
Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.

1 Multiple Discrete Random Variables: Topics

• Joint PMF, Marginal PMF of 2 and or more than 2 r.v.’s

• PMF of a function of 2 r.v.’s

• Expected value of functions of 2 r.v’s

• Expectation is a linear operator. Expectation of sums of n r.v.’s

• Conditioning on an event and on another r.v.

• Bayes rule

• Independence

2 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

• For everything in this handout, you can think in terms of events {X = x} and {Y = y} and

apply what you have learnt in Chapter 1.

• The joint PMF of two random variables X and Y is defined as

pX,Y (x, y) , P (X = x, Y = y)

where P (X = x, Y = y) is the same as P ({X = x} ∩ {Y = y}).

– Let A be the set of all values of x, y that satisfy a certain property, then

P ((X, Y ) ∈ A) =
∑

(x,y)∈A pX,Y (x, y)

– e.g. X = outcome of first die toss, Y is outcome of second die toss, A = sum of outcomes

of the two tosses is even.

• Marginal PMF is another term for the PMF of a single r.v. obtained by “marginalizing”

the joint PMF over the other r.v., i.e. the marginal PMF of X, pX(x) can be computed as

follows:

Apply Total Probability Theorem to pX,Y (x, y), i.e. sum over {Y = y} for different values y

(these are a set of disjoint events whose union is the sample space):

pX(x) =
∑

y

pX,Y (x, y)

Similarly the marginal PMF of Y , pY (y) can be computed by “marginalizing” over X

pY (y) =
∑

x

pX,Y (x, y)
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• PMF of a function of r.v.’s: If Z = g(X, Y ),

pZ(z) =
∑

(x,y):g(x,y)=z

pX,Y (x, y)

– Read the above as pZ(z) = P (Z = z) = P (all values of (X, Y ) for which g(X, Y ) = z)

• Expected value of functions of multiple r.v.’s

If Z = g(X, Y ),

E[Z] =
∑

(x,y)

g(x, y)pX,Y (x, y)

• See Example 2.9

• More than 2 r.v.s.

– Joint PMF of n r.v.’s: pX1,X2,...Xn
(x1, x2, . . . xn)

– We can marginalize over one or more than one r.v.,

e.g. pX1,X2,...Xn−1
(x1, x2, . . . xn−1) =

∑
xn

pX1,X2,...Xn
(x1, x2, . . . xn)

e.g. pX1,X2
(x1, x2) =

∑
x3,x4,...xn

pX1,X2,...Xn
(x1, x2, . . . xn)

e.g. pX1
(x1) =

∑
x2,x3,...xn

pX1,X2,...Xn
(x1, x2, . . . xn)

See book, Page 96, for special case of 3 r.v.’s

• Expectation is a linear operator. Exercise: show this

E[a1X1 + a2X2 + . . . anXn] = a1E[X1] + a2E[X2] + . . . anE[Xn]

– Application: Binomial(n, p) is the sum of n Bernoulli r.v.’s. with success probability p,

so its expected value is np (See Example 2.10)

– See Example 2.11

3 Conditioning and Bayes rule

• PMF of r.v. X conditioned on an event A with P (A) > 0

pX|A(x) , P ({X = x}|A) =
P ({X = x} ∩ A)

P (A)

– pX|A(x) is a legitimate PMF, i.e.
∑

x pX|A(x) = 1. Exercise: Show this

– Example 2.12, 2.13

• PMF of r.v. X conditioned on r.v. Y . Replace A by {Y = y}

pX|Y (x|y) , P ({X = x}|{Y = y}) =
P ({X = x} ∩ {Y = y})

P ({Y = y})
=

pX,Y (x, y)

pY (y)

The above holds for all y for which py(y) > 0. The above is equivalent to

pX,Y (x, y) = pX|Y (x|y)pY (y)

pX,Y (x, y) = pY |X(y|x)pX(x)

2



– pX|Y (x|y) (with pY (y) > 0) is a legitimate PMF, i.e.
∑

x pX|Y (x|y) = 1.

– Similarly, pY |X(y|x) is also a legitimate PMF, i.e.
∑

y pY |X(y|x) = 1. Show this.

– Example 2.14 (I did a modification in class), 2.15

• Bayes rule. How to compute pX|Y (x|y) using pX(x) and pY |X(y|x),

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

=
pY |X(y|x)pX(x)

∑
x′ pY |X(y|x′)pX(x′)

• Conditional Expectation given event A

E[X|A] =
∑

x

xpX|A(x)

E[g(X)|A] =
∑

x

g(x)pX|A(x)

• Conditional Expectation given r.v. Y = y. Replace A by {Y = y}

E[X|Y = y] =
∑

x

xpX|Y (x|y)

Note this is a function of Y = y.

• Total Expectation Theorem

E[X] =
∑

y

pY (y)E[X|Y = y]

Proof on page 105.

• Total Expectation Theorem for disjoint events A1, A2, . . . An which form a partition

of sample space.

E[X] =
n∑

i=1

P (Ai)E[X|Ai]

Note Ai’s are disjoint and ∪n
i=1Ai = Ω

– Application: Expectation of a geometric r.v., Example 2.16, 2.17

4 Independence

• Independence of a r.v. & an event A. r.v. X is independent of A with P (A) > 0, iff

pX|A(x) = pX(x), for all x

.

– This also implies: P ({X = x} ∩ A) = pX(x)P (A).
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– See Example 2.19

• Independence of 2 r.v.’s. R.v.’s X and Y are independent iff

pX|Y (x|y) = pX(x), for all x and for all y for which pY (y) > 0

This is equivalent to the following two things(show this)

pX,Y (x, y) = pX(x)pY (y)

pY |X(y|x) = pY (y), for all y and for all x for which pX(x) > 0

• Conditional Independence of r.v.s X and Y given event A with P (A) > 0 **

pX|Y,A(x|y) = pX|A(x) for all x and for all y for which pY |A(y) > 0 or that

pX,Y |A(x, y) = pX|A(x)pY |A(y)

• Expectation of product of independent r.v.s.

– If X and Y are independent, E[XY ] = E[X]E[Y ].

E[XY ] =
∑

y

∑

x

xypX,Y (x, y)

=
∑

y

∑

x

xypX(x)pY (y)

=
∑

y

ypY (y)
∑

x

xpX(x)

= E[X]E[Y ]

– If X and Y are independent, E[g(X)h(Y )] = E[g(X)]E[h(Y )]. (Show).

• If X1, X2, . . . Xn are independent,

pX1,X2,...Xn
(x1, x2, . . . xn) = pX1

(x1)pX2
(x2) . . . pXn

(xn)

• Variance of sum of 2 independent r.v.’s.

Let X, Y are independent, then V ar[X + Y ] = V ar[X] + V ar[Y ].

See book page 112 for the proof

• Variance of sum of n independent r.v.’s.

If X1, X2, . . . Xn are independent,

V ar[X1 + X2 + . . . Xn] = V ar[X1] + V ar[X2] + . . . V ar[Xn]

.

– Application: Variance of a Binomial, See Example 2.20

Binomial r.v. is a sum of n independent Bernoulli r.v.’s. So its variance is np(1 − p)

– Application: Mean and Variance of Sample Mean, Example 2.21

Let X1, X2, . . . Xn be independent and identically distributed, i.e. pXi
(x) = pX1

(x) for

all i. Thus all have the same mean (denote by a) and same variance (denote by v).

Sample mean is defined as Sn = X1+X2+...Xn

n
.

Since E[.] is a linear operator, E[Sn] =
∑n

i=1
1
n
E[Xi] = na

n
= a.

Since the Xi’s are independent, V ar[Sn] =
∑n

i=1
1
n2 V ar[Xi] = nv

n2 = v
n

– Application: Estimating Probabilities by Simulation, See Example 2.22
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