How do I think Research

Anupam Sharma

Assistant Professor, Aerospace Engineering

sharma@iastate.edu

Audience

This talk is not for absolute geniuses ... they don't need any advice

... it is for the 99.99% of the rest (like me) who venture into research

What's Genius

Genius is 1% inspiration, 99% perspiration

Portrait of Thomas Edison

What's a PhD

http://matt.might.net/articles/phd-school-in-

pictures/

Borrowed from: Matthew Might (Prof. at Univ. of Utah)

My Background & Research Interests

- Background
 - 7 years at GE Global Research Center
 - PhD & MS: Penn State in Aero
 - BS: IIT Bombay in Aero
- Research interests:
 - Modeling of aerodynamically generated sound
 - Turbomachines: fan / compressors
 - Wind turbines
 - Sound propagation
 - Aerodynamics of wind turbines & farms
 - Single turbine wake evolution, etc.
 - Turbine-turbine & weather-turbine interactions

Difference between Industrial & Academic Research

Industry

- Problem identified for you
- Imprecise environment
 don't know everything
 for a complex system

 Impact → real products that affect daily lives

Academia

You find the problem

- Pristine/ideal environment → know everything precisely for a simple system
- Impact can be elusive ... distant ... but revolutionary

It All Begins with an Idea

 Ideas don't just present themselves ... you have to generate them

Not your adviser ... you!

How does one generate ideas?

A recipe ... simple to understand ... difficult to implement ... sure to succeed

Five Steps to Idea Generation

- 1. Gathering of raw material
- 2. Digestion of gathered material
- 3. Incubation stage
- 4. Birth of the idea
- 5. Shaping & development of the idea

Step #1: Gathering Raw Material

1. Specific

- Literature review; data; talking to people who have worked in the area
- Cover all bases ... can be exhausting but very rewarding in the end
- Spend a lot of time here ... much more than you think is satisfactory

General

Read enough about peripheral topics ... ideas are a new combination of old things!

Organize your data

Step #2: Digestion of Gathered Mtl.

- Think like a cow! "Masticate" the material
- Rephrase each data/paper in your own words ... specific contributions?
 Assumptions? To do items? Gaps?
- Divide gathered material into subgroups ... identify themes / trends
- A lot of thinking goes here. Think hard!
 - Elon Musk: "If your head doesn't hurt, you are not thinking hard enough"
- As you analyze data you will find more references ...
 - Invariably go back & forth between steps 1 & 2
 - At some point you will close the loop (on most items) ... judiciously choose when to stop

Step #3: Incubation Stage

- Conscious to sub-conscious brain
- I am sure you have all experienced solving a seemingly tough problem easily after a break/nap/some other activity that took your attention to something else
 - Break old links and form new links that lead to problem solving
- Don't use this time to procrastinate ... you need to have done steps #1 & #2 thoroughly to gain anything out of this
- Several half-baked ideas will come at this stage ... evaluate them objectively and be ready to trash a bunch

Step #4: The Eureka Moment!

The idea will just pop up in your mind in most unusual of places ... at most unusual times!

Step #5: Shape & Develop your Idea

- Take your newborn idea to the world of reality
- Do the necessary work to show your idea has merit
 - Proof-of-concept results
 - Validation
 - Application
- More of this required in industry where the output is palpable products
- In academia you still need this to publish papers, get grants etc.

Specific Examples

1. Open Rotor noise modeling

2. A novel dual-rotor turbine concept

3. Influence of nocturnal low-level jets on wind turbine aero & noise

4. Role of wake turbulence in noise

EXAMPLE #1

Open Rotor

Counter-rotating propellers or fans

Concept proposed & flight tested in 1980s ... "unducted fan" (UDF)

- Configurations:
 - Pusher or puller configuration
 - Wing or fuselage mounted

Fuselage-mounted, pusher configuration

UDF / Open Rotor – History / Future

Borrowed from: http://cdn3.chartsbin.com

Old ideas recycled! shortsightedness ... ?

Step #1: Gathering Raw Material

Material (specific)

- 1980s test data:
 - Many configurations
 - aero & acoustic data
- Publications
- Numerical / analytical models developed earlier

Material (general)

- Noise modeling techniques
 - For ducted engines
- Turbomachinery aerodynamics

Acoustic data sample from 1980s tests

Probably still didn't spend enough time on this!

Step #2: Digestion of Gathered Mtl.

- What is important & when
 - Community noise; tonal; during takeoff
- What produces noise
 - Chopping of upstream bladerow wake/vortex by downstream rotor
- Mechanism linear / non-linear?
- Near-field / far-field?
- What approximations can be made?
- Previous methods codes → ignored blade geometry ...
 semi-empirical → can't guide blade design

Steps #3 & #4: The Idea

- Use linearized, frequency domain CFD methodology for homogeneous inflow
 - Build upon existing capability for ducted engines

Sample Results

Total pressure field

Aft bladerow - view looking downstream

Prediction compared to data

Step #5: Shape & Develop Idea

- It took a year to get the first working piece of code ... applied to one baseline geometry
- Performed several calculations to show trend prediction capability
- Refined several things in the software for robustness, speed, ease of use etc.
- Published 2 years after we had all the results ... Proprietary concerns!
- Finally, GE Aviation adopted it in their design process! Success at last

EXAMPLE #2

Dual Rotor Wind Turbine

Project with Prof. Hui Hu in Aerospace Engineering

Idea: mitigate root and wake losses by using an aux. rotor in HAWTs

Step #1: Gathering Raw Material

Material:

- Working on root loss quantification
- Lit. review + analyses → root loss ~ 5% performance
- Patent / literature search → other concepts (VGs, etc.)
- Developed methods to analyze aerodynamic performance of wind turbines

Certainly didn't spend enough time on this!

Step #2: Digestion of Gathered Mtl.

Loads
Manufacturing
Transportation

Rotor geometry that is aerodynamically inefficient in the root region

Loads are inevitable ... consequence of producing torque

- Aero performance \leftarrow torque force
- Loads ← thrust force

Another means to harness energy near the root region?

Steps #3 & #4: The Idea

 \rightarrow IDEA: use 2 rotors:

Rotor #1: Extracts energy near the hub

Rotor #2: Extracts energy in the outboard

region

Another potential use:

tailor wake shear → mitigate wake losses

Step #5: Shape & Develop Idea

- Carried out back-of-the-envelope analyses
- Developed numerical framework to design dual-rotor turbines
- Discussed with Prog. managers at Iowa Energy Center (IEC) & NSF
- Seed money from IEC ... proposal to NSF under evaluation
 ... hope will lead to a working product one day

A TIP

Become a Weed

Become hardy as weeds ...

... 1 idea gets thrashed, smile & work towards another

Conclusion

- Read, observe, & analyze a lot!
 - When you think you are done, spend 2X more effort
 - A tall pyramid requires a very wide base
- Understand the raw material
 - Rephrasing helps
 - Identify gaps / opportunities
 - Think hard ... till your head hurts
- Focus on the above two ... ideas will come
 - Roger Federer: "I try to give myself opportunities"
- When you get an idea, nurture it ... but, don't get too hung up!
 - Be ready to throw away ideas upon critical, objective review. You have many more in store!
 - Become a weed!