WIND ENERGY AND NEGATIVE PRICING

Is Production Tax Credit to Blame?

Yu Wang
Iowa State University
Shan Zhou
Georgia Institute of Technology

Production Tax Credit has Stimulated Wind Capacity Growth

Impact of Production Tax Credit Expiration and Extension on U.S. Annual Installed Wind Capacity

Chart by Union of Concerned Scientists

Negative price is the signal for down-regulation

Wind power and negative prices

- Wind power production is related to electricity wholesale prices
 - Renewable energy reduce electricity price in wholesale markets (Moreno, López, and García-Álvarez 2012; Traber and Kemfert 2011; Woo et al. 2011)
 - In regions with high wind penetration, wind production can cause spikes of negative prices (Brandstätt, Brunekreeft, and Jahnke 2011; Nicolosi 2010).
- Negative prices are results of system imbalance
 - In the central western European market, negative prices are correlated with forecast errors of load and wind and solar generation (Brijs et al. 2015)
- Negative prices are signals for downward dispatching generation, and reliable grid needs the downward flexibility
- PTC affects wind capacity installation, and enables wind producers to bid in negative prices

Research question

- The "incompressibility of power systems" is a barrier for renewable power integration
- Negative prices are "market distortions" that need to be addressed
- "PTC aggravates the problem of negative pricing"
- Does PTC cause more negative pricing hours?

Conceptual framework

Model

$$D = \alpha + \beta_0^* PTC + \beta_i^* X_i + \varepsilon$$

Where, D is the dependent variable, hour of negative prices

 β_0 is the coefficient of the policy variable

X_i is the non-policy independent variables, including wind generation, short-term load forecast error, day-ahead mid-term load forecast error, minimum generation events, and transmission outages

 β_i is the coefficient of X_i

α is the constant

ε is the error term

Data

- Real-time LMP
- Four MISO regional trading hubs
 - Michigan hub
 - Indiana hub
 - Minnesota hub
 - Illinois hub
- Data is extracted from MISO's monthly market assessment reports and information forum presentations
- From 01/2012 to 06/2015

Table 1. Summary of the independent and dependent variables

Variable	Unit	Obs	Mean	Std. Dev.	Min	Max
Negative price	hour	42	23	22.3	0	78
Wind generation	GWh	42	3048.7	836.4	1371	4637
Transmission outage	#	42	3947.2	1160.8	1753	6000
Minimum generation event	#	42	0.2	0.5	0	2
PTC1	-	42	0.4	0.5	0	1
PTC2	-	42	0.6	0.7	0	2
Short-term load forecast error	%	42	0.0084	0.0390	0.0016	0.255
DA mid-term load forecast error	%	42	0.0129	0.0038	0.007	0.0216

Code	PTC1	PTC2
1/12-12/13	1	2
1/14-12/14	0	1
1/15 – 6/15	0	0

Friday, October 23, 15

Results

Results

Table 3. Regression results for negative pricing hours

	Mode	el 1	Model 2		
Variable		Robust		Robust	
	Coefficient	Std. Err.	Coefficient	Std. Err.	
PTC1	-7.8	7.7	-	-	
PTC2			-6.5	4.5	
lg(Wind generation)	-10.4	14.5	-12.7	13.9	
lg(Short-term load forecast error)	74.7*	33.4	80.1**	29.1	
lg(Day-ahead mid-term load forecast error)	11.1	16.9	12.5	16.7	
Minimum generation event	26.2**	4.8	25.4**	5.0	
lg(Transmission outage)	4.6	11.6	4.2	12.0	
constant	568	304	633	271	
R^2	0.3844		0.3906		

^{*} p<0.05, ** p<0.01

Testing indirect effect

Dependent Variable	lg(Wind generation)		lg(Wind generation)		Negative Prices		Negative Prices	
Dependent variable		Robust		Robust		Robust		Robust
	Coeff.	Std. Err.	Coeff.	Std. Err.	Coeff.	Std. Err.	Coeff.	Std. Err.
PTC1	-0.21**	0.07	-	-	-5.7	7.5	-	_
PTC2	-	-	-0.20*	0.10	-	-	-6.3	8.2
lg(Short-term load								
forecast error)	1.34**	0.31	1.18**	0.31	60.7*	27.7	57.0*	22.1
lg(Day-ahead mid-term								
load forecast error)	-0.19	0.13	-0.22	0.14	13.1	16.5	12.7	15.4
Minimum generation								
event	0.05	0.09	0.03	0.08	25.6**	5.1	24.7**	5.6
lg(Transmission								
outage)	0.13	0.11	0.21*	0.10	3.2	11.0	4.9	11.2
Constant	14.27	2.43	12.65	2.35	419.4	239.2	383.4	188.8
\mathbb{R}^2	0.6814		0.6493		0.3779		0.3753	

Friday, October 23, 15

Case Study - Texas

- Largest wind producer in the U.S.
- 39.4 GWh in 2014
- 22% of national wind energy
- Over 10% of Texas electricity

Fewer wind curtailments and negative prices after grid expansion

Texas (ERCOT) wind curtailments vs. negative West Hub real-time electricity prices
January 2011 - April 2014

Case Study – Iowa Lakers Electric Cooperative

- lowa is the 2nd largest wind producer in the U.S.
- Iowa Lakes Electric is a nonprofit distribution-only coop
- Owns 14 wind turbines with a total capacity of 21 MW
- The biggest installed wind capacity of any U.S. distribution-only coop

Case Study – Germany's energy storage

- Germany is the largest wind energy producer in Europe with 50.670 TWh electricity and 31,331.9 MW installed wind power net capacity
- Huntorf compressed air energy storage plant (CASE)
- CASE is the world's first and still largest utility-scale compressed air storage plant
- Capacity: 321 MW
- Short rump up time 6 minutes

Conclusions

- Current data is rather limited in estimating PTC's impact on negative prices
- Negative pricing hours are positively correlated with load forecast errors and minimum generation events
- Case studies of high wind penetration regions suggest solutions for better wind integration: transmission expansion, efficient siting close to local demand centers, and energy storage