Optimal Design of Inter-regional Transmission Grids

Armando L. Figueroa Acevedo 4/3/2017

Special thanks to Hussam Nosair, Ali Jahanbani and Abhinav Venkatraman for their contribution to this work.

Two weeks ago...

Developing critical national infrastructure for low carbon futures: Can we/should we do it?"?

James McCalley London Professor of Power Systems Engineering Iowa State University

WESEP 594, March 20, 2017

Presentation Overview

- 1. High-capacity inter-regional transmission studies
- 2. The Interconnections Seams Project
- 3. Project features
- 4. The <u>macrogrid</u> overlay
- 5. Issues to building it
- 6. Possible paths forward
- 7. Compare to China
- 8. Conclusions

+ Environmental Costs

Year N

Operational, planning, environmental constraints

SUBJECT TO:

N)(G

Investment constraints

Uncertainty characterization

2

Shift in Wind Resources Quality?

• 100m towers, 3 tower types, 3 bins

Supply curves for 100-m wind

Modified supply curves \rightarrow Larger LCOE gap between PJM and Midwest (MISO and SPP)

What about transmission?

HVDC back-to-back facilities b	between the Eastern and	Western interconnections

	Facility Name	Location	<u>Vendor</u>	Converter Type	<u>Voltage</u>	Rating	Commissioning year
1	Miles City	Miles City, MT	GE	LCC	82 kV	200 MW	1985
2	Rapid City	Rapid City, SD	ABB	CCC	13 kV	200 MW	2003
3	David A. Hamel	Stegall, NE	GE	LCC	50 kV	100 MW	1977
4	Virginia Smith	Sidney, NE	Siemens	LCC	50 kV	200 MW	1988
5	Lamar	Lamar, CO	Siemens	LCC	63.6 kV	210 MW	2005
6	Eddy County	Artesia, NM	GE	LCC	82 kV	200 MW	1983
0	Blackwater	Clovis, NM	ABB	LCC	60 kV	200 MW	1984

Moving rich wind energy from the Great Plains to the West and East coasts requires major transmission capacity between Eastern and Wester Interconnection

CEP Bus	State	Minimum LCOE Difference
BEPC	North Dakota	29.68009703
CBPC-NIPCO	lowa	26.78559198
CSWS+	Oklahoma	33.14189126
EES-ARK	Arkansas	31.92660331
IA-E	lowa	29.16653349
KCPL+	Kansas	34.77951558
LES	Nebraska	34.40449928
MDU	North Dakota	34.88530142

Wind integration issues

Variability and Uncertainty of wind power

Correlation between maximum wind and maximum load is low

Hypothesis

- The benefits of a well-design inter-regional transmission grid outweigh its costs under a future with high wind and solar generation
- Value drivers
 - Geo-diversity of wind and solar resources (smoothing effect)
 - Geo-diversity of load (time-zone differences)
 - Reserves sharing opportunities

		Benefit/Cost	1.25
Benefit	Total	Ratio	
Load Diversity	\$ 21.0 Billion	46%	
Frequency Response	\$ 9.8 Billion	22%	
Wind Diversity	\$ 2.2 Billion	5%	
Other Energy Based Benefits	\$ 12.2 Billion	27%	
Grand Total	\$45.3 Billion		7

Economic Summary

	Design 1	Design 2a		Design 2b		Design 3	
Objective Function	Total	Total	Delta (Value)	Total	Delta (Value)	Total	Delta (Value)
Gen Inv. Cost(B\$)	678.0	703.0	25.0	679.3	0.0	720.1	42.1
Fixed O&M Cost (B\$)	465.0	451.0	-14.0	463.0	-2.0	452.7	-12.3
Variable O&M Cost (B\$)	73.0	71.0	-2.0	71.8	-1.2	68.9	-4.1
Fuel Cost (B\$)	528.0	509.0	-19.0	510.5	-17.5	482.1	-45.9
Carbon Cost (B\$)	454.0	434.0	-20.0	436.7	-17.3	410.1	-43.9
Line Inv. Cost (B\$)	43.1	49.9	6.8	49.5	6.4	50.4	7.3
Total (B\$)	2,241.0	2,217.0	-24.0	2,209.5	-31.5	2,189.7	-51.3

Robustness Tests & Sensitivities

- Robustness
 - How Seams transmission investments change with high DG-PV?
 - How Seams transmission investments change with 80-m wind towers?
- Sensitivities
 - How Seams transmission investments change with different fuel prices?
 - How Seams transmission investments change with different CO2 price?
 - How Seams transmission investments change with different gas price?

International Experience: Pre-Departure

International Experience: Collaboration

- The University of Sydney
 - Prof. Joe Dong & Dr. Ke Meng
- Energy group at USYD is also investigating about interregional transmission

Ongoing collaboration about multi-terminal HVDC configurations

International Experience: Benefits

- A once in a life time opportunity to
 - Do research in a different environment
 - Collaborate with international peers
 - Travel and make friends

Conclusions

Cross-seam transmission is good

✓ Provides economic benefits

✓ Allows energy movement from most economic resources to load centers

✓ Allows reserves to be shared across the contiguous US

Thank you!