paper addresses the limitations of the
CONDENSATION algorithm [1] and level set based methods and
extends on the ideas presented in [12], [13]. More precisely, in [12],
the authors track by performing a joint minimization over a group
action (euclidean or affine) and the contour at each time step, which
is computationally very intensive. Also, for nonlinear systems such
as the one used in [13], there is no systematic way to choose the
observer matrix to guarantee stability. The present paper addresses
the above limitations. We formalize the incorporation of a prior
system model along with an observation model. A particle filter is
used to estimate the conditional probability distribution of the
group action and the contour at time ¢, conditioned on all
observations up to time ¢. Thus, this work presents a novel method
to perform filtering on an infinite dimensional space of curves for
the purpose of tracking deforming objects. Finally, a conference
version of this paper has appeared in [19].

Our contribution in this work is the following three modifica-
tions to the standard particle filter (PF) [5], [20]: 1) We propose to
use an importance sampling (IS) density [20] which can be
understood as an approximation to the optimal IS density when
the optimal density is multimodal. 2) We replace IS by determi-
nistic assignment when the variance of the IS density is very small
(happens when local deformation is small). Because of this step, we
are actually only sampling on the six-dimensional space of affine
deformations, while approximating local deformation by the mode of its
posterior. This is what makes the proposed PF algorithm practically
implementable in real time. The full space of contour deformations is
theoretically infinite. In practice, its dimension is between 200-300, even
for the small sized images shown in the results. 3) In addition, we also
discuss an efficient way to compute an approximation to the mode
of the posterior of local deformation. As explained in [21], these
modifications are useful to reduce computational complexity of
any large dimensional state tracking problem.

This paper is organized as follows: In Section 2, we provide a
brief overview of the proposed algorithm and in Section 3 we
provide all the relevant details. Experimental results are given in
Section 4, while we conclude the paper with a summary and
limitations in Section 5.

2 THE PROPOSED ALGORITHM

This section describes the overall framework of the proposed
method with details given in the remainder of the paper. Let C;
denote the contour at time ¢ (C} is represented as the zero level set of
a signed distance function, ¢:(x), i.e., C; = {z € R* : ¢:(x) = 0} [8])
and A, denote a six-dimensional affine parameter vector with the
first four parameters representing rotation, skew and scale,
respectively, and the last two parameters representing translation.
We propose to use the affine parameters (A;) and the contour (C;) as
the state, i.e., X; = [A;,C;] and treat the image at time ¢ as the
observation, i.e., ¥; = Image(t). Denote by Y1, all the observations
until time ¢. Particle filtering [5] allows for recursively estimating
p(X;|Y14), the posterior distribution of the state given the prior
p(Xi-1|Y14-1). We will employ the basic theory of particle filtering
here as described in [5]. The general idea behind the proposed
algorithm is as follows:

e Importance Sampling. Predict the affine parameters A,
(parameters governing the rigid motion of the object) and
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perform importance sampling for C; to obtain local
deformation in shape, i.e.,

- Generate samples {AE”, /L;U};\:l using
AD = gy (A%, ul?), ) = AP ().
- Perform L steps of curve evolution on each uy)l
o = for (#Ei)v Y, “i?zaf) Upger ~ N0, Zacp).

e Weighting and Resampling. Calculate the importance
weights and normalize [5], i.e.,

Eonage (1)

p(ix) p(x00x0) Ao
G0 x @ ’
Q(X{ |Xt717Yt> N(f(?E (ut ’Yt)azdef>

ol =

o_ o

N @’
2_7:1 wf(,])
where d* is any distance metric between shapes (see
Section 3.5) and Eij,q4 is any image based energy functional
(see Section 3.3). Resample to generate N particles
(A, cy distributed according to p(A;, Cy|Yiy). The
resampling step improves sampling efficiency by eliminat-
ing particles with very low weights. We now explain in
detail each of the steps above.

3 THE SYSTEM AND OBSERVATION MODEL

The problem of tracking deforming objects can be separated into two
parts [13]: 1) Tracking the global rigid motion of the object and
2) Tracking local deformations in the shape of the object, which can
be defined as any departure from rigidity (nonaffine deformations).
The global motion (affine transformation) can be modeled by the six
parameters of an affine transformation, A;, using a first order
Markov process. We assume that the local deformation from one
frame to the next is small and can be modeled by deformation in the
shape of the contour C;. Thus, the state vector is given by
X = [A; C}]. The system dynamics based on the above assumption
can be written as

A = Ay e, u ~N(0,34),

. |:At.1 Ao } |:At,5
T =

. A
, Ve € Ciy, & € g,y iee., iy = A(Ciq),
Ay AtA x At‘6:| x t—1, T & [, 1€y [t t( tl)

(1)

Cr = faer(pu, Wdes)s  UrgerstimN (0, Xger),

where f, models global rigid motion of the object while fu.; is a

function that models the local shape deformation of the contour.
We further assume that the likelihood probability, i.e., prob-

ability of the observation Y; = Image(t) given state X, is defined by

pYiIX) = p(YilC) oce

where Ejq4 is any image dependent energy functional and ¢%, is a
parameter that determines the shape of the pdf (probability density
function). The normalization constant in the above definition has
been ignored since it only affects the scale and not the shape of the
resulting pdf.

In general, it is not easy to predict the shape of the contour at
time ¢ (unless the shape deformations are learned a priori) given
the previous state of the contour at time ¢ — 1, i.e., it is not easy to

1. One can also perform L steps of stochastic curve evolution as in [22].
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find a good function fy. s that can model the shape deformations
and allows to sample from an infinite (theoretically) dimensional
space of curves. Thus, it is very difficult to draw samples for C;
from the prior distribution. This problem can be solved by doing
importance sampling [23] and is one of the main motivations for
doing curve evolution as explained in the following sections. Thus,
samples for A; can be obtained by sampling from N(f,A;-1,%4)
while samples for C; are obtained using importance sampling, i.e.,
we perform importance sampling only on part of the state space.
This technique of using importance sampling allows for obtaining
samples for C; using the latest observation (image) at time ¢ [24].

The central idea behind importance sampling [23] is as follows:
Suppose p(z) x ¢(z) is a probability density from which it is difficult
to draw samples and ¢(z) is a density (proposal density or
importance density) which is easy to sample from, then, an
approximation to p(-) is given by p(z) ~ > w's(x — z'), where
wh o % is the normalized weight of the ith particle. So, if
the samples, X, () were drawn from an importance density,

q(X¢|X1:4-1, Y14), and weighted by

p(Xii”Yl:t)

w o T Y
‘I(Xz, | X141 Yl:t)

then YN, wgi)é(Xgi) — X;) approximates p(X;|Y1,).

In this work, the state is assumed to be a hidden Markov process,
ie, p(X¢|Xit-1) = p(X¢|Xi-1), and we further assume that the
observations are conditionally independent given the current state,
ie., p(Yi|X14) = p(Y2| X;). Furthermore, if the importance sampling
density is assumed to depend only on the previous state X; ; and
current observation Y;, we get ¢(X¢|X14-1,Y14) = ¢(Xy| Xi-1,Y)).
This gives the following recursion for the weights [23]:

@ _ ., 0 p(me(l))p(XEl)'X&)
B O x @ '
Q(Xt |Xt717Yt>

The importance density ¢(.) and the prior density p(.) can now be
written as?

q(Xt‘Xt*hY;) = P(At|At—1) q(Cf|“t7Y;)7
P(Xi|Xi1) = p(Ai A1) p(Cilie),

where g(A;|Ai—1) =p(A:|Ai—1), since A, is sampled from p(A4;|A;—1)=
N (fpAi—1,%4). Thus, the weights can be calculated from:

p(Yix?) p(cl )
q(Cf@ W),YQ ‘

The probability p(Ci|u:) can be calculated using any suitable
measure of similarity between shapes (modulo a rigid transforma-
tion). One such measure is to take

(2)

wii) = wi‘i—)l

3)

—d2(Cy1y)

p(Cilw) xe i,

where o, is assumed to be very small such that it satisfies the
constraint of (10) in [21] and d? is any metric on the space of closed
curves. In this work, we have used the distance measure given in
Section 3.5.

2. Note that the curve obtained after doing curve evolution is denoted by
C;, while the curve obtained by applying the affine transformation is
denoted by p, ie., iz = A(Ci1).
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3.1 Approximating the Optimal Importance Density

The choice of the importance density is a critical design issue for
implementing a successful particle filter. As described in [25], the
proposal distribution ¢(-) should be such that particles generated by
it, lie in the regions of high observation likelihood. One way of doing
this is to use a proposal density which depends on the current
observation [24]. In [25], the optimal importance density (one that
minimizes the variance of the weights conditioned on X;_; and Y})
has been shown to be p(X;|X;_1,Y;). But, in many cases, it cannot be
computed in closed form. For unimodal posteriors, it can be
approximated by a Gaussian with mean given by its mode [25],
which is also equal to the mode of p(Y;|X;) p(X;|X;—1). In our case,
the distribution p(A;|A;_1) can be multimodal, thus, the formulation
of [25] cannot be directly used. Hence, we propose to use the
following: Sample A, from the prior state transition kernel,
p(A;]Ai-1), and find the mode of p(Y;|X;) p(Ci|u:) to obtain samples
for C;. Notice that, for small deformations, p(Y;|X:) p(Ci|ut) is
indeed unimodal [21]. Using (2) and the likelihood probability
p(Y;|X;) defined before, finding the mode of p(Y;|X;) p(Ci|us) is
equivalent to finding the minimizer of
Eima,gr’ (Ct~, Y;)

Eiot(Ct, 11, Yy) = o2

dQ(Ch Ht)

B}
oF

obs

Notice that, from this energy point of view, it is clear why we
can ignore the partition constants (in the definition of p(Y;|C;) and
p(Ct|ut)) which are needed to normalize the various densities so
that they define proper probability measures. Indeed, all we are
interested in is the minimizer of FE;,;. This observation has also
been made in various other works including [26], [27].

Finding the exact minimizer of E;, for each particle at each ¢ is
computationally expensive and hence we use the following approx-
imation: Assuming a small deformation betweent — 1 and ¢, both the
terms in this summation will be locally convex (in the neighborhood
of the minimizers of both terms) and, so, the minimizer of the sum
will lie between the individual minimizers of each term. Thus, an
approximate solution to find the minimum of E;,; will be to start from
the minimizer of one term and go a certain distance (i.e., a certain
number of iterations of gradient descent) toward the minimizer of
the second. It is easy to see that C' = ;; minimizes the second term
and, hence, starting with ;i as the initial guess for C, and performing
L iterations of gradient descent will move C a given distance toward
the minimizer of Ejjq4, where L is chosen experimentally. We
would like to reiterate here that the optimal choice of L will be one
that finds a curve C' to minimize E;,, but to avoid performing the
complete minimization of Ey,;, we are doing this approximation, and
have found that it works well in practice.

Using the above technique, we are actually only sampling on the six-
dimensional space of affine deformations, while approximating local
deformation by the mode of its posterior. The full space of contour
deformations has dimension around 200-300 even for the size of
images shown in the results. Sampling on such a high-dimensional
space for each particle cannot be done in anything close to real time.
However, the “mode tracker” method described above reduces the
computations significantly.

3.2 Curve Evolution for Computing C;

We now describe how to obtain samples for C; by doing gradient
descent on the energy functional Ejqg. In what follows, this
operation is represented by the function fcg. The non-linear
function fog(u, Y, udey) is evaluated as follows (for k=1,2,...,L):

0
=g,
(4)

Hk = ,uk71 - akquinmge (Uk71 Y, ude:f)v fee (H7 Y, udef) = ILL-

The above equation is basically a PDE which moves an initial guess
of the contour so that Ejngg is minimized. uger ~ N (0, Xqs) is a
noise vector that is added to the “velocity” of the deforming
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(@) (b)

Fig. 1. Likelihood probability distribution (a) with (b) without using importance
density ¢(.) for frame 2 of car sequence (200 particles).

contour at each point € p (see [8], [9], [22] for details on how to
evolve a contour using level set representation). For practical
examples with small deformations, ¥4 is very small and, in fact,
even when one does not add any noise to f¢g, there is no noticeable
change in performance. In numerical experiments, we have not
added any noise to the curve evolution process. Thus, the
importance sampling density for A; is p(A4: A:—1), while that for
Cy is q(Cilu, ) = N(fee(, Yr), Zaey — 0). The curve Cj, thus
obtained incorporates the prediction for global motion and local
shape deformation.

3.2.1 An Alternative Interpretation for L-Iteration

Gradient Descent

We perform only L iterations of gradient descent since we do not
want to evolve the curve until it reaches a minimum of the energy,
Eipage- Evolving to the local minimizer is not desirable since the
minimizer would be independent of all starting contours in its
domain of attraction and would only depend on the observation, Y;.
Thus, the state at time ¢ would loose its dependence on the state at
time ¢t — 1 and this may cause loss of track in cases where the
observation is bad. In effect, choosing L to be too large (taking the
curve very close to the minimizer) can move all the samples too close
to the current observation and, thus, result in reduction of the
variance of the samples leading to “sample degeneracy.” At the
same time, if L is chosen to be too small, the particles will not be
moved to the region of high observation likelihood and this can lead
to “sample impoverishment.” The choice of L depends on how
much one trusts the system model versus the obtained measure-
ments. Note that, L will of course also depend on the step-size of the
gradient descent algorithm as well as the type of PDE used in the
curve evolution equation.

Fig. 1 shows the histogram of the likelihood probability of the
particles with and without using the importance density. As can be
seen, more particles are moved to the region of high likelihood if
the importance distribution ¢(-) is used.

Based on the above discussion, the importance weights in (3)
can be calculated as follows:

Funage (€0 1) 2 (c2)40)

o o PXD)p(c’) T e
w) = w G X w4 @
Q<Ct' | 4 sYt) N(ch (Mt ,Yz),Edef)
@) 7Eimage (Cf(j) ’ K) —d? (CI(1)7 M;I))
o w,”, exp 5 exp ;

2
Oobs BF

(5)
where we have used the fact that C’,@ is the mean and X4 is very
close to zero, implying that A/ (Ct(l), Yg4ef — 0) can be approximated
by a constant for all particles.

3.3 Curve Evolution Using the Chan-Vese Model

Many methods (see, e.g., [28], [10], [29], [30]) have been proposed
which incorporate geometric and/or photometric (color, texture,
intensity) information in order to segment images robustly in
presence of noise and clutter. In our case, in the prediction step
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above, for can be any edge-based or region-based curve evolution
equation (one can use [10] or [16] to track textured objects). In this
work, the Mumford-Shah functional [31] as modeled by Chan and
Vese is used [32] to obtain the curve evolution equation as follows:
One applies the calculus of variations to minimize the following
energy Eipqge:

B = [ (1= e H(@)ds dy+ [ (1= e’ (1~ H(®)) da dy
Q Q (6)
+v /Q |VH(®)|dx dy,

where ¢, ¢; and the Heaviside function H(®) are defined as

[ I(z,y)H(D)dz dy

T T TH@®)dr dy
I - H@)dedy o (1 @20,
“- JA - H(®)dvdy ' (@) = {0 else,

and, finally, I(z,y) is the image and @ is the level set function. The
energy Ej,.5 can be minimized by doing gradient descent via the
following PDE [32], [31]:

‘Z)if = 5.(®) {y div (%) —(I—a)+I- (52)2}, where
5.(s) :m,

where 7 is the evolution time parameter and the contour C'is the
zero level set of @ (see [8], [9] for details). We should specify that we
have chosen the Chan-Vese functional because of ease of imple-
mentation, and because it gave nice results on the image sequences
to which it was applied. However, any geometric curve evolution
procedure for segmentation may be put into our particle filter
framework.

3.4 Dealing with Multiple Objects

In principle, the CONDENSATION filter [1] could be used for
tracking multiple objects. The posterior distribution will be
multimodal with each mode corresponding to one object. How-
ever, in practice it is very likely that a peak corresponding to the
dominant likelihood value will increasingly dominate over all
other peaks when the estimation progresses over time. In other
words, a dominant peak is established if some objects obtain larger
likelihood values more frequently. So, if the posterior is propa-
gated with fixed number of samples, eventually, all samples will
be around the dominant peak. This problem becomes more
pronounced in cases where the objects being tracked do not have
similar photometric or geometric properties. We deal with this
issue as given in [33] by first finding the clusters within the state
density to construct a Voronoi tessalation [34] and then resampling
within each Voronoi cell separately. Other solutions proposed by
[35], [36] could also be used for multiple object tracking.

3.5 Coping with Occlusions

A number of active contour models [30], [29], [37] which use shape
information have been described in the literature. Prior shape
knowledge is necessary when dealing with occlusions. In
particular, in [10], the authors incorporate “shape energy” in the
curve evolution equation to deal with occlusions. Any such energy
term can be used in the proposed model to deal with occlusions. In
numerical experiments, we have dealt with this issue in a slightly
different way by incorporating the shape information in the
weighting step instead of the curve evolution step, ie., we
calculate the likelihood probability for each particle i using the
corresponding image energy Eff,)mg,, (6) and a shape dissimilarity
measure d° as follows:
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where A\, + Xy =1 and @?(®®), ®(?)) is the dissimilarity measure
(modulo a rigid transformation) as given in [37] by
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Q
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H(®)
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where @) and @) are the level set functions of a template shape
and the ith contour shape, respectively. The dissimilarity measure
gives an estimate of how different two given shapes (in particular,
their corresponding level sets) may be. So, higher values of d?
indicates more dissimilarity in shape. We use this strategy for the
following reason: In case of occlusion, Ej;q4 Will be higher for a
contour that encloses the desired region compared to a contour
that excludes the occlusion (see the car example, Fig. 3). Since
particle weights are a function of Ej;,,4., the MAP estimate will be a
particle that is not the desired shape. However, using the
weighting scheme proposed above, particles which are closer to
the template shape are more likely to be chosen than particles with
“occluded shapes” (i.e., shapes which include the occlusion). Of
course, this formulation will only work if the object being tracked
does not undergo large deformations as is the case with other static
shape based techniques [10], [29], [37].

4 EXPERIMENTS

In this section, we describe some experiments performed to test
the proposed tracking algorithm. We certainly do not claim that
the method proposed in this paper is the best one for every image
sequence on which it was tested, but it did give very good results
with a small number of particles on all of the image sequences. We
should add that to the best of our knowledge this is the first time
geometric active contours in a level set framework have been used
in conjunction with the particle filter [5] for tracking such
deforming objects.

Results of applying the proposed method on four image
sequences are given below. The model of Chan and Vese [32], as
described earlier, was used for curve evolution. In particular,
choosing L (the number of iterations of curve evolution) between 3
and 6 gave acceptable results. The level set implementation was
done using narrow band evolution [8]. Learning [1] was performed
on images without the background clutter, i.e., on the outlines of
the object.

1. Van Sequence. In this video, we track a van moving amid
clutter in the background. There is sudden and large motion
of the van (in some cases, the van moves more than 20 pixels
between consecutive frames) due to jitter in the camera
motion. Furthermore, it gets largely occluded (only a small
fraction of the van is visible) many times by a building or a
tree. Tracking such a sequence using active contours [32],
[10] alone is bound to fail since the van may lie outside the
basin of attraction of the starting contour. The standard
CONDENSATION algorithm [1] may also get stuck on the
strong edges of the building or on other objects in the
background, especially when the van gets occluded. As
shown in Fig. 2, the proposed method tracks the van
successfully despite large motion and occlusion. For this test
sequence, no motion model was learned, i.e., the state
transition was given by A, = A,_; + Bu;, where v, is white
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Fig. 4. Couple sequence: Demonstrates multiple object tracking.

Fig. 5. Plane sequence: Tracking with 30 particles. Images have been cropped for better visualization.

Fig. 6. Plane sequence: Tracking with condensation filter using 1,200 particles. Images have been cropped for better visualization.

Gaussian noise and B is a known covariance matrix which is
assumed to be constant through the state evolution process.
Fig. 2 shows tracking results with 50 particles.

Car Sequence. In this sequence, the car is partially occluded
as it passes behind the lamp post. It is unclear if the standard
CONDENSATION algorithm would be able to track the car
through the entire video since the shape of the car (including
the shadow) undergoes a change which is not affine. Notice
that the shadow of the car moves in a nonlinear way from
the side to the front of the car. On the other hand, trying to
track such a sequence using geometric active contours (for
example, (7)) without any “shape energy” gives very poor
results, as shown in Fig. 3. However, using the proposed
method and a weighting strategy as described in Section 3.5,
the car can be successfully tracked (Fig. 3). The template
shape ®(*) was obtained from the first frame of the sequence.
Note that we used (7) for the curve evolution which does not
contain any shape term. A second-order autoregressive
model was used for f,. Results shown in this paper were
obtained with 50 particles.

Couple Sequence. The walking couple sequence demon-
strates multiple object tracking. In general, tracking such a
sequence by the standard CONDENSATION method [1]
can give erroneous results when the two pedestrians come
very close to each other or touch each other since the
measurements made for the person on the right can be
interpreted by the algorithm as coming from the left. Our
method naturally avoids this problem since it uses “region

based” energy Einae (6) and weighting as given in
Section 3.5 to find the observation probabilities. To track
multiple objects, we used the method described in Sec-
tion 3.4. Since the number of frames in the video is very
small (only 22), no dynamical motion model was needed to
be learned. This video demonstrates the fact that the
proposed algorithm can track robustly (see Fig. 4) even
when the learnt model is completely absent. The number of
particles required in this case was 100. Another solution to
tracking this sequence has been proposed in [35].

Plane Sequence. This sequence has a very low contrast and
in general, it is very difficult to locate the boundary of the
plane. The motion of the plane from one frame to the other is
also quite large, hence traditional active contour based
methods fail to track the plane. In this experiment, only
translational motion was assumed for the moving plane. No
motion model was learned and, hence, the state transition
equation was as described in the previous example. Fig. 5
shows a few frames of the tracking results. Even though, no
scale parameter was included in the motion model, the
contour deformation part of the algorithm adjusts for this
change in size of the plane (see the first and last frame).
Other types of affine changes in the shape are also taken care
of within the proposed framework without having to
explicitly model them. Tracking results were obtained with
just 30 particles. Fig. 6 shows the results using the standard
CONDENSATION filter (with 1,200 particles) assuming a
euclidean motion model. As is evident, the filter fails to
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track in many frames, especially when the edges are weak. It
also fails to adjust for changes in scale. Our experiments
show that increasing the number of particles to 2,000 or
more does not change the results significantly. Tracking
with 30 particles gives extremely bad results and the tracker
failed to track in roughly 60 percent of the frames.

5 CONCLUSION AND LIMITATIONS

In this paper, we proposed a particle filtering algorithm for
geometric active contours which can be used for tracking moving
and deforming objects. The proposed method can deal with partial
occlusions and can track robustly even in the absence of a learnt
model. It also requires significantly fewer particles than other
tracking methods based on particle filters. Fast level set implemen-
tations [14] can be used to achieve near real-time speeds.

The above framework has several limitations which we intend to
overcome in our future work. First, we have to include some kind of
shape information when we track objects which undergo major
occlusions. This restricts our ability to track highly deformable
objects in such situations. Second, the algorithm might perform
poorly if the object being tracked is completely occluded for many
frames.
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