













# Toward Reliable Engineered System Design:

RELIABILITY-BASED DESIGN AND PROGNOSTICS AND HEALTH MANAGEMENT (PHM)

#### Chao Hu

Assistant Professor

Department of Mechanical Engineering

Iowa State University



## **Motivation**



Boeing 787 Dreamliner fire due to overheated Li-ion battery Japan Airlines (JAL) in Boston, Jan. 2013

Consequence: Over **\$1.1** million daily loss due to groundings

I-35W Bridge collapse due to **faulty design**, Aug. 2007 Consequence: **13 deaths**, 145 injured, **\$60 million loss** 





Wind turbine collapse due to **faulty maintenance**, Feb. 2008 Consequence: Collapse of **whole wind turbine** 



# **Motivation**



Power transformer fire due to **faulty bushing**, Jul. 2002 Consequence: **\$5 million** property & business loss

UPS flight fire possibly due to **overheated Li-ion battery**, Feb. 2006 Consequence: 3 injured, loss of **whole airplane** 



#### **Research Questions:**

Q1. Is it possible to design a system with near-zero failure probability?

Q2. Is it possible to anticipate and prevent failures during system operation?



#### **Research Timeline**

2007 2009 2011 2013 2015

PhD Student @ UMD

Scientist @ MDT / Faculty @ ISU

#### **Prognostics and Health Management (PHM)**

Reliability-Based Design







IOWA STATE UNIVERSITY
College of Engineering

SRSL System Reliability & Safety Laboratory

#### **Research Timeline**

2007 2009 2011 2013 2015

PhD Student @ UMD

Scientist @ MDT / Faculty @ ISU





# **Reliability-Based Design**

#### **Design of Control Arm (US Army): Methodology**





# **Reliability-Based Design**

#### **Design of Control Arm (US Army): Optimization Results**





# **Reliability-Based Design**

#### **Design of Control Arm (US Army): Optimization Results**



#### **Research Timeline**

2007 2009 2011 2013 2015

PhD Student @ UMD

Scientist @ MDT / Faculty @ ISU

#### **Prognostics and Health Management (PHM)**

Reliability-Based Design

**College of Engineering** 





Safety Laboratory



#### **Human PHM Process**





An engineered system cannot manage itself. It must be managed.



#### **Health Management of Power Transformer**



#### **Intelligent Prognostics Platform for Wind Turbine Gearbox**





#### **Research Timeline**

2007 2009 2011 2013 2015

PhD Student @ UMD

Scientist @ MDT / Faculty @ ISU

#### **Prognostics and Health Management (PHM)**

Reliability-Based Design

**College of Engineering** 







ľ

System Reliability & Safety Laboratory

#### **Li-Ion Battery in Implantable Medical Devices**



**Spinal Cord Stimulators**Mild electrical stimulation in the spinal cord to alleviate chronic pain.



**Deep Brain Stimulators**Targeted electrical stimulation to part of brain for mitigating movement disorder.

Targeted longevity of 9 years, and 1000+ cycles Inductively coupled recharge



#### Do Patients/Physicians Need to Know More?

Patients/physicians are informed of battery charge level

#### Need to know more:

Capacity every recharge cycle



 Remaining use life during annual check-up







#### **Schematic of Prognostics**

- Estimated capacity based on voltage and current measurements
- Projected capacity A Predicted end of life (EOL)



Particle filter used to consider two sources of uncertainty:

- Capacity estimation
- Model projection

**Hu C.,** Jain G., Tamirisa P., and Gorka T., "Method for Estimating Capacity and Predicting Remaining Useful Life of Lithium-Ion Battery," *Applied Energy*, v126, p182–189, 2014.



#### **Particle Filter for Estimating Joint Distribution of Model Parameters**

[Pitt and Shephard, 1999, Journal of the American Statistical Association]



**Hu C.,** Jain G., Tamirisa P., and Gorka T., "Method for Estimating Capacity and Predicting Remaining Useful Life of Lithium-Ion Battery," *Applied Energy*, v126, p182–189, 2014.





**Hu C.,** Jain G., Tamirisa P., and Gorka T., "Method for Estimating Capacity and Predicting Remaining Useful Life of Lithium-Ion Battery," *Applied Energy*, v126, p182–189, 2014.





### **Future Research Plan**



#### Student to be identified

 Reliability evaluation and failure prognostics of new materials

Design for Functional Reliability

Design for Failure Prevention

Design for Resilience

# Wind Energy



# Ms. Kayla Johnson (PhD Student)

 Intelligent prognostics of wind turbine gearbox



# Thank You!

Q/A



#### PHM Toolbox being Developed at Hu's Lab

#### **Data Processing**

Fast Fourier transform

Wavelet analysis

Principle component analysis

Expert feature extraction

Statistical correlation (copula)

#### **Health Diagnostics**

Self-organizing map

Clustering analysis

Mahalanobis distance

Support vector machine

Relevance vector machine

Artificial neural networks

**Classification Fusion** 

Extended Kalman Filter

#### **Health Prognostics**

Similarity-based interpolation

Bayesian linear regression

Particle Filter / MCMC

**Ensemble prognostics** 

Semi-supervised learning

K-Nearest Neighbor



#### **Journal Publications on PHM**

- 1. Wang P., Youn B.D., and **Hu C.,** "A Probabilistic Detectability-Based Sensor Network Design Method for System Health Monitoring and Prognostics," *Journal of Intelligent Material Systems and Structures*, DOI: 10.1177/1045389X14541496, 2014. [DOI]
- 2. Hu C., Wang P., Youn B.D., and Lee W.R., "Copula-Based Statistical Health Grade System against Mechanical Faults of Power Transformers," *IEEE Transactions on Power Delivery*, v27, n4, p1809–1819, 2012. [DOI]
- 3. Youn B.D., Park K.M., **Hu C.,** Yoon, J.T., and Bae Y.C., "Statistical Health Reasoning of Water-Cooled Power Generator Stator Bars Against Moisture Absorption," *IEEE Transactions on Energy Conversion*, vPP, p1–10, 2015. [DOI]
- **4. Hu C.**, Jain G., Schmidt C., Strief C., and Sullivan M., "Online Estimation of Lithium-Ion Battery Capacity Using Sparse Bayesian Learning," *Journal of Power Sources*, v289, p105–113, 2015. [DOI]
- 5. Bai G., Wang P., and **Hu C.**, "A Self-Cognizant Dynamic System Approach for Prognostics and Health Management," *Journal of Power Sources*, v278, p163–174, 2015. [ DOI ]
- 6. Bai G., Wang, P., **Hu C.**, and Pecht M., "A Generic Model-Free Approach for Lithium-ion Battery Health Management," *Applied Energy*, v135, p247–260, 2014. [ DOI ]
- 7. Hu C., Jain G., Zhang P., Schmidt C., Gomadam P., and Gorka T., "Data-Driven Approach Based on Particle Swarm Optimization and K-Nearest Neighbor Regression for Estimating Capacity of Lithium-Ion Battery," *Applied Energy*, v129, p49–55, 2014. [DOI]
- 8. Tamilselvan P., Wang P., and **Hu C.**, "Health Diagnostics Using Multi-Attribute Classification Fusion," *Engineering Applications of Artificial Intelligence*, v32, p192–202, 2014. [DOI]
- **9. Hu C.,** Youn B.D., and Chung J., "A Multiscale Framework with Extended Kalman Filter for Lithium-Ion Battery SOC and Capacity Estimation," *Applied Energy*, v92, p694–704, 2012. [DOI]
- **10. Hu C.,** Youn B.D., Kim T.J., and Wang P., "Semi-Supervised Learning with Co-Training for Data-Driven Prognostics," *Mechanical Systems and Signal Processing*, v62–63, p75–90, 2015. [DOI]
- **11. Hu C.,** Jain G., Tamirisa P., and Gorka T., "Method for Estimating Capacity and Predicting Remaining Useful Life of Lithium-Ion Battery," *Applied Energy*, v126, p182–189, 2014. [DOI]
- 12. Xi Z., Wang P., Rong Jing, and **Hu C.,** "A Copula-Based Sampling Method for Data-Driven Prognostics," *Reliability Engineering and System Safety*, DOI: 10.1016/j.ress.2014.06.014, 2014. [DOI]
- **13. Hu C.,** Youn B.D., and Wang P., "Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life," *Reliability Engineering and System Safety*, v103, p120–135, 2012. [ DOI ]
- 14. Wang P., Youn B.D., and **Hu C.,** "A Generic Probabilistic Framework for Structural Health Prognostic and Uncertainty Management," *Mechanical Systems and Signal Processing*, v28, p622–637, 2012. [DOI]

Health
Sensing &
Data
Processing

Health Diagnostics

Health Prognostics



