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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|θ) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked θ̂ ; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood l(θ), shown at the bottom. Note that even
though they look similar, the likelihood p(D|θ) is shown as a function of θ whereas the
conditional density p(x|θ) is shown as a function of x. Furthermore, as a function of θ ,
the likelihood p(D|θ) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 3.2. Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior
distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



x3

x1

x2

FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace—here,
the two-dimensional x1 − x2 subspace or a one-dimensional x1 subspace—there can
be greater overlap of the projected distributions, and hence greater Bayes error. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 3.4. The “training data” (black dots) were selected from a quadratic function
plus Gaussian noise, i.e., f (x) = ax2+bx+c+ε where p(ε) ∼ N(0, σ 2). The 10th-degree
polynomial shown fits the data perfectly, but we desire instead the second-order func-
tion f (x), because it would lead to better predictions for new samples. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 3.6. Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors W1 and W2. Informally, multiple discriminant
methods seek the optimum such subspace, that is, the one with the greatest separation of
the projected distributions for a given total within-scatter matrix, here as associated with
W1. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 3.7. The search for the best model via the EM algorithm starts with some initial
value of the model parameters, θ0. Then, via the M step, the optimal θ1 is found. Next,
θ1 is held constant and the value θ2 is found that optimizes Q(·; ·). This process iterates
until no value of θ can be found that will increase Q(·; ·). Note in particular that
this is different from a gradient search. For example here θ1 is the global optimum
(given fixed θ0), and would not necessarily have been found via gradient search. (In this
illustration, Q(·; ·) is shown symmetric in its arguments; this need not be the case in
general, however.) From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



ω3

ω2

ω1

a12

a21
a23

a32

a31

a13

a33a11

a22

FIGURE 3.8. The discrete states, ωi , in a basic Markov model are represented by nodes,
and the transition probabilities, aij , are represented by links. In a first-order discrete-time
Markov model, at any step t the full system is in a particular state ω(t). The state at step
t + 1 is a random function that depends solely on the state at step t and the transi-
tion probabilities. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 3.9. Three hidden units in an HMM and the transitions between them are
shown in black while the visible states and the emission probabilities of visible states
are shown in red. This model shows all transitions as being possible; in other HMMs,
some such candidate transitions are not allowed. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 3.10. The computation of probabilities by the Forward algorithm can be visu-
alized by means of a trellis—a sort of “unfolding” of the HMM through time. Suppose
we seek the probability that the HMM was in state ω2 at t = 3 and generated the ob-
served visible symbol up through that step (including the observed visible symbol vk ).
The probability the HMM was in state ωj(t = 2) and generated the observed sequence
through t = 2 is αj(2) for j = 1, 2, . . . , c. To find α2(3) we must sum these and multiply
the probability that state ω2 emitted the observed symbol vk . Formally, for this particular
illustration we have α2(3) = b2k

∑c
j=1 αj(2)aj2. From: Richard O. Duda, Peter E. Hart,

and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 3.11. A left-to-right HMM commonly used in speech recognition. For instance,
such a model could describe the utterance “viterbi,” where ω1 represents the phoneme
/v/, ω2 represents /i/,. . . , and ω0 a final silent state. Such a left-to-right model is more
restrictive than the general HMM in Fig. 3.9 because it precludes transitions “back” in
time. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 3.12. The decoding algorithm finds at each time step t the state that has the
highest probability of having come from the previous step and generated the observed
visible state vk . The full path is the sequence of such states. Because this is a local
optimization (dependent only upon the single previous time step, not the full sequence),
the algorithm does not guarantee that the path is indeed allowable. For instance, it
might be possible that the maximum at t = 5 is ω1 and at t = 6 is ω2, and thus
these would appear in the path. This can even occur if a12 = P(ω2(t + 1)|ω1(t)) = 0,
precluding that transition. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.


