1 Topics from Chapter 4

- Sections 4.1, 4.2, 4.5, 4.6
- Moment Generating Functions
- Sums of Independent Random Variables: Convolution
- Covariance and Correlation

2 Moment Generating Functions

- \bullet Grey box on page 219 and on page 210
- Moment Generating Function (MGF), defined for both PDF and for PMF on page 210.
- Example 4.1, 4.2, 4.3, 4.4, 4.5
- Computing the moments, E[X] or $E[X^2], \ldots, E[X^k]$ and the central moments, e.g. $var[X] = E[X^2] (E[X])^2$, from the MGF, page 213.
- Example 4.6
- Inverting the MGF to get back the PMF (usually done by inspection): Example 4.7, 4.8
- Mixture of two distributions: Computing MGF of the Mixture: Example 4.9
- MGF of a sum of independent random variables, Page 217
- Examples 4.10, 4.11

3 Sums of Independent Random Variables: Convolution

- Discrete case, page 221
- Example 4.13, also see one of the HW7 problems.
- Continuous case, page 222
- Example 4.14, a few others done in class and in quizzes

4 Covariance and Correlation

- Covariance define: Grey box on page 238-239.
- Uncorrelated rvs have cov(X,Y) = 0
- Independent rvs are always uncorrelated
- Correlation coefficient define: Grey box on page 238-239.
- Variance of a sum of random variables (when not independent): page 239
- Example 4.26

5 Least Squares Estimation

- Read pages 240-247.
- Least squares estimate of X given Y is given by E[X|Y]. Grey box on Page 243 Read the book for the meaning of least squares estimate.
- Linear least squares: Grey boxes on Page 247.
 - -E[X|Y] is difficult to compute in many cases.
 - But often we are happy with a sub-optimal solution: the best **linear** least squares estimate, i.e. we say that $\hat{X} = aY + b$ and find the value of a and b that minimizes the expected value of squared error between X and \hat{X}
- Grey boxes on page 243 and 247.
- Properties of estimation error (Page 244, 245) will be discussed in Thursday's class.