Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel.

1 Multiple Continuous Random Variables: Topics

- Conditioning on an event
- Joint and Marginal PDF
- Expectation, Independence, Joint CDF, Bayes rule
- Derived distributions
- Function of a Single random variable: $Y=g(X)$ for any function g
- Function of a Single random variable: $Y=g(X)$ for linear function g
- Function of a Single random variable: $Y=g(X)$ for strictly monotonic g
- Function of Two random variables: $Z=g(X, Y)$ for any function g

2 Conditioning on an event

- Read the book Section 3.4

3 Joint and Marginal PDF

- Two r.v.s X and Y are jointly continuous iff there is a function $f_{X, Y}(x, y)$ with $f_{X, Y}(x, y) \geq$ 0 , called the joint PDF, s.t. $P((X, Y) \in B)=\int_{B} f_{X, Y}(x, y) d x d y$ for all subsets B of the 2D plane.
- Specifically, for $B=[a, b] \times[c, d] \triangleq\{(x, y): a \leq x \leq b, c \leq y \leq d\}$,

$$
P(a \leq X \leq b, c \leq Y \leq d)=\int_{y=c}^{d} \int_{x=a}^{b} f_{X, Y}(x, y) d x d y
$$

- Interpreting the joint PDF: For small positive numbers δ_{1}, δ_{2},

$$
P\left(a \leq X \leq a+\delta_{1}, c \leq Y \leq c+\delta_{2}\right)=\int_{y=c}^{c+\delta_{2}} \int_{x=a}^{a+\delta_{1}} f_{X, Y}(x, y) d x d y \approx f_{X, Y}(a, c) \delta_{1} \delta_{2}
$$

Thus $f_{X, Y}(a, c)$ is the probability mass per unit area near (a, c).

- Marginal PDF: The PDF obtained by integrating the joint PDF over the entire range of one r.v. (in general, integrating over a set of r.v.'s)

$$
\begin{aligned}
P(a \leq X \leq b) & =P(a \leq X \leq b,-\infty \leq Y \leq \infty)=\int_{x=a}^{b} \int_{y=-\infty}^{\infty} f_{X, Y}(x, y) d y d x \\
\Longrightarrow f_{X}(x) & =\int_{y=-\infty}^{\infty} f_{X, Y}(x, y) d y
\end{aligned}
$$

- Example 3.12, 3.13

4 Conditional PDF

- Conditional PDF of X given that $Y=y$ is defined as

$$
f_{X \mid Y}(x \mid y) \triangleq \frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

- For any $y, f_{X \mid Y}(x \mid y)$ is a legitimate PDF: integrates to 1 .
- Example 3.15
- Interpretation: For small positive numbers δ_{1}, δ_{2}, consider the probability that X belongs to a small interval $\left[x, x+\delta_{1}\right]$ given that Y belongs to a small interval $\left[y, y+\delta_{2}\right]$

$$
\begin{gathered}
P\left(x \leq X \leq x+\delta_{1} \mid y \leq Y \leq y+\delta_{2}\right)=\frac{P\left(x \leq X \leq x+\delta_{1}, y \leq Y \leq y+\delta_{2}\right)}{P\left(y \leq Y \leq y+\delta_{2}\right)} \\
\approx \frac{f_{X, Y}(x, y) \delta_{1} \delta_{2}}{f_{Y}(y) \delta_{2}} \\
\\
=f_{X \mid Y}(x \mid y) \delta_{1}
\end{gathered}
$$

- Since $f_{X \mid Y}(x \mid y) \delta_{1}$ does not depend on δ_{2}, we can think of the limiting case when $\delta_{2} \rightarrow 0$ and so we get
$P\left(x \leq X \leq x+\delta_{1} \mid Y=y\right)=\lim _{\delta_{2} \rightarrow 0} P\left(x \leq X \leq x+\delta_{1} \mid y \leq Y \leq y+\delta_{2}\right) \approx f_{X \mid Y}(x \mid y) \delta_{1} \quad \delta_{1}$ small
- In general, for any region A, we have that

$$
P(X \in A \mid Y=y)=\lim _{\delta \rightarrow 0} P(X \in A \mid y \leq Y \leq y+\delta)=\int_{x \in A} f_{X \mid Y}(x \mid y) d x
$$

5 Expectation, Independence, Joint \& Conditional CDF, Bayes rule

- Expectation: See page 172 for $E[g(X) \mid Y=y], E[g(X, Y) \mid Y=y]$ and total expectation theorem for $E[g(X)]$ and for $E[g(X, Y)]$.
- Independence: X and Y are independent iff $f_{X \mid Y}=f_{X}$ (or iff $f_{X, Y}=f_{X} f_{Y}$, or iff $\left.f_{Y \mid X}=f_{Y}\right)$
- If X and Y independent, any two events $\{X \in A\}$ and $\{Y \in B\}$ are independent.
- If X and Y independent, $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$ and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$ Exercise: show this.

- Joint CDF:

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{t=-\infty}^{y} \int_{s=-\infty}^{x} f_{X, Y}(s, t) d s d t
$$

- Obtain joint PDF from joint CDF:

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y)
$$

- Conditional CDF:

$$
F_{X \mid Y}(x \mid y)=P(X \leq x \mid Y=y)=\lim _{\delta \rightarrow 0} P(X \leq x \mid y \leq Y \leq y+\delta)=\int_{t=-\infty}^{x} f_{X \mid Y}(t \mid y) d t
$$

- Bayes rule when unobserved phenomenon is continuous. Pg 175 and Example 3.18
- Bayes rule when unobserved phenomenon is discrete. $\operatorname{Pg} 176$ and Example 3.19.

For e.g., say discrete r.v. N is the unobserved phenomenon. Then for δ small,

$$
\begin{aligned}
P(N=i \mid X \in[x, x+\delta]) & =P(N=i \mid X \in[x, x+\delta]) \\
& =\frac{P(n=i) P(X \in[x, x+\delta] \mid N=i)}{P(X \in[x, x+\delta])} \\
& \approx \frac{p_{N}(i) f_{X \mid N=i}(x) \delta}{\sum_{j} p_{N}(j) f_{X \mid N=j}(x) \delta} \\
& =\frac{p_{N}(i) f_{X \mid N=i}(x)}{\sum_{j} p_{N}(j) f_{X \mid N=j}(x)}
\end{aligned}
$$

Notice that the right hand side is independent of δ. Thus we can take $\lim _{\delta \rightarrow 0}$ on both sides and the right side will not change. Thus we get

$$
P(N=i \mid X=x)=\lim _{\delta \rightarrow 0} P(N=i \mid X \in[x, x+\delta])=\frac{p_{N}(i) f_{X \mid N=i}(x)}{\sum_{j} p_{N}(j) f_{X \mid N=j}(x)}
$$

- More than 2 random variables (Pg 178, 179) **

6 Derived distributions: PDF of $g(X)$ and of $g(X, Y)$

- Obtaining PDF of $Y=g(X)$. ALWAYS use the following 2 step procedure:
- Compute CDF first. $F_{Y}(y)=P(g(X) \leq y)=\int_{x \mid g(x) \leq y} f_{X}(x) d x$
- Obtain PDF by differentiating F_{Y}, i.e. $f_{Y}(y)=\frac{\partial F_{Y}}{\partial y}(y)$
- Example 3.20, 3.21, 3.22
- Special Case 1: Linear Case: $Y=a X+b$. Can show that

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

Proof: see Pg 183.

- Example 3.23, 3.24
- Special Case 2: Strictly Monotonic Case.
- Consider $Y=g(X)$ with g being a strictly monotonic function of X.
- Thus g is a one to one function.
- Thus there exists a function h s.t. $y=g(x)$ iff $x=h(y)$ (i.e. h is the inverse function of g, often denotes as $h \triangleq g^{-1}$).
- Then can show that

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h}{d y}(y)\right|
$$

- Proof for strictly monotonically increasing g :
$F_{Y}(y)=P(g(X) \leq Y)=P(X \leq h(Y))=F_{X}(h(y))$.
Differentiate both sides w.r.t y (apply chain rule on the right side) to get:

$$
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)=\frac{d F_{X}(h(y))}{d y}=f_{X}(h(y)) \frac{d h}{d y}(y)
$$

For strictly monotonically decreasing g, using a similar procedure, we get $f_{Y}(y)=$ $-f_{X}(h(y)) \frac{d h}{d y}(y)$

- See Figure 3.22, 3.23 for intuition
- Example 3.21 (page 186)
- Functions of two random variables. Again use the 2 step procedure, first compute CDF of $Z=g(X, Y)$ and then differentiate to get the PDF.
- CDF of Z is computed as: $F_{Z}(z)=P(g(X, Y) \leq z)=\int_{x, y: g(x, y) \leq z} f_{X, Y}(x, y) d y d x$.
- Example 3.26, 3.27
- Example 3.28
- Special case 1: PDF of $Z=e^{s X}$ (moment generating function): Chapter 4, 4.1
- Special case 2: PDF of $Z=X+Y$ when X, Y are independent: convolution of PDFs of X and Y: Chapter 4, 4.2

