Creating Materials and Energy Solutions

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

IOWA STATE UNIVERSITY

Aluminum/calcium deformation metal-metal composites

Charlie Czahor WESEP 594 Seminar March 8, 2018

Overview

- Background and Motivation
- Sample Preparation
- Recent Results
 - Microstructure/Conversion
 - Conductivity
 - Tensile Strength
- Prospects for Installation
- Conclusions and Future Work

U.S. DEPARTMENT OF ENERGY

E. Morhardt, "Power Transmission: the Rise of the Supergrid", *The Economist*, 2017, pp. 71-72.

Background and Motivation

- Objective: Develop <u>cost competitive, lightweight, high strength,</u> <u>high conductivity</u> material for overhead power transmission.
- Increasing renewable generation capacity in remote areas requires long distance transmission to reach population centers.
- High voltage direct current (HVDC) is the preferred technology for long distance transmission.

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY Creating Materials and Energy Solutions

Current High Voltage Conductor Designs

- Aluminum Conductor Steel Reinforced (ACSR)
- All Aluminum Alloy Conductor (AAAC)

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

- Aluminum Conductor Composite Core (ACCC)
- Aluminum Conductor Composite Reinforced (ACCR)
- Aluminum Conductor Aluminum-Alloy Reinforced (ACAR)

An Alternative Approach

- Deformation Metal-Metal Composites (DMMCs) can achieve both high strength and high conductivity.
- DMMCs utilize ductile metals in both the matrix and reinforcement phase.
- Extensive deformation allows filaments to reach sub-micron level.
- High strength with **<u>no steel core</u>**.

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

* 1.	and a		4
	the chinese	2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	
a dec	A		
and But	and and	0.54 000	- 100
<u>50 μm</u>			1

Sample Preparation

U.S. DEPARTMENT OF ENERGY

Electrical Conductivity

- Close to rule of mixtures value at low strain
 - Drop in conductivity at high strain from scattering at interfaces
- Conversion to Al₂Ca surprisingly has little effect

Creating Materials and Energy Solutions

Ultimate Tensile Strength

- Hall-Petch strengthening with smaller filament size
- Al₂Ca reinforced wire stronger for all sizes

Filament Thickness

$$t = d_o e^{-\frac{1}{2}\eta}$$

Unconverted
 $UTS = -10.7 + \frac{148.0}{\sqrt{t}}$
Converted
 $UTS = 32.3 + \frac{146.8}{\sqrt{t}}$

Comparison to Existing Conductors

- Specific strength as great as two times that of ACSR
- Able to tailor composite properties for a specific application
- Modified properties ³/₂
 with monolithic construction

Creating Materials and Energy Solutions

Potential Savings Using Al/Al₂Ca Composites

Scenario	Constant with base case	Varied	Design Parameters
ACSR	ACSR As built As built	As built	Conductor Cross Section 1171 mm ²
10011			Voltage ±500 kV
Case 1	Tower spacing and weight per tower	Conductor Size	Rated Power 3100 MW
Case 2	Losses and weight per	Tower spacing and	Number of Towers 4200
	tower	Conductor Size	Current 3100 A

Creating Materials & Energy Solutio U.S. DEPARTMENT OF ENERGY Creating Materials and Energy Solutions

Ongoing and Future Work

- Development of gas-phase passivation for use during atomization of Ca powder.
- Enabling industrial production of high purity Al powder.
- Commercial extrusion sample for size conductor testing

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY Creating Materials and Energy Solutions

Conclusions

- Metal-metal composites have potential to be used as overhead conductors.
- Converted Al/Ca composite were produced with high strength, high electrical conductivity, and low density.
- Weigh reduction and high strength can increase tower spacing.
- Several steps remain to move technology forward.

Acknowledgements

Al/Ca Wire Team

Trevor Riedemann Dr. Iver Anderson Dr. Alan Russell

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

DE-AC02-07CH11358

Other Contributors

Ames Lab Powder Group

Dr. Iver Anderson Ross Anderson Dave Byrd Stephanie Choquette Aaron Kassen Emily Rinko Tim Prost Trevor Riedemann Jordan Tiarks Stacey Trytek Dr. Emma White

Extrusion: Soren Mueller-(TU Berlin) Tensile Testing: Charles Spellman (Psylotech), Matt Besser(Ames Lab) Conductivity: Gaoyuan Ouyang (Ames Lab)

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY