WESEP International Experience

Computational blade design at Denmark Technical University (DTU) and Braunschweig University of Technology (TU Braunschweig)

Austin J. Herrema

Iowa State University

Wind Energy Science, Engineering, and Policy Program (WESEP)

Mechanical Engineering

WESEP 594 Seminar, 20 September 2016

Geometry Model

Finite Element Analysis

ANSYS

NuMAD: Sandia National Labs

User-driven design iteration

Loads from **FAST** – no-shear, 11.3 m/s wind

- Power prediction given by NREL's FAST
- MATLAB's pattern search algorithm drives optimization

Design	Func. Evals	Tip Defl. (m)	Max. Strain	Mass (kg)	Power (kW)	$\mathcal{J}_{\mathrm{b}}(\mathbf{y};\mathbf{x}_{\mathrm{b}})$	Add. Profit (millions \$)
Original	_	5.75	0.0083	40,912	5,265	100.00%	_
Case 1	128	5.75	0.0100	41,650	5,302	99.49%	6.37
Case 2	102	5.12	0.0083	43,265	5,311	99.78%	2.75

Optimization 1: Tip deflection constrained

Optimization 2: Tip deflection and strain constrained

Design	Func. Evals	Tip Defl. (m)	Max. Strain	Mass (kg)	Power (kW)	$\mathcal{J}_{\mathrm{b}}(\mathbf{y};\mathbf{x}_{\mathrm{b}})$	Add. Profit (millions \$)
Original	_	5.75	0.0083	40,912	5,265	100.00%	_
Case 1	128	5.75	0.0100	41,650	5,302	99.49%	6.37
Case 2	102	5.12	0.0083	43,265	5,311	99.78%	2.75

Proof of concept—can't trust these results!

- Blades don't have shear webs
- Analysis is performed for only one wind condition

INTERNATIONAL EXPERIENCE TIMELINE

- Fall 2015: Discussions with major professor, confirm interest with collaborator in Germany
- Mid-December 2015: Email DTU Section Head of Aerodynamic Design, Flemming Rasmussen
 - "...I am fully funded for this experience and would not require compensation..."
 - Response a week later, put in contact with senior researcher Frederik
 Zahle to find relevant project
- February 2016: Confirm AirBnB housing in Roskilde, Denmark
- February 2016: Purchase flights
- March 2016: Confirm university guest housing in Braunschweig, Germany
- May 27, 2016: Depart for Roskilde, Denmark
 - Approximately 7 week stay
- July 15, 2016: Take train from Roskilde to Braunschweig
 - Approximately 4 week stay
- August 13, 2016: Return to Des Moines

ROSKLIDE, DENMARK Lille Valby mmimm Store Valby Campus Veddelev Koldekildevej Marbjerg Vikingeskibsmusee ROCKWOOL A/S / ROCKPANEL Group

Elme Bege

OTHER THINGS IN DENMARK

Austin Herrema – Iowa State University

- Advanced computational blade design techniques
 - IEC standard-based rotor optimization—about 1000 load cases
 - 10 MW blade design
 - Close relationships with Siemens, LM, Vestas
- FUSED-Wind
 - Collaboration with NREL
 - HAWC2 or FAST
 - Development of programmatic wrapper for FAST

 Development of FAST wrapper for FUSED-Wind with Katherine Dykes (NREL) and Frederik Zahle (DTU)

Parallel execution of FAST cases within OpenMDAO

```
# Setup input config dictionary of dictionaries.
cfg_master = {} #master config dictionary (dictionary of dictionaries)
caseids = ['case1','case2','case3','case4']
TMax = [30, 22, 40, 45]
for i in range(4):
   # Create dictionary for this particular case
    cfg = \{\}
    cfg['fst_runfile'] = '{0}.fst'.format(caseids[i])
    cfg['fst_rundir'] = os.path.join('./rundir/',caseids[i])
    cfg['TMax'] = TMax[i]
   # These parameters the same for all cases
    cfq['fst masterfile'] = 'Test01.fst'
    cfg['fst_masterdir']= './FST8inputfiles/'
    cfg['fst_exe'] = '../../../FAST_v8/bin/FAST_glin64'
    cfg['libmap'] = '../../../FAST_v8/bin/libmap-1.20.10.dylib'
    cfg['ad_file_type'] = 1
   # Put dictionary into master dictionary, keyed by caseid
    cfg_master[caseids[i]] = cfg
# Add parallel group to omdao problem, pass in master config file
root.add('ParallelFASTCases', FST8AeroElasticSolver(cfg_master, caseids))
```


TRIP TO BRAUNSCHWEIG

TRIP TO BRAUNSCHWEIG

BRAUNSCHWEIG, GERMANY

HOUSING IN BRAUNSCHWEIG

HOUSING IN BRAUNSCHWEIG

HOUSING IN BRAUNSCHWEIG

TU BRAUNSCHWEIG EXPERIENCE

TU BRAUNSCHWEIG EXPERIENCE

TU BRAUNSCHWEIG EXPERIENCE

- Josef Kiendl
 - Expert on isogeometric analysis, thin shell analysis

 a_3 = normal unit vector

$$a_3^A \cdot a_3^B = ||a_3^A|| ||a_3^B|| \cos(\theta) = \cos(\theta)$$

(angle between two patches)

$$\dot{a_3^A} \cdot \dot{a_3^B} = \left\| \dot{a_3^A} \right\| \left\| \dot{a_3^B} \right\| \cos(\dot{\theta}) = \cos(\dot{\theta})$$

Each gauss point:

- 1) Project curve gauss point to each patch
- 2) Calculate normal vectors
- 3) Calculate penalty contribution
- 4) Assemble to global degrees of freedom

SUMMARY

- Highly recommend taking advantage of opportunity!
 - Beneficial to research
 - Beneficial for networking
 - Beneficial to résumé/CV
- Creates opportunities to experience new places

Rome

TIPS

- Check with DTU if you're interested!
- Try to have a good idea of what work you will accomplish beforehand, but be flexible
- Don't be afraid to ask questions
- Travel insurance Iowa State Study Abroad
 - Danette Bontrager
- Register trip with U.S. Department of State
 - step.state.gov
- Consider AirBnB for housing needs good to have another local contact

Thank you!

QUESTIONS