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Motivation

I-35W Bridge collapse due to faulty design, Aug. 2007

Consequence: 13 deaths, 145 injured, $60 million loss

Wind turbine collapse due to faulty maintenance, Feb. 2008

Consequence: Collapse of whole wind turbine

Boeing 787 Dreamliner fire due to overheated Li-ion battery 

Japan Airlines (JAL) in Boston, Jan. 2013

Consequence: Over $1.1 million daily loss due to groundings
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Power transformer fire due to faulty bushing, Jul. 2002

Consequence: $5 million property & business loss

UPS flight fire possibly due to overheated Li-ion battery, Feb. 2006

Consequence: 3 injured, loss of whole airplane

Research Questions:

Q1. Is it possible to design a system with near-zero failure probability?

Q2. Is it possible to anticipate and prevent failures during system operation?

Motivation
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Scientist @ MDT / Faculty @ ISU
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Design of Control Arm (US Army): Methodology
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Design of Control Arm (US Army): Optimization Results
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Design of Control Arm (US Army): Optimization Results
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Prognostics and Health Management (PHM)

An engineered system cannot manage itself. 

It must be managed.
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Health Management of Power Transformer
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Intelligent Prognostics Platform for Wind Turbine Gearbox
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Research Timeline

Reliability-

Based Design

Fatigue Life

P
D

F

Optimized

Initial

Limit

Prognostics and Health Management (PHM)

Sensing Reasoning Prognostics

Remaining Useful Life (RUL)

P
D

F

Health Index 1

H
e

a
lt

h
 I

n
d

e
x 

2

Battery Prognostics

Deep Brain StimulatorsLi-Ion Rechargeable

Scientist @ MDT / Faculty @ ISUPhD Student @ UMD

2007 2009 2011 2013 2015



System Reliability &
Safety LaboratorySRSL 15

Li-Ion Battery in Implantable Medical Devices

Since 2004 Since 2010

Spinal Cord Stimulators

Mild electrical stimulation in the 

spinal cord to alleviate chronic pain.

Deep Brain Stimulators

Targeted electrical stimulation to part of 

brain for mitigating movement disorder.

Targeted longevity of 9 years, and 1000+ cycles

Inductively coupled recharge 
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Need to know more:

� Capacity every recharge cycle

Battery Prognostics

Do Patients/Physicians Need to Know More?

Patients/physicians are informed 

of battery charge level

Remaining 

capacity
BOL capacity80%

Remaining 

useful life 6        8 years        months

Neurostimulator

Patient programmer 

with antenna

Therapy screen

� Remaining use life during 

annual check-up 
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Battery Prognostics

Schematic of Prognostics

Estimated capacity based on voltage and current measurements

Projected capacity Predicted end of life (EOL)

Particle filter used to 
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Hu C., Jain G., Tamirisa P., and Gorka T., “Method for Estimating Capacity and Predicting Remaining Useful Life of Lithium-Ion 

Battery,” Applied Energy, v126, p182–189, 2014.
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Particle Filter for Estimating Joint Distribution of Model Parameters 

[Pitt and Shephard, 1999, Journal of the American Statistical Association]

Step 1: Evaluate 

Importance Weights

Step 2: Selection

Likelihood function based on capacity estimates

Step 3: Sampling

X = {k1, k2, t0, mc}

Q(t,C) = k1(1-e-t/to) + k2t + mcC

Battery Prognostics

Hu C., Jain G., Tamirisa P., and Gorka T., “Method for Estimating Capacity and Predicting Remaining Useful Life of Lithium-Ion 

Battery,” Applied Energy, v126, p182–189, 2014.
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Battery Prognostics
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Hu C., Jain G., Tamirisa P., and Gorka T., “Method for Estimating Capacity and Predicting Remaining Useful Life of Lithium-Ion 

Battery,” Applied Energy, v126, p182–189, 2014.
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Wind Energy

Prognostics 

and Health 

Management

Design for 

Failure 

Prevention

Future Research Plan

Reliability-

Based Design

Design for 

Functional 

Reliability
Design for 

Resilience

Energy Storage Student to be identified

• Reliability evaluation and 

failure prognostics of new 

materials

Ms. Kayla Johnson 

(PhD Student)

• Intelligent prognostics 

of wind turbine 

gearbox 
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Q/A

Thank You!
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Data Processing Health Diagnostics Health Prognostics

Fast Fourier transform Self-organizing map Similarity-based interpolation

Wavelet analysis Clustering analysis Bayesian linear regression

Principle component analysis Mahalanobis distance Particle Filter / MCMC

Expert feature extraction Support vector machine Ensemble prognostics

Statistical correlation (copula) Relevance vector machine Semi-supervised learning

Artificial neural networks K-Nearest Neighbor

Classification Fusion

Extended Kalman Filter

PHM Toolbox being Developed at Hu’s Lab



System Reliability &
Safety LaboratorySRSL 24

Journal Publications on PHM

1. Wang P., Youn B.D., and Hu C., “A Probabilistic Detectability-Based Sensor Network Design Method for System Health
Monitoring and Prognostics,” Journal of Intelligent Material Systems and Structures, DOI:
10.1177/1045389X14541496, 2014. [ DOI ]

2. Hu C., Wang P., Youn B.D., and Lee W.R., “Copula-Based Statistical Health Grade System against Mechanical Faults of
Power Transformers,” IEEE Transactions on Power Delivery, v27, n4, p1809–1819, 2012. [ DOI ]

3. Youn B.D., Park K.M., Hu C., Yoon, J.T., and Bae Y.C., “Statistical Health Reasoning of Water-Cooled Power Generator
Stator Bars Against Moisture Absorption,” IEEE Transactions on Energy Conversion, vPP, p1–10, 2015. [ DOI ]

4. Hu C., Jain G., Schmidt C., Strief C., and Sullivan M., “Online Estimation of Lithium-Ion Battery Capacity Using Sparse
Bayesian Learning,” Journal of Power Sources, v289, p105–113, 2015. [ DOI ]

5. Bai G., Wang P., and Hu C., “A Self-Cognizant Dynamic System Approach for Prognostics and Health Management,”
Journal of Power Sources, v278, p163–174, 2015. [ DOI ]

6. Bai G., Wang, P., Hu C., and Pecht M., “A Generic Model-Free Approach for Lithium-ion Battery Health Management,”
Applied Energy, v135, p247–260, 2014. [ DOI ]

7. Hu C., Jain G., Zhang P., Schmidt C., Gomadam P., and Gorka T., “Data-Driven Approach Based on Particle Swarm
Optimization and K-Nearest Neighbor Regression for Estimating Capacity of Lithium-Ion Battery,” Applied Energy,
v129, p49–55, 2014. [ DOI ]

8. Tamilselvan P., Wang P., and Hu C., “Health Diagnostics Using Multi-Attribute Classification Fusion,” Engineering
Applications of Artificial Intelligence, v32, p192–202, 2014. [ DOI ]

9. Hu C., Youn B.D., and Chung J., “A Multiscale Framework with Extended Kalman Filter for Lithium-Ion Battery SOC and
Capacity Estimation,” Applied Energy, v92, p694–704, 2012. [ DOI ]

10. Hu C., Youn B.D., Kim T.J., and Wang P., “Semi-Supervised Learning with Co-Training for Data-Driven Prognostics,”
Mechanical Systems and Signal Processing, v62–63, p75–90, 2015. [ DOI ]

11. Hu C., Jain G., Tamirisa P., and Gorka T., “Method for Estimating Capacity and Predicting Remaining Useful Life of
Lithium-Ion Battery,” Applied Energy, v126, p182–189, 2014. [ DOI ]

12. Xi Z., Wang P., Rong Jing, and Hu C., “A Copula-Based Sampling Method for Data-Driven Prognostics,” Reliability
Engineering and System Safety, DOI: 10.1016/j.ress.2014.06.014, 2014. [ DOI ]

13. Hu C., Youn B.D., and Wang P., “Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining
Useful Life,” Reliability Engineering and System Safety, v103, p120–135, 2012. [ DOI ]

14. Wang P., Youn B.D., and Hu C., “A Generic Probabilistic Framework for Structural Health Prognostic and Uncertainty
Management,” Mechanical Systems and Signal Processing, v28, p622–637, 2012. [ DOI ]

Health 

Sensing & 

Data 

Processing

Health 

Diagnostics

Health 

Prognostics


