Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.

1 Multiple Discrete Random Variables: Topics

Joint PMF, Marginal PMF of 2 and or more than 2 r.v.’s

PMF of a function of 2 r.v.’s

Expected value of functions of 2 r.v’s

Expectation is a linear operator. Expectation of sums of n r.v.’s
Conditioning on an event and on another r.v.

Bayes rule

Independence

2 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

For everything in this handout, you can think in terms of events {X = z} and {Y = y} and
apply what you have learnt in Chapter 1.

The joint PMF of two random variables X and Y is defined as
pX,Y(mvy) = P(X = ZIS‘,Y = y)
where P(X = z,Y = y) is the same as P({X =z} N{Y =y}).

— Let A be the set of all values of x,y that satisfy a certain property, then
— e.g. X = outcome of first die toss, Y is outcome of second die toss, A = sum of outcomes
of the two tosses is even.

Marginal PMF is another term for the PMF of a single r.v. obtained by “marginalizing”
the joint PMF over the other r.v., i.e. the marginal PMF of X, px(z) can be computed as
follows:

Apply Total Probability Theorem to px y(z,y), i.e. sum over {Y =y} for different values y
(these are a set of disjoint events whose union is the sample space):

px(z) = Z px,y(z,y)
y

Similarly the marginal PMF of Y, py (y) can be computed by “marginalizing” over X

py (W) =Y pxy(@.y)



e PMF of a function of r.v.’s: If Z = g(X,Y),
pz(z)= > pxy(n.y)
(z,9):9(zy)=2
— Read the above as pz(z) = P(Z = z) = P(all values of (X,Y") for which ¢(X,Y) = z2)
e Expected value of functions of multiple r.v.’s
It Z = g(X,Y),

E[Z] = Z g(xa y)px,y(w,y)
(z,y)

e See Example 2.9
e More than 2 r.v.s.

— Joint PMF of n r.v.’s: px, x,...x, (%1, %2,...2y)

— We can marginalize over one or more than one r.v.,
€.8 DXy Xop Xn1 (T1, T2, - Tn1) = D5, PX1 Xa,. X (T1, 2, - - Tp)
e.g. thXQ ([Bl, 1’2) = Zx37x47,,,xn pX1,X2,...Xn (.%'1, T2,y . .. mn)

e.8 Px1(T1) = D py var i PX1,X0,. X, (T1,T25 - - - Tn)
See book, Page 96, for special case of 3 r.v.’s

e Expectation is a linear operator. Fxercise: show this
E[ale +asXo+ ... aan] = alE[Xl] + GQE[XQ] —+ ... anE[Xn]

— Application: Binomial(n, p) is the sum of n Bernoulli r.v.’s. with success probability p,
so its expected value is np (See Example 2.10)

— See Example 2.11

3 Conditioning and Bayes rule

e PMF of r.v. X conditioned on an event A with P(A) >0

PU{X =z} N A)
P(A)

pxja(@) & PX = 2}]A) =

— pxja(7) is a legitimate PMF, i.e. Y px|a(x) = 1. Ezercise: Show this
— Example 2.12, 2.13

e PMF of r.v. X conditioned on r.v. Y. Replace A by {Y =y}

(X =2}n{Y =y}) pxy(®y)
PHY =y}) Py (y)

The above holds for all y for which p,(y) > 0. The above is equivalent to

pxpy (ely) 2 PULX = 2} [{Y = y}) = =

pxy(zT,y) = PX|Y($\y)pY(y)

pxy(2,y) = py|x (ylz)px (2)



— pxjy(zly) (with py(y) > 0) is a legitimate PMF, i.e. > pxpy(z|y) = 1.
— Similarly, py|x (y[z) is also a legitimate PMF, i.e. Zy pyix(ylz) = 1. Show this.
— Example 2.14 (I did a modification in class), 2.15

e Bayes rule. How to compute pxy(z|y) using px(x) and py x(y|r),

pX,Y(OE, Y)

Py (y)

py|x (ylz)px (x)
me Py|x (ylz")px (2')

pX\Y(90|y) =

e Conditional Expectation given event A
BIX|A] = prxm
Al = Zg(ﬂc)pxm(x)
P
e Conditional Expectation given r.v. Y =y. Replace A by {Y =y}

EX|Y =y| = Xﬁmwﬂy

Note this is a function of Y = y.

e Total Expectation Theorem

Zpy E[X]Y =y]

Proof on page 105.

e Total Expectation Theorem for disjoint events A1, A, ... A, which form a partition

§:P E[X|A;]

of sample space.

Note A;’s are disjoint and Uj_; A; = )

— Application: Expectation of a geometric r.v., Example 2.16, 2.17

4 Independence
e Independence of a r.v. & an event A. r.v. X is independent of A with P(A) > 0, iff

pxjalz) = px(z), forall x

— This also implies: P({X =2} N A) = px(xz)P(A).



— See Example 2.19
e Independence of 2 r.v.’s. R.v.’s X and Y are independent iff
px|y (zly) = px(z), for all x and for all y for which py(y) > 0
This is equivalent to the following two things(show this)

pxy (2, y) = px(x)py ()
py|x (y|r) = py (y), for all y and for all x for which px(x) >0

e Conditional Independence of r.v.s X and Y given event A with P(A) > (0 **
Px|y,A(T|y) = px|a(x) for all z and for all y for which py4(y) > 0 or that

pX,Y|A(9C, y) = pX|A(x)pY|A(y)
e Expectation of product of independent r.v.s.
— If X and Y are independent, F[XY| = E[X]|E[Y].
EXY] = Y aypxy(z,y)

= > aypx(@)py (y)
y oz
= D ypv(y) Y apx(z)

= FE[X]E[Y]
— If X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)]. (Show).
o If X1, X5, ...X, are independent,
PX1, X, X (L1, X2, - .. Tn) = px, (21)Px,(22) - . Px, (Tn)

e Variance of sum of 2 independent r.v.’s.
Let X, Y are independent, then Var[X + Y] = Var[X]| + Var[Y].
See book page 112 for the proof

e Variance of sum of n independent r.v.’s.
If X1, Xo,... X, are independent,

Var( X1+ Xo + ... X, = Var[Xi]| + Var[Xa] + ... Var[X,,]

— Application: Variance of a Binomial, See Example 2.20
Binomial r.v. is a sum of n independent Bernoulli r.v.’s. So its variance is np(1 — p)

— Application: Mean and Variance of Sample Mean, Example 2.21
Let X1, Xs,... X, be independent and identically distributed, i.e. px,(z) = px,(z) for

all 7. Thus all have the same mean (denote by a) and same variance (denote by v).
Sample mean is defined as S,, = W

Since E[] is a linear operator, E[S,] = Y1 | LE[X;] = 22 = q.

Since the X;’s are independent, Var[S,] = > 1, n—gVar[Xi] =21

n?2 — n

— Application: Estimating Probabilities by Simulation, See Example 2.22



