IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

learn invent impact

Design of Large Scale Permanent Magnet Synchronous Generators for Wind Turbines

Helena Khazdozian

Wind Energy Science, Engineering and Policy Major Department: Electrical and Computer Engineering Advisor: Dr. David Jiles

IOWA STATE UNIVERSITY

Permanent Magnets

Permanent Magnet Synchronous Generators (PMSGs)

Source: http://www.digikey.com/en-US/articles/techzone/2012/sep/ev-driveelectronics-evolve-to-support-rare-earth-free-motor-technologies Source: T. Chan. *Power Engineering Society (PES) General Meeting, IEEE,* Tampa, FL, 2007, 1-6.

Problem Definition

- Previously: Efficiency improvements of PMSGs by investigation of magnetic materials
- 20% wind energy electricity generation by 2030 proposed by Department of Energy
- Revisited: Innovative design of 10MW PMSG

learn invent impact

Doubly-Fed Induction Generators (DFIG)

Source: http://www.goldwindamerica.com/technology-capabilities/pmdd/

Wind Turbine Failure Rates

Most Frequently Reported Component Damage*

ece.iastate.edu

learn invent impact

Permanent Magnet Synchronous Generators

Source: http://www.goldwindamerica.com/technology-capabilities/pmdd/

Source: http://www.rpi.edu/cfes/news-andevents/Wind%20Workshop/Development%20Challenges%20of% 20PM_Generator_RPI_Qu_v8.pdf

Problem Definition

- At 5.5MW Rated Power
 - Cost of Generator
 - PMSG ~ 1.3 times the cost of DFIG
 - PMSG < DFIG including gearbox replacement
- At 10MW Rated Power
 - Weight of PMSG becomes prohibitive

$$P \propto (T = KD^{2}L)$$
$$K = \frac{k_{wl}\pi^{2}}{4\sqrt{2}}BA$$

P=power T=torque D=rotor diameter L=stack length B=average rotor surface flux density A=electrical loading

Can rotor surface flux density be increased to allow for a smaller generator?

Current Work

- Reduce weight of generator by 25%
 - Reduce volume of permanent magnet?
 - What are the theoretical magnetic properties to maintain power output with smaller permanent magnet volume?
 - Can this theoretical material allow for size reduction of the PMSG?

 $\mathsf{P} \propto [\mathsf{T} = f(\mathsf{B}\mathsf{D}^2\mathsf{L})]$

Design Choice: Air Gap Orientation

stator with

Source: Infolytica.com

Design Choice: Permanent Magnet Topology

Interior

Bread loaf

Inset

Surface mounted

Spoke

Selected Design Choices

- ABB Recommendations
 - <u>Inner</u> or outer rotor
 - Outer rotor preferred for direct-drive (size reduction advantages)
 - BUT use inner rotor for now (simpler)

- Radial flux air gap
- Surface mounted, inset or bread loaf permanent magnet topology
- NdFeB permanent magnet grades:
 - N35SH
 - N35UH

Current Work

Radial, inner rotor, surface mounted PMG

H. A. Khazdozian, R. L. Hadimani, D. C. Jiles, "Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays," presented at American Physical Society March Meeting 2014, Denver, CO., 2014.

Current Work

Operating Point of PMG for Various Grades of NdFeB Permanent Magnets

ece.iastate.edu

learn invent impact

Results

Efficiency of PMG at Rotor Angle of 20°

learn invent impact

Optimization

Implications

Future Work

- Influence of rare earths on stock market performance of wind energy
- Traction Motors
 - Suggestion from ABB
- Halbach Arrays
 - Could be used to focus flux

References

- 1. O. Gutfleisch *et al.* "Magnetic Materials and Devices for the 21st Centuery: Stronger, Lighter, and More Energy Efficient," *Adv. Mater.* 23, 2011, 821-842.
- 2. L. H. Lewis, F. Jiménez-Villacorta. "Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation," *Metallurgical and Materials Trans. A* 44A, 2013, S2-S20.
- 3. T. Chan. "Permanent-Magnet Machines for Distributed Power Generation: A Review," *Power Engineering Society (PES) General Meeting, IEEE,* Tampa, FL, 2007, 1-6.
- 4. D. C. Hanselman. *Permanent-Magnet Motor Design*. McGraw-Hill Inc., New York, 1994.
- 5. J. R. Hendershot Jr., TJE Miller. *Design of Brushless Permanent-Magnet Motors*. Magna Physics Publications and Clarendon Press, Oxford, 1994.
- 6. H. A. Khazdozian, R. L. Hadimani, D. C. Jiles, "Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays," presented at American Physical Society March Meeting 2014, Denver, CO., 2014.

Thank you for your time

Questions?

ece.iastate.edu

learn invent impact