
A Behavioral Notion of Subtyping

BARBARA H. LISKOV

MIT Laboratory for Computer Science

and

JEANNETTE M. WING

Carnegie Mellon University

The use of hierarchy is an important component of object-oriented design. Hierarchy allows the

use of type families, in which higher level supertypes capture the behavior that all of their subtypes

have in common. For this methodology to be e�ective, it is necessary to have a clear understanding

of how subtypes and supertypes are related. This paper takes the position that the relationship

should ensure that any property proved about supertype objects also holds for its subtype objects.

It presents two ways of de�ning the subtype relation, each of which meets this criterion, and each

of which is easy for programmers to use. The subtype relation is based on the speci�cations of

the sub- and supertypes; the paper presents a way of specifying types that makes it convenient to

de�ne the subtype relation. The paper also discusses the rami�cations of this notion of subtyping

on the design of type families.

Categories and Subject Descriptors: D.1 [Programming Techniques]: Object-Oriented Pro-

gramming; D.2.1 [Software Engineering]: Requirements/Speci�cations|Languages; Method-

ologies; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning

About Programs|Invariants; Pre- and Post-conditions; Speci�cation Techniques; F.3.3 [Logics

and Meanings of Programs]: Studies of Program Constructs|Type Structure

General Terms: Design, Languages, Veri�cation

Additional Key Words and Phrases: Subtyping, formal speci�cations, Larch

1. INTRODUCTION

What does it mean for one type to be a subtype of another? We argue that this is
a semantic question having to do with the behavior of the objects of the two types:
the objects of the subtype ought to behave the same as those of the supertype as
far as anyone or any program using supertype objects can tell.

For example, in strongly typed object-oriented languages such as Simula 67[Dahl,

B. Liskov is supported in part by the Advanced Research Projects Agency of the Department of

Defense, monitored by the O�ce of Naval Research under contract N00014-91-J-4136, and in part

by the National Science Foundation under Grant CCR-8822158. J. Wing is supported in part

by the Advanced Research Projects Agency, monitored by the Wright Laboratory, Aeronautical

Systems Center, Air Force Materiel Command, USAF, under contract number F33615-93-1-1330.

Authors' address: B. Liskov, MIT Laboratory for Computer Science, 545 Technology Square,

Cambridge, MA 02139; J. Wing, School of Computer Science, Carnegie Mellon University, 5000

Forbes Ave., Pittsburgh, PA 15213.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

speci�c permission.
c
 1994 ACM xxxx-xxxx/xx/xxxx-xxxx $xx.xx

2 � B. Liskov and J. Wing

Myrhaug, and Nygaard 1970], C++[Stroustrup 1986], Modula-3[Nelson 1991], and
Trellis/Owl[Scha�ert, Cooper, Bullis, Kilian, and Wilpolt 1986], subtypes are used
to broaden the assignment statement. An assignment

x: T := E

is legal provided the type of expression E is a subtype of the declared type T of
variable x. Once the assignment has occurred, x will be used according to its
\apparent" type T, with the expectation that if the program performs correctly
when the actual type of x's object is T, it will also work correctly if the actual type
of the object denoted by x is a subtype of T.
Clearly subtypes must provide the expected methods with compatible signatures.

This consideration has led to the formulation of the contra/covariance rules[Black,
Hutchinson, Jul, Levy, and Carter 1987; Scha�ert, Cooper, Bullis, Kilian, and
Wilpolt 1986; Cardelli 1988]. However, these rules are not strong enough to ensure
that the program containing the above assignment will work correctly for any sub-
type of T, since all they do is ensure that no type errors will occur. It is well known
that type checking, while very useful, captures only a small part of what it means
for a program to be correct; the same is true for the contra/covariance rules. For
example, stacks and queues might both have a put method to add an element and
a get method to remove one. According to the contravariance rule, either could be
a legal subtype of the other. However, a program written in the expectation that x
is a stack is unlikely to work correctly if x actually denotes a queue, and vice versa.
What is needed is a stronger requirement that constrains the behavior of sub-

types: properties that can be proved using the speci�cation of an object's presumed
type should hold even though the object is actually a member of a subtype of that
type:

Subtype Requirement: Let �(x) be a property provable about objects x
of type T. Then �(y) should be true for objects y of type S where S is
a subtype of T.

A type's speci�cation determines what properties we can prove about objects.
We are interested only in safety properties (\nothing bad happens"). First, prop-

erties of an object's behavior in a particular program must be preserved: to ensure
that a program continues to work as expected, calls of methods made in the pro-
gram that assume the object belongs to a supertype must have the same behavior
when the object actually belongs to a subtype. In addition, however, properties
independent of particular programs must be preserved because these are important
when independent programs share objects. We focus on two kinds of such prop-
erties: invariants, which are properties true of all states, and history properties,
which are properties true of all sequences of states. We formulate invariants as
predicates over single states and history properties, over pairs of states. For exam-
ple, an invariant property of a bag is that its size is always less than its bound;
a history property is that the bag's bound does not change. We do not address
other kinds of safety properties of computations, e.g., the existence of an object in
a state, the number of objects in a state, or the relationship between objects in a
state, since these do not have to do with the meanings of types. We also do not
address liveness properties (\something good eventually happens"), e.g., the size of

A Behavioral Notion of Subtyping � 3

a bag will eventually reach the bound.
This paper's main contribution is to provide two general, yet easy to use, de�ni-

tions of the subtype relation that satisfy the Subtype Requirement; we give informal
justi�cations that our de�nitions do indeed satisfy the requirement. Our de�nitions
extend earlier work, including the most closely related work done by America[1991],
by allowing subtypes to have more methods than their supertypes. They apply even
in a very general environment in which possibly concurrent users share mutable ob-
jects. Our approach is also constructive: One can prove whether a subtype relation
holds by proving a small number of simple lemmas based on the speci�cations of
the two types.
Our paper makes two other contributions. First, it provides a way of specifying

object types that allows a type to have multiple implementations and makes it con-
venient to de�ne the subtyping relation. Our speci�cations are formal, which means
that they have a precise mathematical meaning that serves as a �rm foundation for
reasoning. Our speci�cations can also be used informally as described in [Liskov
and Guttag 1985].
Second, it explores the rami�cations of the subtype relation and shows how in-

teresting type families can be de�ned. For example, arrays are not a subtype of
sequences (because the user of a sequence expects it not to change over time) and
32-bit integers are not a subtype of 64-bit integers (because a user of 64-bit in-
tegers would expect certain method calls to succeed that will fail when applied
to 32-bit integers). However, type families can be de�ned that group such related
types together and thus allow generic routines to be written that work for all family
members.
Our paper is intentionally written in a descriptive and informal style. We give

only an informal proof of a particular subtype relation (stacks and bags), in the
style we expect programmers to be able to follow. And, in two separate subsections
of Section 5, we give informal justi�cations that each of our two de�nitions satis�es
the Subtype Requirement.
The paper is organized as follows. Section 2 discusses in more detail what we

require of our subtype relation and provides the motivation for our approach. Next
we describe our model of computation and then present our speci�cation method.
Section 5 presents our two de�nitions of subtyping and Section 6 discusses the
rami�cations of our approach on designing type hierarchies. We compare the two
de�nitions in Section 7. We describe related work in Section 8 and then close with
a summary of contributions.

2. MOTIVATION

To motivate the basic idea behind our notion of subtyping, let's look at an example.
Consider a bounded bag type that provides a put method that inserts elements into
a bag and a get method that removes an arbitrary element from a bag. Put has
a pre-condition that checks to see that adding an element will not grow the bag
beyond its bound; get has a pre-condition that checks to see that the bag is non-
empty.
Consider also a bounded stack type that has, in addition to push and popmethods,

a swap top method that takes an integer, i, and modi�es the stack by replacing its
top with i. Stack's push and pop methods have pre-conditions similar to bag's put

4 � B. Liskov and J. Wing

and get, and swap top has a pre-condition requiring that the stack is non-empty.
Intuitively, stack is a subtype of bag because both are collections that retain an

element added by put/push until it is removed by get/pop. The get method for bags
does not specify precisely what element is removed; the pop method for stack is
more constrained, but what it does is one of the permitted behaviors for bag's get
method. Let's ignore swap top for the moment.
Suppose we want to show stack is a subtype of bag. We need to relate the values

of stacks to those of bags. This can be done by means of an abstraction function,
like that used for proving the correctness of implementations [Hoare 1972]. A given
stack value maps to a bag value where we abstract from the insertion order on the
elements.
We also need to relate stack's methods to bag's. Clearly there is a correspon-

dence between stack's push method and bag's put and similarly for the pop and
get methods (even though the names of the corresponding methods do not match).
The pre- and post-conditions of corresponding methods will need to relate in some
precise (to be de�ned) way. In showing this relationship we need to appeal to the
abstraction function so that we can reason about stack values in terms of their
corresponding bag values.
Finally, what about swap top? Most other de�nitions of the subtype relation

have ignored such \extra" methods, and it is perfectly adequate do so when pro-
cedures are considered in isolation and there is no aliasing. In such a constrained
situation, a program that uses an object that is apparently a bag but is actually a
stack will never call the extra methods, and therefore their behavior is irrelevant.
However, we cannot ignore extra methods in the presence of aliasing, and also in
a general computational environment that allows sharing of mutable objects by
multiple users.
Consider �rst the case of aliasing. The problem here is that within a procedure

an object is accessible by more than one name, so that modi�cations using one
of the names are visible when the object is accessed using the other name. For
example, suppose � is a subtype of � and that variables

x: �
y: �

both denote the same object (which must, of course, belong to � or one of its
subtypes). When the object is accessed through x, only � methods can be called.
However, when it is used through y, � methods can be called and the e�ects of these
methods are visible later when the object is accessed via x. To reason about the
use of variable x using the speci�cation of its type � , we need to impose additional
constraints on the subtype relation.
Now consider the case of an environment of shared mutable objects, such as

is provided by object-oriented databases (e.g., Thor [Liskov 1992] and Gemstone
[Maier and Stein 1990]). (In fact, it was our interest in Thor that motivated us to
study the meaning of the subtype relation in the �rst place.) In such systems, there
is a universe containing shared, mutable objects and a way of naming those objects.
In general, lifetimes of objects may be longer than the programs that create and
access them (i.e., objects might be persistent) and users (or programs) may access
objects concurrently and/or aperiodically for varying lengths of time. Of course

A Behavioral Notion of Subtyping � 5

there is a need for some form of concurrency control in such an environment. We
assume such a mechanism is in place, and consider a computation to be made up
out of atomic units (i.e., transactions) that exclude one another. The transactions
of di�erent computations can be interleaved and thus one computation is able to
observe the modi�cations made by another.

If there were subtyping in such an environment the following situation might
occur. A user installs a directory object that maps string names to bags. Later,
a second user enters a stack into the directory under some string name; such a
binding is analogous to assigning a subtype object to a variable of the supertype.
After this, both users occasionally access the stack object. The second user knows
it is a stack and accesses it using stack methods. The question is: What does the
�rst user need to know in order for his or her programs to make sense?

We think it ought to be su�cient for a user to only know about the \apparent"
type of the object; the subtype ought to preserve any properties that can be proved
about the supertype. In particular, the �rst user ought to be able to reason about
his or her use of the stack object using invariant and history properties of bag. To
handle invariants, both of our de�nitions of subtype assume a type speci�cation
includes an explicit invariant clause that states the type invariants that must be
preserved by any of it subtypes. Our two de�nitions di�er in the way they handle
history properties:

|Our �rst de�nition deals with the history properties directly. We add to a type's
speci�cation a constraint clause that captures exactly those history properties
of a type that must be preserved by any of its subtypes, and we prove that each
of the type's methods preserves the constraint. Showing that � is a subtype of �
requires showing that �'s constraint implies � 's (under the abstraction function).

|Our second de�nition deals with history properties indirectly. For each extra
method, we require that an explanation be given of how its behavior could be
e�ected by just those methods already de�ned for the supertype. The explanation
guarantees that the extra method does not introduce any behavior that was not
already present, and therefore it does not interfere with any history property.

For example, using the �rst approach we would state constraints for both bags
and stacks. In this particular example, the two constraints are identical; both
state that the bound of the bag (or stack) does not change. The extra method
swap top is permitted because it does not change the stack's bound. Showing that
the constraint for stack implies that of bag is trivial. Using the second approach,
we would provide an explanation for swap top in terms of existing methods:

s.swap top(i) = s.pop(); s.push(i)

and we would prove that the explanation program really does simulate swap top's

behavior.

In Section 5 we present and discuss these two alternative de�nitions. First,
however, we de�ne our model of computation, and then discuss speci�cations, since
these de�ne the objects, values, and methods that will be related by the subtype
relation.

6 � B. Liskov and J. Wing

3. MODEL OF COMPUTATION

We assume a set of all potentially existing objects, Obj, partitioned into disjoint
typed sets. Each object has a unique identity. A type de�nes a set of values for an
object and a set of methods that provide the only means to manipulate that object.
E�ectively Obj is a set of unique identi�ers for all objects that can contain values.
Objects can be created and manipulated in the course of program execution. A

state de�nes a value for each existing object. It is a pair of mappings, an environ-

ment and a store. An environment maps program variables to objects; a store maps
objects to values.

State = Env � Store

Env = Var ! Obj

Store = Obj ! Val

Given a variable, x, and a state, �, with an environment, �:e, and store, �:s, we use
the notation x� to denote the value of x in state �; i.e., x� = �:s(�:e(x)). When we
refer to the domain of a state, dom(�), we mean more precisely the domain of the
store in that state.
We model a type as a triple, hO; V;M i, where O � Obj is a set of objects,

V � Val is a set of values, andM is a set of methods. Each method for an object is
a constructor, an observer, or a mutator. Constructors of an object of type � return
new objects of type � ; observers return results of other types; mutators modify the
values of objects of type � . An object is immutable if its value cannot change and
otherwise it is mutable; a type is immutable if its objects are and otherwise it is
mutable. Clearly a type can be mutable only if some of its methods are mutators.
We allow mixed methods where a constructor or an observer can also be a mutator.
We also allow methods to signal exceptions; we assume termination exceptions,
i.e., each method call either terminates normally or in one of a number of named
exception conditions. To be consistent with object-oriented language notation, we
write x.m(a) to denote the call of method m on object x with the sequence of
arguments a.
Objects come into existence and get their initial values through creators. Unlike

other kinds of methods, creators do not belong to particular objects, but rather
are independent operations. They are the class methods; the other methods are the
instance methods. (We are ignoring other kinds of class methods in this paper.)
A computation, i.e., program execution, is a sequence of alternating states and

transitions starting in some initial state, �0:

�0 Tr1 �1 ::: �n�1 Trn �n

Each transition, Tri, of a computation sequence is a partial function on states.
A history is the subsequence of states of a computation; in this paper, we use �
and to range over states in any computation, c, where � precedes in c. The
value of an object can change only through the invocation of a mutator; in addition
the environment can change through assignment and the domain of the store can
change through the invocation of a creator or constructor. 1

1This model is based on CLU semantics[Liskov, Atkinson, Bloom, Moss, Scha�ert, Schei
er, and

Snyder 1981].

A Behavioral Notion of Subtyping � 7

We assume the execution of each transition is atomic.
Objects are never destroyed:

8 1 � i � n : dom(�i�1) � dom(�i).

4. SPECIFICATIONS

4.1 Type Speci�cations

A type speci�cation includes the following information:

|The type's name;

|A description of the type's value space;

|For each of the type's methods:

|Its name;

|Its signature (including signaled exceptions);

|Its behavior in terms of pre-conditions and post-conditions.

Note that the creators are missing. Creators are speci�ed separately to make it easy
for a type to have multiple implementations, to allow new creators to be added later,
to allow subtypes to have di�erent creators from their supertypes, and to make it
more convenient to de�ne subtypes. We show how to specify creators in Section
4.2. However, the absence of creators means that data type induction cannot be
used to reason about invariant properties. In Section 4.3 we discuss how we make
up for this loss by adding invariants to type speci�cations.
In our work we use formal speci�cations in the two-tiered style of Larch [Guttag,

Horning, and Wing 1985]. The �rst tier de�nes sorts, which are used to de�ne
the value spaces of objects. In the second tier, Larch interfaces are used to de�ne
types. For example, Figure 1 gives a speci�cation for a bag type whose objects have
methods put, get, card, and equal. The uses clause de�nes the value space for the
type by identifying a sort. The clause in the �gure indicates that values of objects
of type bag are denotable by terms of sort B introduced in the BBag speci�cation;
a value of this sort is a pair, helems; boundi, where elems is a mathematical mul-
tiset of integers and bound is a natural number. The notation f g stands for the
empty multiset, [is a commutative operation on multisets that does not discard

duplicates, 2 is the membership operation, and j x j is a cardinality operation that
returns the total number of elements in the multiset x. These operations as well as
equality (=) and inequality (6=) are all de�ned in BBag.
The body of a type speci�cation provides a speci�cation for each method. Since

a method's speci�cation needs to refer to the method's object, we introduce a
name for that object in the for all line. Result is a way to name a method's
result parameter. In the requires and ensures clauses x stands for an object,
xpre for its value in the initial state, and xpost for its value in the �nal state.2

Distinguishing between initial and �nal values is necessary only for mutable types,
so we suppress the subscripts for parameters of immutable types (like integers).
We need to distinguish between an object, x, and its value, xpre or xpost, because

2Note that pre and post are implicitly universally quanti�ed variables over states. Also, more

formally, xpre stands for pre.s(pre.e(x)); xpost, post.s(post.e(x)).

8 � B. Liskov and J. Wing

bag = type

uses BBag (bag for B)

for all b: bag

put = proc (i: int)

requires j bpre:elems j < bpre:bound

modi�es b

ensures bpost:elems = bpre:elems [fig ^ bpost:bound = bpre:bound

get = proc () returns (int)

requires bpre:elems 6= fg

modi�es b

ensures bpost:elems = bpre:elems � fresultg ^ result 2 bpre:elems ^

bpost:bound = bpre:bound

card = proc () returns (int)

ensures result = j bpre:elems j

equal = proc (a: bag) returns (bool)

ensures result = (a = b)

end bag

Fig. 1. A Type Speci�cation for Bags

we sometimes need to refer to the object itself, e.g., in the equal method, which
determines whether two (mutable) bags are the same object.
A method m's pre-condition, denoted m.pre, is the predicate that appears in its

requires clause; e.g., put's pre-condition checks to see that adding an element will
not enlarge the bag beyond its bound. If the clause is missing, the pre-condition is
trivially \true."
A method m's post-condition, denoted m.post, is the conjunction of the predi-

cates given by its modi�es and ensures clauses. A modi�es x1; . . . ; xn clause is
shorthand for the predicate:

8 x 2 (dom(pre) � fx1; . . . ; xng) : xpre = xpost

which says only objects listed may change in value. A modi�es clause is a strong
statement about all objects not explicitly listed, i.e., their values may not change;
if there is no modi�es clause then nothing may change. For example, card's post-
condition says that it returns the size of the bag and no objects (including the bag)
change, and put's post-condition says that the bag's value changes by the addition
of its integer argument, and no other objects change.
Methods may terminate normally or exceptionally; the exceptions are listed in a

signals clause in the method's header. For example, instead of the get method we
might have had

get 0 = proc () returns (int) signals (empty)
modi�es b

ensures if bpre:elems = f g then signal empty
else bpost:elems = bpre:elems � fresultg ^

result 2 bpre:elems ^ bpost:bound = bpre:bound

A Behavioral Notion of Subtyping � 9

4.2 Specifying Creators

Objects are created and initialized through creators. Figure 2 shows speci�cations
for three di�erent creators for bags. The �rst creator creates a new empty bag
whose bound is its integer argument. The second and third creators �x the bag's
bound to be 100. The third creator uses its integer argument to create a singleton
bag. The assertion new(x) stands for the predicate:

x 2 dom(post) � dom(pre)

Recall that objects are never destroyed so that dom(pre) � dom(post).

bag create= proc (n: int) returns (bag)

requires n � 0

ensures new(result) ^ resultpost = hfg; ni

bag create small = proc () returns (bag)

ensures new(result) ^ resultpost = hfg;100i

bag create single = proc (i: int) returns (bag)

ensures new(result) ^ resultpost = hfig;100i

Fig. 2. Creator Speci�cations for Bags

4.3 Type Speci�cations Need Explicit Invariants

By not including creators in type speci�cations we lose a powerful reasoning tool:
data type induction. Data type induction is used to prove type invariants. The
base case of the rule requires that each creator of the type establish the invariant;
the inductive case requires that each method preserve the invariant. Without the
creators, we have no base case, and therefore we cannot prove type invariants!
To compensate for the lack of data type induction, we state the invariant explic-

itly in the type speci�cation by means of an invariant clause; if the invariant is
trivial (i.e., identical to \true"), the clause can be omitted. The invariant de�nes
the legal values of its type � . For example, we add

invariant j b�:elems j � b�:bound

to the type speci�cation of Figure 1 to state that the size of a bounded bag never
exceeds its bound. The predicate �(x�) appearing in an invariant clause for type
� stands for the predicate: For all computations, c, and all states � in c,

8x : � : x 2 dom(�)) �(x�)

Any additional invariant property must follow from the conjunction of the type's
invariant and invariants that hold for the entire value space. For example, we could
show that the size of a bag is nonnegative because this is true for all mathematical
multiset values. Since additional invariants cannot be proved using data type in-
duction, the speci�er must be careful to de�ne an invariant that is strong enough
to support all desired invariants.
All creators for a type � must establish � 's invariant, I� :

10 � B. Liskov and J. Wing

For each creator for type � , show for all x :� that I� [resultpost=x�].

where P [a=b] stands for predicate P with every occurrence of b replaced by a. In
addition, each method of the type must preserve the invariant. To prove this, we
assume each method is called on an object of type � with a legal value (one that
satis�es the invariant), and show that any value of a � object it produces or modi�es
is legal:

For each method m of � , for all x : � assume I� [xpre=x�] and show
I� [xpost=x�].

For example, we would need to show put, get, card, and equal each preserves the
invariant for bag. Informally the invariant holds because put's pre-condition checks
that there is enough room in the bag for another element; get either decreases the
size of the bag or leaves it the same; card and equal do not change the bag at all.
The proof ensures that methods deal with only legal values of an object's type.

5. THE MEANING OF SUBTYPE

5.1 Specifying Subtypes

To state that a type is a subtype of some other type, we simply append a subtype
clause to its speci�cation. We allow multiple supertypes; there would be a separate
subtype clause for each. An example is given in Figure 3.
A subtype's value space may be di�erent from its supertype's. For example,

in the �gure the sort, S, for bounded stack values is de�ned in BStack as a pair,
hitems; limiti, where items is a sequence of integers and limit is a natural number.
The invariant indicates that the length of the stack's sequence component is less
than or equal to its limit. In the pre- and post-conditions, [] stands for the empty
sequence, jj is concatenation, last picks o� the last element of a sequence, and
allButLast returns a new sequence with all but the last element of its argument.
Under the subtype clause we de�ne an abstraction function, A, that relates

stack values to bag values by relying on the helping function, mk elems, that maps
sequences to multisets in the obvious manner. (We will revisit this abstraction
function in Section 5.2.3.) The subtype clause also lets speci�ers relate subtype
methods to those of the supertype. The subtype must provide all methods of its
supertype; we refer to these as the inherited methods.3 Inherited methods can be
renamed, e.g., push for put; all other methods of the supertype are inherited without
renaming, e.g., equal. In addition to the inherited methods, the subtype may also
have some extra methods, e.g., swap top. (Stack's equal method must take a bag
as an argument to satisfy the contravariance requirement. We discuss this issue
further in the next section and Section 6.1.)

5.2 First De�nition: Constraint Rule

Our �rst de�nition of the subtype relation relies on the addition of some information
to speci�cations, namely a constraint clause that states the history properties of

3We do not mean that the subtype inherits the code of these methods but simply that it provides

methods with the same behavior (as de�ned below) as the corresponding supertype methods.

A Behavioral Notion of Subtyping � 11

stack = type

uses BStack (stack for S)

for all s: stack

invariant length(s�:items) � s�:limit

push = proc (i: int)

requires length(spre:items) < spre:limit

modi�es s

ensures spost:items = spre:items jj [i] ^ spost:limit = spre:limit

pop = proc () returns (int)

requires spre:items 6= []

modi�es s

ensures result = last(spre:items) ^ spost:items = allButLast(spre:items) ^

spost:limit = spre:limit

swap top = proc (i: int)

requires spre:items 6= []

modi�es s

ensures spost:items = allButLast(spre:items) jj [i] ^ spost:limit = spre:limit

height = proc () returns (int)

ensures result = length(spre:items)

equal = proc (t: bag) returns (bool)

ensures result = (s = t)

subtype of bag (push for put, pop for get, height for card)

8st : S : A(st) = hmk elems(st:items); st:limiti

where mk elems : Seq !M

8i : Int; sq : Seq

mk elems([]) = f g

mk elems(sq jj [i]) = mk elems(sq) [fig

end stack

Fig. 3. Stack Type

the type explicitly4; if the constraint is trivial (identically equal to \true"), the
clause can be omitted. For example, we add

constraint b�:bound = b :bound

to the speci�cation of bag to declare that a bag's bound never changes. We would
add a similar clause to stack's speci�cation. As another example, consider a fat set
object that has an insert but no delete method; fat sets only grow in size. The
constraint for fat set would be:

constraint 8 i : int : i 2 s�) i 2 s

4The use of the term \constraint" is borrowed from the Ina Jo speci�cation language [Scheid and

Holtsberg 1992], which also includes constraints in speci�cations.

12 � B. Liskov and J. Wing

We can formulate history properties as predicates over state pairs. The predicate
�(x�; x) appearing in a constraint clause for type � stands for the predicate: For
all computations, c, and all states � and in c such that � precedes ,

8x : � : x 2 dom(�)) �(x�; x)

Note that we do not require that be the immediate successor of � in c.
Just as we had to prove that methods preserve the invariant, we must show that

they satisfy the constraint. This is captured in the hypotheses of the history rule:

History Rule: For each of the i mutators m of � , for all x : � :

mi:pre ^mi:post) �[xpre=x�; xpost=x]

�

� is a history property, e.g., the constraint, that we would like to show holds of all
objects of type � . (Recall that m.pre is the method's pre-condition and m.post is
its post-condition.)
Ordinarily, users of abstract types would expect to be able to reason using the

history rule directly. This is forbidden with the constraint approach: users can only
make deductions based on the constraint. The restriction is needed because using
the rule directly might allow the proof of a property for the supertype that could
not be proved for the subtype. The loss of the history rule is analogous to the lack
of a data type induction rule. A practical consequence of not having a history rule
is that the speci�er must make the constraint strong enough so that all desired
history properties follow from it; we discuss this issue further in Section 7.
The formal de�nition of the subtype relation, <, is given in Figure 4. It relates

two types, � and � , each of whose speci�cations respectively preserves its invariant,
I� and I� , and satis�es its constraint, C� and C� . In the methods and constraint
rules, since x is an object of type �, its value (xpre or xpost) is a member of S and
therefore cannot be used directly in the predicates about � objects (which are in
terms of values in T). The abstraction function A is used to translate these values
so that the predicates about � objects make sense.

5.2.1 Discussion of De�nition. The �rst clause addresses the need to relate val-
ues by de�ning the abstraction function. It requires that an abstraction function
be de�ned for all legal values of the subtype (although it need not be de�ned for
values that do not satisfy the subtype invariant) and that it respect the invariant:
an abstraction function must map legal values of the subtype to legal values of
the supertype. This requirement (and the assumption that the type speci�cation
preserves the invariant) su�ces to argue that invariant properties of a supertype
are preserved by the subtype.
The second clause addresses the need to relate inherited methods of the subtype.

Our formulation is similar to America's [1990]. The �rst two signature rules are
the standard contra/covariance rules. The exception rule says that m� may not
signal more than m� , since a caller of a method on a supertype object should not
expect to handle an unknown exception. The pre- and post-condition rules are the
intuitive counterparts to the contravariant and covariant rules for signatures. The
pre-condition rule ensures the subtype's method can be called at least in any state
required by the supertype. The post-condition rule says that the subtype method's

A Behavioral Notion of Subtyping � 13

Definition of the subtype relation, <: � = hO�; S;Mi is a subtype of � = hO� ; T;Ni if

there exists an abstraction function, A : S ! T , and a renaming map, R :M ! N, such that:

(1) The abstraction function respects invariants:

|Invariant Rule. 8s : S : I�(s)) I� (A(s))

A may be partial, need not be onto, but can be many-to-one.

(2) Subtype methods preserve the supertype methods' behavior. If m� of � is the corresponding

renamed methodm� of �, the following rules must hold:

|Signature rule.

|Contravariance of arguments. m� and m� have the same number of arguments. If the

list of argument types of m� is �i and that of m� is �i, then 8i : �i < �i.

|Covariance of result. Either both m� and m� have a result or neither has. If there is a

result, let m� 's result type be � and m�'s be �. Then � < �.

|Exception rule. The exceptions signaled by m� are contained in the set of exceptions

signaled by m� .

|Methods rule. For all x : �:

|Pre-condition rule. m� :pre[A(xpre)=xpre]) m�:pre:

|Post-condition rule. m�:post) m� :post[A(xpre)=xpre; A(xpost)=xpost]

(3) Subtype constraints ensure supertype constraints.

|Constraint Rule. For all computations, c, and all states � and in c such that � precedes

 , for all x : �:

C�) C� [A(x�)=x�; A(x)=x]

Fig. 4. De�nition of the Subtype Relation (Constraint Rule)

post-condition can be stronger than the supertype method's post-condition; hence,
any property that can be proved based on the supertype method's post-condition
also follows from the subtype's method's post-condition.
We do not include the invariant in the methods (or constraint) rule directly. For

example, the pre-condition rule could have been

(m� :pre[A(xpre)=xpre] ^ I� [A(xpre)=xpre])) m� :pre:

We omit adding the invariant because if it is needed in doing a proof it can always
be assumed, since it is known to be true for all objects of its type.
Finally, the third clause succinctly and directly states that constraints must be

preserved. This requirement (and the assumption that each type speci�cation sat-
is�es its constraint) su�ces to argue that history properties of a supertype are
preserved.

5.2.2 Informal Justi�cation of De�nition. In this section we show that our de�-
nition of the subtype relation guarantees that the Subtype Requirement holds.
Recall that there are two kinds of properties of interest, program-speci�c and

program-independent. The Subtype Requirement addresses the �rst of these prop-
erties by requiring that the behavior of calls of supertype methods be preserved by
corresponding subtype methods. It addresses the second by requiring that invariant
and history properties of supertype objects also hold for subtype objects.
The requirement about corresponding subtype methods preserving behavior fol-

lows directly from the signature and methods rules. The pre-condition rule guar-
antees that any call made to a supertype method can also be made to the corre-
sponding subtype method, and the post-condition rule guarantees that supertype

14 � B. Liskov and J. Wing

method's post-condition holds after the call.
To show that invariant and history properties are preserved, we proceed as fol-

lows. We view each type speci�cation as a theory presentation, i.e., a set of symbols,
rules for forming well-formed formulae, a set of axioms, and a set of inference rules.
A type's theory is the set of all formulae provable from the axioms and rules given
in the type's speci�cation; as with any theory-based approach, it is clear that if the
type speci�cation is not strong enough, there might be some properties true but
simply not provable. We need to show that the theory of the supertype is contained
in the theory of the subtype. The containment relation between theories implies
that any property of a supertype must be one of the subtype; the subtype may
have additional properties. This theory-based approach is exactly in the spirit of
the Larch approach, e.g., see [Wing 1983].
For the constraint approach, a type's theory contains formulae about an object's

value space (e.g., set values have no duplicate elements), the invariant, and the
constraint, plus all formulae that follow from these using ordinary rules of �rst
order logic, but explicitly not using the history rule. We use the abstraction function
and renaming map as a theory interpretation, mapping symbols and formulae of
the subtype's theory so they can be interpreted in terms of the supertype's. The
invariant and constraint rules ensure that the speci�cation of a subtype can only
add invariant and history properties to those of a supertype. Thus, the subtype
relation ensures that the containment relation holds.

5.2.3 Applying the De�nition of Subtyping as a Checklist. Proofs of the subtype
relation are usually obvious and can be done by inspection. Typically, the only
interesting part is the de�nition of the abstraction function; the other parts of
the proof are usually trivial. However, this section goes through the steps of an
informal proof just to show what kind of reasoning is involved. Formal versions of
these informal proofs are given in [Liskov and Wing 1992].
Let's revisit the stack and bag example using our de�nition as a checklist. Here

� = hOstack; S;fpush; pop; swap top;height; equalgi, and � = hObag; B; fput;

get; card; equalgi. Recall that we represent a bounded bag's value as a pair,
helems; boundi, of a multiset of integers and a �xed bound, and a bounded stack's
value as a pair, hitems; limiti, of a sequence of integers and a �xed bound. It
can easily be shown that each speci�cation preserves its invariant and satis�es its
constraint.
We use the abstraction function and the renaming map given in the speci�cation

for stack in Figure 3. The abstraction function states that for all st : S

A(st) = hmk elems(st:items); st:limiti

where the helping function, mk elems : Seq ! M , maps sequences to multisets
and states that for all sq : Seq; i : Int:

mk elems([]) = f g

mk elems(sq jj [i]) = mk elems(sq) [fig

A is partial; it is de�ned only for sequence{natural numbers pairs, hitems; limiti,
where limit is greater than or equal to the size of items. We can show that A

respects invariants by a simple proof of induction on the length of the sequence of
a bounded stack.

A Behavioral Notion of Subtyping � 15

The renaming map R is

R(push) = put

R(pop) = get

R(height) = card

R(equal) = equal

Checking the signature and exception rules is easy and could be done by the com-
piler.
Next, we show the correspondences between push and put, between pop and get,

etc. Let's look at the pre- and post-condition rules for just one method, push.
Informally, the pre-condition rule for put/push requires that we show5:

j A(spre):elems j < A(spre):bound
)

length(spre:items) < spre:limit

Intuitively, the pre-condition rule holds because the length of stack is the same as
the size of the corresponding bag and the limit of the stack is the same as the bound
for the bag. Here is an informal proof with slightly more detail:

(1) A maps the stack's sequence component to the bag's multiset by putting all
elements of the sequence into the multiset. Therefore the length of the sequence
spre:items is equal to the size of the multiset A(spre):elems.

(2) Also, A maps the limit of the stack to the bound of the bag so that spre:limit =
A(spre):bound.

(3) From put's pre-condition we know j A(spre):elems j < A(spre):bound.

(4) push's pre-condition holds by substituting equals for equals.

Note the role of the abstraction function in this proof. It allows us to relate stack
and bag values, and therefore we can relate predicates about bag values to those
about stack values and vice versa. Also, note how we depend on A being a function
(in step (4) where we use the substitutivity property of equality).
The post-condition rule requires that we show push's post-condition implies put's.

We can deal with the modi�es and ensures parts separately. The modi�es part
holds because the same object is mentioned in both speci�cations. The ensures

part follows from the de�nition of the abstraction function.
Finally, the constraint rule requires that we show that the constraint on stacks:

s�:limit = s :limit

implies that on bags:

A(s�):bound = A(s):bound

This is true because the length of the sequence component of a stack is the same
as the size of the multiset component of its bag counterpart.
Note that we do not have to say anything speci�c for swap top; it is taken care of

just like all the other methods when we show that the speci�cation of stack satis�es
its constraint.

5Note that we are reasoning in terms of the values of the object, s, and that b and s refer to the

same object.

16 � B. Liskov and J. Wing

5.3 Second De�nition: Extension Map

With the constraint approach users cannot use the history rule to deduce history
properties. Our second approach allows them to do so. It requires that we \explain"
each extra method in terms of existing methods. Since the extra methods are not
called by users of the supertype, we only require that any mutations made by the
extra methods (when called by other users, for example) are not surprising, i.e.,
they could have occurred by calls on the existing methods. If such explanations
are possible, the extra methods do not add any behavior that could not have been
e�ected in their absence. Therefore, all supertype properties, including history
properties, are preserved.
In our alternative de�nition, therefore, we do not add any constraints to our type

speci�cation (and thus remove the requirement that a type speci�cation has to sat-
isfy its constraint). Instead, to show that � is a subtype of � we require a third
mapping, which we call an extension map, that is de�ned for all extra methods
introduced by the subtype. The extension map \explains" the mutation behavior
of each extra method as a program expressed in terms of inherited methods. In-
teresting explanations are needed only for mutators; non-mutators always have the
\empty" explanation, �.

Figure 5 gives the alternative de�nition. As before, we assume each type speci�-
cation preserves its invariant. In de�ning the extension map, we intentionally leave
unspeci�ed the language in which one writes a program, but imagine that it has
the usual control structures, assignment, procedure call, etc.

5.3.1 Discussion of De�nition. The �rst and second clauses are the same as in
the �rst de�nition except that the pre-condition rule is stronger; we discuss the
need for the stronger pre-condition in Section 5.3.2.
The third clause of the de�nition requires what is shown in the diamond diagram

in Figure 6, read from top to bottom. We must show that the abstract value of the
subtype object reached by running the extra method m is also reached by running
m's explanation program. This diagram is not quite like a standard commutative
diagram because we are applying subtype methods to the same subtype object in
both cases (x.m(a) and E(x.m(a))) and then showing the two values obtained map
via the abstraction function to the same supertype value.

The extension rule constrains only what an explanation program does to its
method's object, not to other objects. This makes sense because explanation pro-
grams do not really run. Its purpose is to explain how an object could be in a
particular state. Its other arguments are hypothetical; they are not objects that
actually exist in the object universe.

The diamond rule is stronger than necessary because it requires equality between
abstract values. We need only the weaker notion of observable equivalence (e.g., see
Kapur's de�nition[Kapur 1980]), since values that are distinct may not be observ-
ably di�erent if the supertype's set of methods (in particular, observers) is too weak
to let us perceive the di�erence. In practice, such types are rare and therefore we
did not bother to provide the weaker de�nition.

Preservation of history properties is ensured by a combination of the methods
and extension rules; they together guarantee that any call of a subtype method
can be explained in terms of calls of methods that are already de�ned for the

A Behavioral Notion of Subtyping � 17

Definition of the subtype relation, <: � = hO�; S;Mi is a subtype of � = hO� ; T;Ni if

there exists an abstraction function, A, a renaming map, R, and an extension map, E, such that:

(1) The abstraction function respects invariants:

|Invariant Rule. 8s : S : I�(s)) I� (A(s))

(2) Subtype methods preserve the supertype methods' behavior. If m� of � is the corresponding

renamed methodm� of �, the following rules must hold:

|Signature rule.

|Contravariance of arguments. m� and m� have the same number of arguments. If the

list of argument types of m� is �i and that of m� is �i, then 8i : �i < �i.

|Covariance of result. Either both m� and m� have a result or neither has. If there is a

result, let m� 's result type be � and m�'s be �. Then � < �.

|Exception rule. The exceptions signaled by m� are contained in the set of exceptions

signaled by m� .

|Methods rule. For all x : �:

|Pre-condition rule. m� :pre[A(xpre)=xpre] = m�:pre:

|Post-condition rule. m�:post) m� :post[A(xpre)=xpre; A(xpost)=xpost]

(3) The extension map, E : O� �M � Obj� ! Prog, must be de�ned for each method, m, not

in dom(R). We write E(x:m(a)) for E(x;m; a) where x is the object on which m is invoked

and a is the (possibly empty) sequence of arguments to m. E's range is the set of programs,

including the empty program denoted as �.

|Extension rule. For each extra method,m, of x : �, the following conditions must hold for

�, the program to which E(x:m(a)) maps:

|The input to � is the sequence of objects [x]jja.

|The set of methods invoked in � is contained in the union of dom(R) and the set of

methods of all types other than � and �'s subtypes.

|Diamond rule. We need to relate the abstracted values of x at the end of either calling

just m or executing �. Let �1 be the state in which both m is invoked and � starts.

Assume m:pre holds in �1 and the call to m terminates in state �2. Then we require

that � terminates in state and

A(x�2) = A(x):

Note that if � = �; = �1.

Fig. 5. De�nition of the Subtype Relation (Extension Rule)

supertype. To show that history properties are preserved by inherited mutators,
we use the methods rule. However, because the properties are not stated explicitly
for the extra methods, they cannot be proved for them. Instead extra methods
must satisfy any provable property, which is surely guaranteed if the extra methods
can be explained in terms of the inherited methods via the extension map.

5.3.2 Informal Justi�cation of De�nition. To justify this de�nition with respect
to the Subtype Requirement, we proceed as we did in Section 5.2.2, and the require-
ment about corresponding subtype methods preserving behavior follows directly
from the signature and methods rules just as it did before. To show that invariant
and history properties are preserved, we again view a type speci�cation as a theory
presentation. In this case, however, a type's theory contains the formulae about
an object's value space, and the invariant, plus all formulae that follow from these
using ordinary rules of �rst order logic and the history rule. In other words, we do
not place a constraint in the theory, but instead use the history rule.

As before we must show that the subtype relation implies that the theory of the

18 � B. Liskov and J. Wing

ρ ψxx :S :S
2

A A

E(x.m(a))

y :T

x.m(a)

ρx :S
1

Fig. 6. The Diamond Diagram

supertype is contained in the theory of the subtype. Also as before, we use the

abstraction function and renaming map as part of a theory interpretation. The

only di�erence is that now we must show that any property that can be proved

using the history rule for the supertype can also be proved using the history rule

for the subtype.

Consider some history property � of supertype � . We need to show that the

subtype relation guarantees � holds for each object x of � a subtype of � . The

explanation map allows us to consider only the inherited methods. Thus, we need

to show for each inherited method m� of �:

m�:pre ^m� :post) �[A(x�)=x�;A(x)=x]

From the methods rule, we know that (modulo the abstraction function) the pre-

conditions are the same and the post-condition of the subtype implies that of the

supertype, so we have

m�:pre ^m� :post) m� :pre[A(x�)=x�] ^m� :post[A(x�)=x�;A(x)=x]

Since by assumption � holds for the supertype, we have

m� :pre[A(x�)=x�]^m� :post[A(x�)=x�; A(x)=x]) �[A(x�)=x�; A(x)=x]

which lets us conclude what we need to show.

This reasoning shows why we require equality in the pre-condition rule. To

guarantee the use of the history rule we need to know that

m�:pre) m� :pre[A(x�)=x�]

But we also need

m� :pre[A(x�)=x�]) m� :pre

A Behavioral Notion of Subtyping � 19

so that we can show that subtype methods preserve the behavior of corresponding

supertype methods. Therefore we require that pre-conditions of associated methods

be equal.

The following example illustrates what would go wrong if the pre-conditions were

not equal. Suppose we have a window type with a single mutator, move, that moves

its window w only to the northeast:

move = proc (v: vector)

requires v:x > 0 ^ v:y > 0

ensures wpost:center = wpre:center + v

Using the history rule, we could prove that windows move only northeasterly as

a history property and a user of windows could depend on this property always

holding for them. Suppose the my window type is just like window except with a

weaker move method that moves its window in any direction:

move = proc (v: vector)

ensures wpost:center = wpre:center + v

The pre-condition rule given previously (as part of the constraint approach) holds

but the history property (that windows only move northeasterly) does not, and

therefore my window cannot be a subtype of window. The more restricted pre-

condition rule disallows this case.6 Note that America [1990] uses the weaker

pre-condition rule of Figure 4, and therefore he would erroneously allow subtype

relations like this one, which do not preserve history properties.

5.3.3 The Bag and Stack Example Again. The alternative de�nition of subtyping

is also used as a checklist to prove a subtype relation. Besides the abstraction

function, the only other interesting issue is the de�nition of the extension map. As

was the case with the constraint approach, the actual proofs are usually trivial.

To prove that stack is a subtype of bag we follow the same procedure as in

Section 5.2.3, except we need to show that the pre-conditions are identical, a trivial

exercise for this example. We must additionally de�ne an extension map to de�ne

swap top's e�ect. As stated earlier, it has the same e�ect as that described by the

program, �, in which a call to pop is followed by one to push:

E(s.swap top(i)) = s.pop(); s.push(i)

Showing the extension rule is just like showing that an implementation of a pro-

cedure satis�es the procedure's speci�cation, except that we do not require equal

values at the end, but just equal abstract values. (In fact, such a proof is identical

to a proof showing that an implementation of an operation of an abstract data type

satis�es its speci�cation[Hoare 1972].) In doing the reasoning we rely on the spec-

i�cations of the methods used in the program. Here is an informal argument for

swap top. We note �rst that since s.swap top(i) terminates normally, so does the

call on s.pop() (their pre-conditions are the same). Pop removes the top element,

reducing the size of the stack so that push's pre-condition holds, and then push puts

i on the top of the stack. The result is that the top element has been replaced by

6Thanks to Ian Maung for pointing out this problem and inspiring this example.

20 � B. Liskov and J. Wing

i. Thus, s�2 = s , where �2 is the termination state if we run swap top and is

the termination state if we run �. Therefore A(s�2) = A(s), since A is a function.

6. TYPE HIERARCHIES

The requirement we impose on subtypes is very strong and raises a concern that it

might rule out many useful subtype relations. To address this concern we looked

at a number of examples. We found that our technique captures what people want

from a hierarchy mechanism, but we also discovered some surprises.

The examples led us to classify subtype relationships into two broad categories.

In the �rst category, the subtype extends the supertype by providing additional

methods and possibly additional \state." In the second, the subtype is more con-

strained than the supertype. We discuss these relationships below.

6.1 Extension Subtypes

A subtype extends its supertype if its objects have extra methods in addition to

those of the supertype. Abstraction functions for extension subtypes are onto, i.e.,

the range of the abstraction function is the set of all legal values of the supertype.

The subtype might simply have more methods; in this case the abstraction func-

tion is one-to-one. Or its objects might also have more \state," i.e., they might

record information that is not present in objects of the supertype; in this case the

abstraction function is many-to-one.

As an example of the one-to-one case, consider a type intset (for set of integers)

with methods to insert and delete elements, to select elements, and to provide

the size of the set. A subtype, my intset, might have more methods, e.g., union,

is empty. Here there is no extra state, just extra methods. If we are using the

extension map approach, we must provide explanations for the extra methods, but

for all but mutators, these are trivial. Thus, if union is a pure constructor, it has

the empty explanation, �; otherwise it requires a non-trivial explanation, e.g., in

terms of insert. If we are using the constraint approach, we must prove that the

subtype's constraint implies that of the supertype. Often the two constraints will

be identical, e.g., both intset and my intset might have the trivial constraint.

Using either approach, it is easy to discover when a proposed subtype really is

not one. For example, intset is not a subtype of fat set because fat sets only grow

while intsets grow and shrink, i.e., it does not preserve various history properties of

fat set. If we are using the constraint approach, we will be unable to show that the

intset constraint (which is trivial) implies that of fat set; with the extension map

approach, we will not be able to explain the e�ect of intset's delete method.

As a simple example of a many-to-one case, consider immutable pairs and triples

(Figure 7). Pairs have methods that fetch the �rst and second elements; triples

have these methods plus an additional one to fetch the third element. Triple is

a subtype of pair and so is semi-mutable triple with methods to fetch the �rst,

second, and third elements and to replace the third element because replacing the

third element does not a�ect the �rst or second element. This example shows that

it is possible to have a mutable subtype of an immutable supertype, provided the

mutations are invisible to users of the supertype.

Mutations of a subtype that would be visible through the methods of an im-

mutable supertype are ruled out. For example, an immutable sequence, whose

A Behavioral Notion of Subtyping � 21

immutable pair

immutable triple semi-mutable triple

Fig. 7. Pairs and Triples

person

student employee

student_employee

Fig. 8. Person, Student, and Employee

elements can be fetched but not stored, is not a supertype of mutable array, which

provides a store method in addition to the sequence methods. For sequences we can

prove elements do not change; this is not true for arrays. The attempt to construct

the subtype relation will fail because there is no way to explain the store method

via an extension map or because the constraint for sequences does not follow from

that for arrays.

Many examples of extension subtypes are found in the literature. One common

example concerns persons, employees, and students (Figure 8). A person object

has methods that report its properties such as its name, age, and possibly its

relationship to other persons (e.g., its parents or children). Student and employee

are subtypes of person; in each case they have additional properties, e.g., a student

id number, an employee employer and salary. In addition, type student employee is

a subtype of both student and employee (and also person, since the subtype relation

is transitive). In this example, the subtype objects have more state than those of

the supertype as well as more methods.

Another example from the database literature concerns di�erent kinds of ships

[Hammer and McLeod 1981]. The supertype is generic ships with methods to deter-

mine such things as who is the captain and where the ship is registered. Subtypes

contain more specialized ships such as tankers and freighters. There can be quite an

elaborate hierarchy (e.g., tankers are a special kind of freighter). Windows are an-

other well-known example [Halbert and O'Brien 1987]; subtypes include bordered

windows, colored windows, and scrollable windows.

Common examples of subtype relationships are allowed by our de�nition pro-

vided the equal method (and other similar methods) are de�ned properly in the

22 � B. Liskov and J. Wing

subtype. Suppose supertype � provides an equal method and consider a particular

call x.equal(y). The di�culty arises when x and y actually belong to �, a subtype

of � . If objects of the subtype have additional state, x and y may di�er when

considered as subtype objects but ought to be considered equal when considered as

supertype objects.

For example, consider immutable triples x = h0;0;0i and y = h0;0; 1i. Suppose

the speci�cation of the equal method for pairs says:

equal = proc (q: pair) returns (bool)

ensures result = (p:first = q:first ^ p:second = q:second)

(We are using p to refer to the method's object.) However, we would expect two

triples to be equal only if their �rst, second, and third components were equal. If a

program using triples had just observed that x and y di�er in their third element,

we would expect x.equal(y) to return \false," but if the program were using them

as pairs, and had just observed that their �rst and second elements were equal, it

would be wrong for the equal method to return false.

The way to resolve this dilemma is to have two equal methods in triple:

pair equal = proc (p: pair) returns (bool)

ensures result = (p:first = q:first ^ p:second = q:second)

triple equal = proc (p: triple) returns (bool)

ensures result = (p:first = q:f irst ^ p:second = q:second

^ p:third = q:third)

One of them (pair equal) simulates the equal method for pair; the other

(triple equal) is a method just on triples.

The problem is not limited to equality methods. It also a�ects methods that

\expose" the abstract state of objects, e.g., an unparse method that returns a

string representation of the abstract state of its object. x.unparse() ought to return

a representation of a pair if called in a context in which x is considered to be a pair,

but it ought to return a representation of a triple in a context in which x is known

to be a triple (or some subtype of triple).

The need for several equality methods seems natural for realistic examples. For

example, asking whether e1 and e2 are the same person is di�erent from asking

if they are the same employee. In the case of a person holding two jobs, the

answer might be true for the question about person but false for the question

about employee.

6.2 Constrained Subtypes

The second type of subtype relation occurs when the subtype is more constrained

than the supertype. In this case, the supertype speci�cation is written in a way

that allows variation in behavior among its subtypes. Subtypes constrain the su-

pertype by reducing the variability. The abstraction function is usually into rather

than onto. The subtype may extend those supertype objects that it simulates by

providing additional methods and/or state.

A very simple example concerns elephants. Elephants come in many colors (re-

alistically grey and white, but we will also allow blue ones). However all albino

A Behavioral Notion of Subtyping � 23

elephant

royal albino

Fig. 9. Elephant Hierarchy

elephants are white and all royal elephants are blue. Figure 9 shows the elephant

hierarchy. The set of legal values for regular elephants includes all elephants whose

color is grey or blue or white:

invariant e�:color = white _ e�:color = grey _ e�:color = blue

The set of legal values for royal elephants is a subset of those for regular elephants:

invariant e�:color = blue

and hence the abstraction function is into. The situation for albino elephants is sim-

ilar. This simple example has led others to de�ne a subtyping relation that requires

non-monotonic reasoning [Lipeck 1992], but we believe it is better to use variability

in the supertype speci�cation and straightforward reasoning methods. However,

the example shows that a speci�er of a type family has to anticipate subtypes and

capture the variation among them in the speci�cation of the supertype.

The bag type discussed in Section 4.1 has two kinds of variability. First, as

discussed earlier, the speci�cation of get is nondeterministic because it does not

constrain which element of the bag is removed. This nondeterminism allows stack

to be a subtype of bag: the speci�cation of pop constrains the nondeterminism. We

could also de�ne a queue that is a subtype of bag; its dequeue method would also

constrain the nondeterminism of get but in a way di�erent from pop.

In addition, the actual value of the bound for bags is not de�ned; it can be any

natural number, thus allowing subtypes to have di�erent bounds. This variability

shows up in the speci�cation of put, where we do not say what speci�c bound value

causes the call to fail. Therefore, a user of put must be prepared for a failure

unless it is possible to deduce from past evidence, using the history property (or

constraint) that the bound of a bag does not change, that the call will succeed.

A subtype of bag might limit the bound to a �xed value, or to a smaller range.

Several subtypes of bag are shown in Figure 10; mediumbags have various bounds,

so that this type might have its own subtypes, e.g., bag 150.

The bag hierarchy may seem counterintuitive, since we might expect that bags

with smaller bounds should be subtypes of bags with larger bounds. For example,

we might expect smallbag to be a subtype of largebag. However, the speci�cations

for the two types are incompatible: the bound of every largebag is 232, which is

clearly not true for smallbags. Furthermore, this di�erence is observable via the

methods: It is legal to call the put method on a largebag whose size is greater than

or equal to 20, but the call is not legal for a smallbag. Therefore the pre-condition

rule is not satis�ed.

Although the bag type can have subtypes with di�erent bounds, it is not a

24 � B. Liskov and J. Wing

bag

largebag mediumbag smallbag

(100 <= bound(b) <= 1000) (bound(b) = 20)

bag_150

(bound(b) = 150)

32(bound(b) = 2)

Fig. 10. A Type Family for Bags

valid supertype of a dynamic bag type where the bounds of the bags can change

dynamically. Dynamic bags would have an additional method, change bound:

change bound = proc (n: int)

requires n � jbpre:elemsj

modi�es b

ensures bpost:elems = bpre:elems ^ bpost:bound = n

If we wanted a type family that included both dynamic bag and bag, we would

need to de�ne a supertype in which the bound is allowed, but not required, to vary.

Figure 11 shows the new type hierarchy.

This example points out an interesting di�erence between the two subtype def-

initions. If we are using the extension map approach, varying bag would need to

have a change bound method that allows the bag's bound to change, but does not

require it. The method is needed because otherwise the history rule would allow us

to deduce that the bound does not change! The nondeterminism in its speci�cation

is resolved in its subtypes; bag (and its subtypes) provides a change bound method

that leaves the bound as it was, while dynamic bag changes it to the new bound.

Note that for bag to be a subtype of varying bag, it must have a change bound

method (in addition to its other methods), even though the method is not interest-

ing.

On the other hand, if we are using the constraint approach, varying bag and bag

need not have a change bound method. Instead, varying bag simply has the trivial

constraint. This means that its users cannot deduce anything about the bounds of

its objects: the bound of an object might change or it might not. Therefore it can

have both bag and dynamic bag as subtypes. The constraint for bag (that a bag's

bound does not change) allows users of its objects to depend on this property.

The varying bag example illustrates a subtype that reduces variability in the

constraint. The constraint for varying bag can be thought of as being \either a

bag's bound changes or it does not"; the constraint for bounded bag reduces this

variability by making a choice (\the bag's bound does not change"). A similar

A Behavioral Notion of Subtyping � 25

varying_bag

(bound may change or stay the same)

dynamic_bag bag

(bound may change) (bound stays the same)

[...as in Fig. 10...]

Fig. 11. Another Type Family for Bags

counter

(value never decreases)

incrementer

(value never decreases)

doubler

(value doubles)

multiplier

(value multiplies)

Fig. 12. Type Family for Counters

example is a family of integer counters shown in Figure 12. When a counter is

advanced, we only know that its value gets bigger, so that the constraint is simply

constraint c� � c

The doubler and multiplier subtypes have stronger constraints. For example, a

multiplier's value always increases by a multiple, so that its constraint is:

constraint 9 n : int : [n > 0 ^ c� = n � c]

For a family like this, we might choose to have an advance method for counter (so

that each of its subtypes is constrained to have this method) or we might not, but

this choice is available to us only if we use the constraint method.

In the case of the bag family illustrated in Figure 10, all types in the hierarchy

might actually be implemented. However, sometimes supertypes are not intended

to be implemented; instead they are virtual types that let us de�ne the properties

all subtypes have in common. Varying bag is an example of such a type.

Virtual types are also needed when we construct a hierarchy for integers. Smaller

integers cannot be a subtype of larger integers because of observable di�erences in

behavior; for example, an over
ow exception that would occur when adding two

26 � B. Liskov and J. Wing

integer

64-bit-int regular_int

32-bit-int 16-bit-int

Fig. 13. Integer Family

32-bit integers would not occur if they were 64-bit integers. Also, larger integers

cannot be a subtype of smaller ones because exceptions do not occur when expected.

However, we clearly would like integers of di�erent sizes to be related. This is

accomplished by designing a virtual supertype that includes them. Such a hierarchy

is shown in Figure 13, where integer is a virtual type. Here integer types with

di�erent sizes are subtypes of integer. In addition, small integer types are subtypes

of regular int, another virtual type. Such a hierarchy might have a structure like

this, or it might be
atter by having all integer types be direct subtypes of integer.

7. COMPARING THE TWO DEFINITIONS

In this section, we compare the two de�nitions and show why we prefer the con-

straint approach.

The constraint approach is appealing because it is simple and direct. The speci-

�cation visually highlights a type's history properties that must be preserved by its

subtypes. Showing that an implication holds is more straightforward than showing

the diamond diagram holds.

Explicit constraints allow us to rule out unintended properties that happen to be

true because of an error in a method speci�cation. Having both the constraint and

the method speci�cations is a form of useful redundancy: If the two are not consis-

tent, this indicates an error in the speci�cation. The error can then be removed (by

changing either the constraint or some method speci�cation). Therefore, including

constraints in speci�cations makes for a more robust methodology.

Explicit constraints also allow us to state the common properties of type families

directly. With the explanation approach, it is sometimes necessary to introduce

extra methods in the supertype to ensure that history properties that do not hold for

subtypes cannot be proved for supertypes. An example was given in Section 6, when

we discussed the varying bag type. Being able to state everything declaratively

seems like a particularly important advantage of the constraint approach.

The constraint approach is more permissive than the explanation approach. The

explanation approach requires that the pre-conditions of the inherited methods

be identical to those of the corresponding supertype methods; with the constraint

approach, a subtype's method's pre-condition can be weaker than that of the super-

type. For example, consider the northeasterly-moving windows discussed in Section

5.3.2. It may be that the speci�er of this type did not intend to have such a strong

constraint on these windows. With the constraint approach, the intention is stated

A Behavioral Notion of Subtyping � 27

explicitly, e.g., the constraint might have been \true" in this case. But with the

explanation approach the stronger pre-condition rule is needed to ensure that any

history property that might be proved about the supertype can be proved about

the subtype.

A disadvantage of the constraint approach is the loss of the history rule. Users

are not permitted to use the history rule because if they did, they might be able

to prove history properties that a subtype did not ensure. Since there is no history

rule associated with the type speci�cation, the speci�er must be careful to de�ne

a strong enough constraint. For example, suppose the de�ner of fat set mistakenly

gives the following constraint:

constraint j s� j � j s j

Users would then be unable to deduce that once an element is added to a fat set

it will always be there (since they are not allowed to use the history rule). How-

ever, although speci�ers have to be more careful, getting the constraint part of the

speci�cation \right" is no more di�cult than getting the rest of the speci�cation

\right." And, in our experience the desired constraint is usually obvious.

The explanation approach has the advantage that it may be more appealing

to programmers because it is more intuitive and because it is operational. An

explanation is just a program and many people are better at thinking operationally

than de�nitionally. The explanation approach is especially nice in a common case:

the subtype adds some extra methods but does not change any of the existing ones.

Note that in this case the stricter pre-condition rule will automatically be satis�ed.

In summary, having an explicit constraint is attractive because the subtype re-

lation is simple, it allows us to state properties of type families declaratively, and

the constraint acts as a check on the correctness of a speci�cation. The drawback

is that if some property is left out of the constraint, there is no way users can make

use of it.

One �nal point: Any system (whether on-line or not) in which types are speci�ed

and subtype relations are de�ned must settle on just one of the two approaches.

Our own preference would be the constraint approach. However, someone designing

a type family may �nd it useful to keep both de�nitions in mind. For example, the

explanation approach may be easier to use when developing speci�cations of new

subtypes. It seems natural to debug the speci�cations of the extra methods in this

way, i.e., there is a mistake in the subtype hierarchy if an extra method cannot be

explained.

8. RELATED WORK

Some of the research on de�ning subtype relations is concerned with capturing

constraints on method signatures via the contra/covariance rules, such as those

used in languages like Trellis/Owl [Scha�ert, Cooper, Bullis, Kilian, and Wilpolt

1986], Emerald[Black, Hutchinson, Jul, Levy, and Carter 1987], Quest [Cardelli

1988], Ei�el [Meyer 1988], POOL [America 1990], and to a limited extent Modula-3

[Nelson 1991]. Our rules place constraints not just on the signatures of an object's

methods, but also on their behavior.

Our work is most similar to that of America [1991], who has proposed rules for

determining based on type speci�cations whether one type is a subtype of another.

28 � B. Liskov and J. Wing

Meyer [1988] also uses pre- and post-condition rules similar to America's and ours.

Cusack's [1991] approach of relating type speci�cations de�nes subtyping in terms

of strengthening state invariants. However, none of these authors considers the

problems introduced by extra mutators nor the preservation of history properties.

Therefore, they allow certain subtype relations that we forbid (e.g., intset could be

a subtype of fat set in these approaches).

The emphasis on semantics of abstract types is a prominent feature of the work

by Leavens. In his Ph.D. thesis Leavens [1989] de�nes types in terms of algebras and

subtyping in terms of a simulation relation between them. His simulation relations

are a more general form of our abstraction functions. However, for most practical

purposes, abstraction functions are adequate (compared to relations) and have the

advantage that we can freely use equality in assertions. The work by Bruce and

Wegner [1990] is similar; like Leavens, they base their work on algebras, but like

us, they use coercion functions with the substitution property. Leavens considered

only immutable types. Dhara [Dhara 1992; Dhara and Leavens 1992; Leavens and

Dhara 1992] extends Leavens' thesis work to deal with mutable types, but rules

out the cases where extra methods cause problems; the rules are de�ned just for

individual programs that have no aliasing between objects of related types, and

therefore state changes caused by a subtype's extra methods cannot be observed

through the supertype. Because of this restriction on aliasing they allow some

subtype relations to hold where we do not. For example, they allow mutable pairs

to be a subtype of immutable pairs whereas we do not.

In addition, these algebraic approaches are not constructive, i.e., they tell you

what to look for, but not how to prove that you got it. Utting [1992] does provide

a constructive approach, but he bases his work in the re�nement calculus language

[Morgan 1990], a formalismthat we believe is not very easy for programmers to deal

with. Utting is not concerned with preserving history properties in the presence of

extra methods and he also does not allow data re�nement between supertype and

subtype value spaces.

Others have worked on the speci�cation of types and subtypes. For example,

many have proposed Z as the basis of speci�cations of object types[Cusack and

Lai 1991; Duke and Duke 1990; Carrington, Duke, Duke, King, Rose, , and Smith

1989]; Goguen and Meseguer[1987] use FOOPS; Leavens and his colleagues use

Larch[Leavens 1991; Leavens and Weihl 1990; Dhara and Leavens 1992]. Though

several of these researchers separate the speci�cation of an object's creators from

its other methods, none has identi�ed the problem posed by the missing creators,

and thus none has provided an explicit solution to this problem.

In summary, our work is similar in spirit to that of America, Meyer, and Cusack,

because they take a speci�cation-based approach to de�ning a behavioral notion of

subtyping. It complements the algebraic model-based approach taken by Leavens,

Dhara, and Bruce and Wegner. Of the work that deal with mutability, none has

addressed the need to preserve history properties. Only we have a technique that

works in a general environment in which objects can be shared among possibly

concurrent users.

A Behavioral Notion of Subtyping � 29

9. SUMMARY

This paper de�nes a new notion of the subtype relation based on the semantic

properties of the subtype and supertype. An object's type determines both a set

of legal values and an interface with its environment (through calls on its meth-

ods). Thus, we are interested in preserving properties about supertype values and

methods when designing a subtype. We require that a subtype preserve the be-

havior of the supertype methods and also all invariant and history properties of its

supertype. We are particularly interested in an object's observable behavior (state

changes), thus motivating our focus on history properties and on mutable types

and mutators.

The paper presents two ways of de�ning the subtype relation, one using con-

straints and the other using the extension rule. Either of these approaches guaran-

tees that subtypes preserve their supertypes' properties. Ours is the �rst work to

deal with history properties, and to provide a way of determining the acceptability

of the \extra" methods in the presence of mutability.

The paper also presents a way to specify the semantic properties of types formally.

One reason we chose to base our approach on Larch is that Larch allows formal

proofs to be done entirely in terms of speci�cations. In fact, once the theorems

corresponding to our subtyping rules are formally stated in Larch, their proofs are

almost completely mechanical|a matter of symbol manipulation|and could be

done with the assistance of the Larch Prover[Garland and Guttag 1989].

In developing our de�nitions, we were motivated primarily by pragmatics. Our

intention is to capture the intuition programmers apply when designing type hier-

archies in object-oriented languages. However, intuition in the absence of precision

can often go astray or lead to confusion. This is why it has been unclear how to

organize certain type hierarchies such as integers. Our de�nition sheds light on

such hierarchies and helps in uncovering new designs. It also supports the kind

of reasoning that is needed to ensure that programs that work correctly using the

supertype continue to work correctly with the subtype.

We believe that programmers will �nd our approaches relatively easy to apply

and expect them to be used primarily in an informal way. The essence of a subtype

relationship (in either of our approaches) is expressed in the mappings. We hope

that the mappings will be de�ned as part of giving type and subtype speci�cations,

in much the same way that abstraction functions and representation invariants are

given as comments in a program that implements an abstract type. The proofs can

also be done at this point; they are usually trivial and can be done by inspection.

ACKNOWLEDGMENTS

Special thanks to John Reynolds who provided perspective and insight that led us

to explore alternative de�nitions of subtyping and their e�ect on our speci�cations.

We thank Gary Leavens for a helpful discussion on subtyping and pointers to related

work. In addition, Gary, John Guttag, Greg Morrisett, Bill Weihl, Eliot Moss, Amy

Moormann Zaremski, Mark Day, Sanjay Ghemawat, and Deborah Hwang gave use-

ful comments on earlier versions of this paper. We thank our associate editor, John

Mitchell, and the anonymous referees for their extremely useful feedback during the

review process.

30 � B. Liskov and J. Wing

Views and conclusions contained in this document are those of the authors and

should not be interpreted as necessarily representing o�cial policies or endorse-

ments, either expressed or implied, by the U.S. Government.

REFERENCES

America, P. 1990. A parallel object-oriented language with inheritance and subtyping. SIG-

PLAN 25, 10 (Oct.), 161{168.

America, P. 1991. Designing an object-oriented programming language with behavioural sub-

typing. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg (Eds.), Foundations

of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands,

May/June 1990, Volume 489 of LNCS, pp. 60{90. NY: Springer-Verlag.

Black, A. P., Hutchinson, N., Jul, E., Levy, H. M., and Carter, L. 1987. Distribution

and abstract types in Emerald. IEEE TSE 13, 1 (Jan.), 65{76.

Bruce, K. and Wegner, P. 1990. An algebraic model of subtype and inheritance. In F. Ban-

cilhon and P. Buneman (Eds.), Advances in Database Programming Language, pp. 75{96.

Addison-Wesley, Reading, MA.

Cardelli, L. 1988. A semantics of multiple inheritance. Information and Computation 76,

138{164.

Carrington, D., Duke, D., Duke, R., King, P., Rose, G., , and Smith, P. 1989. Object-

Z: An object oriented extension to Z. In FORTE89, International Conference on Formal

Description Techniques.

Cusack, E. 1991. Inheritance in object oriented Z. In Proceedings of ECOOP '91. Springer-

Verlag.

Cusack, E. and Lai, M. 1991. Object-oriented speci�cation in LOTOS and Z, or my cat really

is object-oriented! In J. W. de Bakker, W. P. de Roever, and G. Rozenberg (Eds.),

Foundations of Object Oriented Languages, pp. 179{202. Springer Verlag. LNCS 489.

Dahl, O.-J., Myrhaug, B., and Nygaard, K. 1970. SIMULA common base language. Tech-

nical Report 22, Norwegian Computing Center, Oslo, Norway.

Dhara, K. K. 1992. Subtyping among mutable types in object-oriented programming lan-

guages, Iowa State University, Ames, Iowa. Master's Thesis.

Dhara, K. K. and Leavens, G. T. 1992. Subtyping for mutable types in object-oriented

programming languages. Technical Report 92-36 (Nov.), Department of Computer Science,

Iowa State University, Ames, Iowa.

Duke, D. and Duke, R. 1990. A history model for classes in object-Z. In Proceedings of VDM

'90: VDM and Z. Springer-Verlag.

Garland, S. and Guttag, J. 1989. An overview of LP, the Larch Prover. In Proceedings

of the Third International Conference on Rewriting Techniques and Applications, Chapel

Hill, NC, pp. 137{151. Lecture Notes in Computer Science 355.

Goguen, J. A. and Meseguer, J. 1987. Unifying functional, object-oriented and relational

programming with logical semantics. In B. Shriver and P. Wegner (Eds.), Research

Directions in Object Oriented Programming. MIT Press.

Guttag, J. V., Horning, J. J., and Wing, J. M. 1985. The Larch family of speci�cation

languages. IEEE Software 2, 5 (Sept.), 24{36.

Halbert, D. C. and O'Brien, P. D. 1987. Using types and inheritance in object-oriented

programming. IEEE Software 4, 5 (Sept.), 71{79.

Hammer, M. and McLeod, D. 1981. A semantic database model. ACM Trans. Database

Systems 6, 3, 351{386.

Hoare, C. 1972. Proof of correctness of data representations. Acta Informatica 1, 1, 271{281.

Kapur, D. 1980. Towards a theory of abstract data types. Technical Report 237 (June), MIT

LCS. Ph.D. Thesis.

Leavens, G. 1989. Verifying object-oriented prograsm that use subtypes. Technical Report 439

(Feb.), MIT Laboratory for Computer Science. Ph.D. thesis.

A Behavioral Notion of Subtyping � 31

Leavens, G. T. 1991. Modular speci�cation and veri�cation of object-oriented programs. IEEE

Software 8, 4 (July), 72{80.

Leavens, G. T. and Dhara, K. K. 1992. A foundation for the model theory of abstract data

types with mutation and aliasing (preliminary version). Technical Report 92-35 (Nov.),

Department of Computer Science, Iowa State University, Ames, Iowa.

Leavens, G. T. and Weihl, W. E. 1990. Reasoning about object-oriented programs that use

subtypes. In ECOOP/OOPSLA '90 Proceedings.

Lipeck, U. 1992. Semantics and usage of defaults in speci�cations. In Foundations of Informa-

tion Systems Speci�cation and Design. Dagstuhl Seminar 9212 Report 35.

Liskov, B. 1992. Preliminary design of the Thor object-oriented database system. In Proc.

of the Software Technology Conference. DARPA. Also Programming Methodology Group

Memo 74, MIT Laboratory for Computer Science, Cambridge, MA, March 1992.

Liskov, B., Atkinson, R., Bloom, T.,Moss, E., Schaffert, J., Scheifler, R., and Snyder,

A. 1981. CLU Reference Manual. Springer-Verlag.

Liskov, B. and Guttag, J. 1985.Abstraction and Speci�cation in Program Design. MIT Press.

Liskov, B. and Wing, J. 1992. Family values: A semantic notion of subtyping. Technical

Report 562, MIT Lab. for Computer Science. Also available as CMU-CS-92-220.

Maier, D. and Stein, J. 1990. Development and implementation of an object-oriented DBMS.

In S. Zdonik and D. Maier (Eds.), Readings in Object-Oriented Database Systems, pp.

167{185. Morgan Kaufmann.

Meyer, B. 1988. Object-oriented Software Construction. Prentice Hall, New York.

Morgan, C. 1990. Programming from Speci�cations. Prentice Hall.

Nelson, G. 1991. Systems Programming with Modula-3. Prentice Hall.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. 1986. An introduction

to Trellis/Owl. In Proceedings of OOPSLA '86, pp. 9{16.

Scheid, J. and Holtsberg, S. 1992. Ina Jo speci�cation language reference manual. Technical

Report TM-6021/001/06 (June), Paramax Systems Corporation, A Unisys Company.

Stroustrup, B. 1986. The C++ Programming Language. Addison-Wesley.

Utting, M. 1992.An object-oriented re�nement calculuswith modular reasoning.Ph. D. thesis,

University of New South Wales, Australia.

Wing, J. M. 1983. A two-tiered approach to specifying programs. Technical Report 299 (June),

MIT Laboratory for Computer Science. Ph.D. thesis.

Received July 1993; revised April 1994; accepted May 1994.

