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Personal Background 



 The primary objective of this research is to develop a 
better understanding of the aeroelastic loads and 
response of healthy and damaged wind turbine 
blades in varying wind conditions (i.e. smooth flow, 
turbulent flow, gusty winds, boundary layer, and yaw 
misalignment).   

Objective 
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 Motions of structures perturb the flow 
 Modified flow patterns produce additional aerodynamic 

stiffness and damping 

 Transfer energy from wind to motion of structure or 
help is dissipating kinetic energy of the structure. 

 Flutter speed  
 Above a certain wind speed the kinetic energy of the 

structure will no longer be dissipated and it will become 
dynamically unstable.  This wind speed is known as the 
flutter speed. 

Self-excited Wind Loads 
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Equations for Flutter 
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Equations for Flutter 

Flutter Derivatives 



CASE DOF COMBINATION FLUTTER-DERIVATIVES EXTRACTED 

1 1-DOF Vertical 𝐻1
∗, 𝐻4

∗ 

2 1-DOF Torsional 𝐴2
∗ , 𝐴3

∗  

3 1-DOF Lateral 𝑃1
∗, 𝑃4

∗ 

4 2-DOF Vertical+Torsional 𝐻1
∗, 𝐻2

∗, 𝐻3
∗, 𝐻4

∗, 𝐴1
∗ , 𝐴2

∗  , 𝐴3
∗ , 𝐴4

∗  

5 2-DOF Vertical+Lateral 𝐻1
∗, 𝐻4

∗, 𝐻5
∗, 𝐻6

∗, 𝑃1
∗, 𝑃4

∗ , 𝑃5
∗, 𝑃6

∗ 

6 2-DOF Lateral+Torsional 𝑃1
∗, 𝑃2

∗, 𝑃3
∗, 𝑃4

∗, 𝐴2
∗ , 𝐴3

∗  , 𝐴5
∗ , 𝐴6

∗  

7 3-DOF All 18 Flutter Derivatives 

Flutter Derivatives 



 A traffic light moving up and down in the wind 

 Stop sign 

 The Tacoma Narrows Bridge (1940) 

 

Examples of Flutter 



 http://www.youtube.com/watch?v=_oIYiFyyGC4 

 

 

Flutter Video 

http://www.youtube.com/watch?v=_oIYiFyyGC4
http://www.youtube.com/watch?v=_oIYiFyyGC4
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 Wind Turbine blades are susceptible to these vibrations 
 Actual Flutter speed is 2x operating wind speed 

 Blade life is determined by fatigue tests 

 Natural frequency changes when damage is present 

Why is this important? 

Image from Identification of Damage to Wind 
Turbine Blades by Modal Parameter Estimation 



 Task 1 – Develop Wind Turbine Blade 

 Task 2 – Section Model Testing 

 Task 3 – Finite Element Model 

 Task 4 – Wind Tunnel Tests 

My Research Plan 
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Task 2 – Section Model Testing 



 Used for a stress/response analysis of the prototype blade 

 Used to predict loads which can then be validated through 
pressure data taken 

 

Task 3 – Finite Element Model 



 AABL Wind Tunnel (8ft x 6ft test section) 
 4ft long blade  

 Fixed at one end 
 Free to vibrate on other end 
 1 Healthy & 4 damaged 

 Instrumented with: 
 1 Zoc33/ERAD Pressure Transducer 
 2 Accelerometers 
 Conventional Strain Gauges 
 Sensor Membrane 
 Force/Torque sensor 

 

Task 4 – Wind Tunnel Tests 



 Difference in loads and response from: 

 Gusts 

 Turbulence 

 Boundary Layer 

 Yaw Misalignment 

Additional Work 



Relation to Other WESEP Students 

Need better 
understanding 

and SHM 
strategy 

Longer blades 
(offshore & 

taller towers) 

Reduce # of sudden 
blade failures 
(reduce some 

variability in energy 
production) 

SHM Strategy (NDE, 
Sensors, Damage 

detection) 
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