Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel.

## 1 Multiple Discrete Random Variables: Topics

- Joint PMF, Marginal PMF of 2 and or more than 2 r.v.'s
- PMF of a function of 2 r.v.'s
- Expected value of functions of 2 r.v's
- Expectation is a linear operator. Expectation of sums of n r.v.'s
- Conditioning on an event and on another r.v.
- Bayes rule
- Independence


## 2 Joint \& Marginal PMF, PMF of function of r.v.s, Expectation

- For everything in this handout, you can think in terms of events $\{X=x\}$ and $\{Y=y\}$ and apply what you have learnt in Chapter 1.
- The joint PMF of two random variables $X$ and $Y$ is defined as

$$
p_{X, Y}(x, y) \triangleq P(X=x, Y=y)
$$

where $P(X=x, Y=y)$ is the same as $P(\{X=x\} \cap\{Y=y\})$.

- Let $A$ be the set of all values of $x, y$ that satisfy a certain property, then

$$
P((X, Y) \in A)=\sum_{(x, y) \in A} p_{X, Y}(x, y)
$$

- e.g. $X=$ outcome of first die toss, $Y$ is outcome of second die toss, $A=$ sum of outcomes of the two tosses is even.
- Marginal PMF is another term for the PMF of a single r.v. obtained by "marginalizing" the joint PMF over the other r.v., i.e. the marginal PMF of $X, p_{X}(x)$ can be computed as follows:
Apply Total Probability Theorem to $p_{X, Y}(x, y)$, i.e. sum over $\{Y=y\}$ for different values $y$ (these are a set of disjoint events whose union is the sample space):

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)
$$

Similarly the marginal PMF of $Y, p_{Y}(y)$ can be computed by "marginalizing" over $X$

$$
p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
$$

- PMF of a function of r.v.'s: If $Z=g(X, Y)$,

$$
p_{Z}(z)=\sum_{(x, y): g(x, y)=z} p_{X, Y}(x, y)
$$

- Read the above as $p_{Z}(z)=P(Z=z)=P($ all values of $(X, Y)$ for which $g(X, Y)=z)$
- Expected value of functions of multiple r.v.'s

If $Z=g(X, Y)$,

$$
E[Z]=\sum_{(x, y)} g(x, y) p_{X, Y}(x, y)
$$

- See Example 2.9
- More than 2 r.v.s.
- Joint PMF of $n$ r.v.'s: $p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$
- We can marginalize over one or more than one r.v., e.g. $p_{X_{1}, X_{2}, \ldots X_{n-1}}\left(x_{1}, x_{2}, \ldots x_{n-1}\right)=\sum_{x_{n}} p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$
e.g. $p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\sum_{x_{3}, x_{4}, \ldots x_{n}} p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$
e.g. $p_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}, x_{3}, \ldots x_{n}} p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)$

See book, Page 96, for special case of 3 r.v.'s

- Expectation is a linear operator. Exercise: show this

$$
E\left[a_{1} X_{1}+a_{2} X_{2}+\ldots a_{n} X_{n}\right]=a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]+\ldots a_{n} E\left[X_{n}\right]
$$

- Application: $\operatorname{Binomial}(n, p)$ is the sum of $n$ Bernoulli r.v.'s. with success probability $p$, so its expected value is $n p$ (See Example 2.10)
- See Example 2.11


## 3 Conditioning and Bayes rule

- PMF of r.v. $X$ conditioned on an event $A$ with $P(A)>0$

$$
p_{X \mid A}(x) \triangleq P(\{X=x\} \mid A)=\frac{P(\{X=x\} \cap A)}{P(A)}
$$

- $p_{X \mid A}(x)$ is a legitimate PMF, i.e. $\sum_{x} p_{X \mid A}(x)=1$. Exercise: Show this
- Example 2.12, 2.13
- PMF of r.v. $X$ conditioned on r.v. $Y$. Replace $A$ by $\{Y=y\}$

$$
p_{X \mid Y}(x \mid y) \triangleq P(\{X=x\} \mid\{Y=y\})=\frac{P(\{X=x\} \cap\{Y=y\})}{P(\{Y=y\})}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

The above holds for all $y$ for which $p_{y}(y)>0$. The above is equivalent to

$$
\begin{aligned}
& p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y) \\
& p_{X, Y}(x, y)=p_{Y \mid X}(y \mid x) p_{X}(x)
\end{aligned}
$$

- $p_{X \mid Y}(x \mid y)\left(\right.$ with $\left.p_{Y}(y)>0\right)$ is a legitimate PMF, i.e. $\sum_{x} p_{X \mid Y}(x \mid y)=1$.
- Similarly, $p_{Y \mid X}(y \mid x)$ is also a legitimate PMF, i.e. $\sum_{y} p_{Y \mid X}(y \mid x)=1$. Show this.
- Example 2.14 (I did a modification in class), 2.15
- Bayes rule. How to compute $p_{X \mid Y}(x \mid y)$ using $p_{X}(x)$ and $p_{Y \mid X}(y \mid x)$,

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \\
& =\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{\sum_{x^{\prime}} p_{Y \mid X}\left(y \mid x^{\prime}\right) p_{X}\left(x^{\prime}\right)}
\end{aligned}
$$

- Conditional Expectation given event $A$

$$
\begin{aligned}
E[X \mid A] & =\sum_{x} x p_{X \mid A}(x) \\
E[g(X) \mid A] & =\sum_{x} g(x) p_{X \mid A}(x)
\end{aligned}
$$

- Conditional Expectation given r.v. $Y=y$. Replace $A$ by $\{Y=y\}$

$$
E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

Note this is a function of $Y=y$.

- Total Expectation Theorem

$$
E[X]=\sum_{y} p_{Y}(y) E[X \mid Y=y]
$$

Proof on page 105.

- Total Expectation Theorem for disjoint events $A_{1}, A_{2}, \ldots A_{n}$ which form a partition of sample space.

$$
E[X]=\sum_{i=1}^{n} P\left(A_{i}\right) E\left[X \mid A_{i}\right]
$$

Note $A_{i}$ 's are disjoint and $\cup_{i=1}^{n} A_{i}=\Omega$

- Application: Expectation of a geometric r.v., Example 2.16, 2.17


## 4 Independence

- Independence of a r.v. \& an event $A$. r.v. $X$ is independent of $A$ with $P(A)>0$, iff

$$
p_{X \mid A}(x)=p_{X}(x), \text { for all } x
$$

- This also implies: $P(\{X=x\} \cap A)=p_{X}(x) P(A)$.
- See Example 2.19
- Independence of 2 r.v.'s. R.v.'s $X$ and $Y$ are independent iff

$$
p_{X \mid Y}(x \mid y)=p_{X}(x), \text { for all } x \text { and for all } y \text { for which } p_{Y}(y)>0
$$

This is equivalent to the following two things(show this)

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

$$
p_{Y \mid X}(y \mid x)=p_{Y}(y), \text { for all } y \text { and for all } x \text { for which } p_{X}(x)>0
$$

- Conditional Independence of r.v.s $X$ and $Y$ given event $A$ with $P(A)>0{ }^{* *}$ $p_{X \mid Y, A}(x \mid y)=p_{X \mid A}(x)$ for all $x$ and for all $y$ for which $p_{Y \mid A}(y)>0$ or that $p_{X, Y \mid A}(x, y)=p_{X \mid A}(x) p_{Y \mid A}(y)$
- Expectation of product of independent r.v.s.
- If $X$ and $Y$ are independent, $E[X Y]=E[X] E[Y]$.

$$
\begin{aligned}
E[X Y] & =\sum_{y} \sum_{x} x y p_{X, Y}(x, y) \\
& =\sum_{y} \sum_{x} x y p_{X}(x) p_{Y}(y) \\
& =\sum_{y} y p_{Y}(y) \sum_{x} x p_{X}(x) \\
& =E[X] E[Y]
\end{aligned}
$$

- If $X$ and $Y$ are independent, $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$. (Show).
- If $X_{1}, X_{2}, \ldots X_{n}$ are independent,

$$
p_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right) \ldots p_{X_{n}}\left(x_{n}\right)
$$

- Variance of sum of 2 independent r.v.'s.

Let $X, Y$ are independent, then $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
See book page 112 for the proof

- Variance of sum of $\mathbf{n}$ independent r.v.'s.

If $X_{1}, X_{2}, \ldots X_{n}$ are independent,

$$
\operatorname{Var}\left[X_{1}+X_{2}+\ldots X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\ldots \operatorname{Var}\left[X_{n}\right]
$$

- Application: Variance of a Binomial, See Example 2.20

Binomial r.v. is a sum of n independent Bernoulli r.v.'s. So its variance is $n p(1-p)$

- Application: Mean and Variance of Sample Mean, Example 2.21

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent and identically distributed, i.e. $p_{X_{i}}(x)=p_{X_{1}}(x)$ for all $i$. Thus all have the same mean (denote by $a$ ) and same variance (denote by $v$ ).
Sample mean is defined as $S_{n}=\frac{X_{1}+X_{2}+\ldots X_{n}}{n}$.
Since $E[$.$] is a linear operator, E\left[S_{n}\right]=\sum_{i=1}^{n} \frac{1}{n} E\left[X_{i}\right]=\frac{n a}{n}=a$.
Since the $X_{i}$ 's are independent, $\operatorname{Var}\left[S_{n}\right]=\sum_{i=1}^{n} \frac{1}{n^{2}} \operatorname{Var}\left[X_{i}\right]=\frac{n v}{n^{2}}=\frac{v}{n}$

- Application: Estimating Probabilities by Simulation, See Example 2.22

