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Abstract

The prediction of flutter instability is of major concern for design of flexible structures. This necessitates the identification of
aeroelastic parameters, known as flutter derivatives from wind tunnel experiments. The extraction of flutter derivatives becomes
more challenging when the number of degrees of freedom (DOF) increases from two to three. Since the work in the field of
identifying all 18 flutter derivatives has been limited, it has motivated the development of a new system identification method
(iterative least squares method or ILS method) to efficiently extract the flutter derivatives using a section model suspended by a
three-DOF elastic suspension system. The accuracy of a particular flutter derivative was determined by comparing the results
obtained from all possible DOF combinations.
 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The discipline of aeroelasticity refers to the study of
phenomenon wherein aerodynamic forces and structural
motions interact significantly. Flutter is an aeroelastic
self-excited oscillation of a structural system. Since the
flutter-induced failure of the Tacoma Narrows Bridge in
1940, understanding of the physical mechanisms at work
has advanced. The frequency-domain approach has been
widely used for estimating flutter speed of structures
[1,2]. The frequency-domain method uses flutter deriva-
tives, which may be experimentally obtained from wind-
tunnel testing of section models. Extraction of flutter
derivatives can be done through the forced vibration
technique or the free vibration technique. The free
vibration technique is comparatively simple because it
only requires initial displacements.

Sarkar[3] developed the modified Ibrahim time domain
(MITD) method to extract all the direct and cross-flutter
derivatives from the coupled free vibration data of a two-
degree-of-freedom (DOF) section model. Sarkar et al.
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[4,5] were successful in identifying eight flutter deriva-
tives simultaneously from noisy displacement time-histor-
ies generated under laminar and turbulent flow.

Other system identification (SID) methods that can be
applied to problems in structural dynamics are least
squares (LS), instrumental variable (IV), maximum likeli-
hood (ML), and extended Kalman filtering (EKF); these
have been reviewed by Imai et al.[6]. Hsia[7] described
different least squares algorithms for system parameter
identification. Extended Kalman filtering techniques were
used by Yamada and Ichikawa[8], Diana et al.[9], Iwa-
moto and Fujino[10] and Jones et al.[11]. Jakobsen and
Hjorth-Hansen[12] and Brownjohn and Jakobsen[13]
have used covariance block Hankel matrix (CBHM)
method for parameter extraction of a two-DOF system.
The CBHM method has also been extended to cater for
three-DOF flutter derivatives. However the principles
were illustrated for a two-DOF system and eight flutter
derivatives were experimentally extracted[12,13]. Gu et
al. [14] and Zhu et al.[15] have used an identification
method based on unifying least squares (ULS) theory to
extract flutter derivatives of a two-DOF model. Though
the ULS method could theoretically identify all 18 flutter
derivatives using a three-DOF section model, only eight
flutter derivatives were extracted due to lack of a more
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inclusive experimental set-up to accommodate the three-
DOF section model (as quoted in [15]).

Eight flutter derivatives, namely, H1∗, H2∗, H3∗,
H4∗, A1∗, A2∗, A3∗, and A4∗, can be obtained from
two-DOF section model tests with vertical and torsional
degree of freedom. The problem of flutter derivative
extraction becomes more challenging when the number
of DOF increases from two to three. The additional flut-
ter derivates that can be extracted from three-DOF sec-
tion model with vertical, torsional, and lateral degree of
freedom are H5∗, H6∗, A5∗, A6∗, P1∗, P2∗, P3∗,
P4∗, P5∗, and P6∗. Out of the 18 flutter derivatives,
H1∗, H4∗, P1∗, P4∗, A2∗, and A3∗, are the direct flut-
ter derivatives and the remaining 12 are the indirect flut-
ter derivatives. The indirect flutter derivatives are more
difficult to identify than the direct ones. Singh et al. [16]
were the first researchers to attempt identification of all
18 flutter derivatives of a streamlined bridge deck. They
extended the MITD method developed by Sarkar [3],
that was already proven to work for a two-DOF system.
The trend of some of the indirect flutter derivatives in
[16], namely, H6∗, A5∗, A6∗, P3∗, P5∗, and P6∗, are
difficult to predict due to the scatter in the data presented
in the plots; for the other flutter derivatives, specific
trends are evident from the plots. Chen et al. [17] have
used general least-squares theory for identifying 18 flut-
ter derivatives of bridge sections. The trends of experi-
mental results were compared to results from compu-
tational fluid dynamics (CFD) methods. For the lateral
flutter derivatives, the experimental results were consist-
ent with the CFD results at lower reduced velocities. At
higher velocities, the results of most lateral derivatives
were different between both approaches. While compar-
ing two-DOF and three-DOF sectional model experi-
ments, good agreement was found for flutter derivatives
H1∗, H2∗, H3∗, A1∗, A2∗, A3∗, but deviations were
noted for H4∗ and A4∗.

The work in the field of identifying all 18 flutter
derivatives for section models is limited and needs
further investigation. The art of efficient extraction of all
18 flutter derivatives requires an effective system identi-
fication technique and a versatile three-DOF elastic sus-
pension system. The system identification technique is
required to perform accurate parameter extraction for
high noise-to-signal ratio. A versatile three-DOF elastic
suspension system is needed to capture coupled displace-
ment time-histories from wind tunnel testing of section
models. Comparison of results obtained from all possible
DOF combinations can be an effective tool to measure
the accuracy of flutter derivatives. Also, as parameter
extraction through three-DOF testing is one magnitude
more difficult than parameter extraction through two-
DOF testing. Separate two-DOF combinations can be
used to generate all 18 flutter derivatives, thus eliminat-
ing the need to perform three-DOF testing. Thus, an
efficient three-DOF suspension system is highly advan-

tageous to simulate different DOF combinations that are
needed for flutter derivative extraction. The current
paper describes the development of a new system identi-
fication method and a versatile three-DOF elastic sus-
pension system, which together are capable of efficiently
extracting all 18 flutter derivatives for section models
involving different DOF-combination testing. The flutter
derivative nomenclature convention in this paper is con-
sistent with that used by Scanlan and co-workers [16].
The system identification method involves digital fil-
tering of noisy displacement time-histories and approxi-
mation of their higher derivatives using finite difference
formulation. The current formulation has the following
advantages: (1) a single computer program is capable of
extracting flutter derivatives for various DOF combi-
nation cases (e.g. 1-DOF, 2-DOF, and 3-DOF cases); (2)
effective stiffness and damping matrices are directly
obtained from acquired free-vibration displacement
time-histories and numerically generated velocity and
acceleration time-histories using digital filtering and
finite differencing (thus avoiding extraction of eigenval-
ues and eigenvectors); and (3) accurate parameter identi-
fication can be performed, as has been validated numeri-
cally and experimentally, where different DOF
combinations were used.

2. Current system identification method

2.1. Equations of motion

Flutter analysis is performed by using experimentally
obtained flutter derivatives in the frequency domain. In
this formulation, the aeroelastic forces acting on a struc-
ture are modeled by means of flutter derivatives. Fig. 1
shows a typical section model that is subjected to a mean
wind speed U.

The three degree of freedom are the vertical deflection
h, and the horizontal deflection p of the local center-
of-gravity (c.g.), and the rotation a about that c.g. The
aerodynamic forces acting on the section are lift (L),
drag (D), and moment (M). The section model has mh,
mp, and Ia as vertical mass, lateral mass, and mass
moment of inertia per unit length, respectively; zh, zp,

Fig. 1. Degree of freedom for a wing or deck section.
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and za as the mechanical damping ratios, and wh, wp,
and wa as the natural mechanical frequencies for verti-
cal, lateral and torsional motion, respectively. The equa-
tions of motion for the section model subjected to aeroel-
atic forces can be written as:

ÿ � M�1Cẏ � M�1Ky � M�1Fae (1)

where

y � {h a p}T, M � �mh 0 0

0 Ia 0

0 0 mp
�, M�1C

� �2�hwh 0 0

0 2�awa 0

0 0 2�pwp
�, M�1K � �w

2
h 0 0

0 w2
a 0

0 0 w2
p
�.

The aeroelastic force vector can be written as follows:
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where r is the air density; U is the mean cross wind
velocity; K = Bw /U is the non-dimensional reduced fre-
quency; w is the circular frequency oscillation.

The non-dimensional aerodynamic coefficients Hi
∗, Pi

∗,
and A∗

i (i = 1, 2, …, 6) are called the flutter derivatives
and they evolve as functions of the reduced velocity U/nB
(where n = ω/2p is the frequency oscillation). Flutter
instability of structures can be assessed analytically using
the flutter derivative formulation and a set of flutter-
derivative coefficients is used for this purpose. These coef-
ficients can be determined from wind-tunnel experiments
on section models excited by initial displacements.

2.2. Flutter derivatives

Substituting Eq. (2) in Eq. (1) and bringing all terms
to the left hand side, aeroelastically modified free-
vibration equations of motion are obtained:

ÿ � Ceffẏ � Keffy � 0 (3)

where Ceff and Keff are the aeroelastically modified effec-
tive damping and stiffness matrices, respectively. For
zero wind speed, the mechanical damping and stiffness
matrices are Cmech and Kmech, respectively. The
expression of flutter derivatives obtained from a three-
DOF section model can be written as:
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2.3. Iterative least squares method

A new system identification technique has been
developed for the extraction of flutter derivatives from
free vibration displacement time-histories obtained from
a section model tested in a wind tunnel. The method uses
an iterative least squares system identification approach
and will be referred to hereafter as the iterative least
squares (ILS) method. The detailed formulation of the
ILS method is discussed in this Section. Eq. (3) can be
represented as the state-space model:

Ẋ � AX (7)

where

X � �y

ẏ
�, A � �0 I

�Keff �Ceff
�.

The A matrix is 2n × 2n square matrix, where n is the
number of degree of freedom for the dynamic system; I
is the identity matrix of size n × n. The A matrix can be
identified if acceleration, velocity and displacement data
can be recorded for all n degree of freedom for at least 2n
different instants of time [18]. In practice, measurement
of all three responses is not feasible. Thus, an alternative
arrangement can be designed in which the noisy displace-
ment time-history is only measured and filtered numeri-
cally to remove the high frequency noise components (if
any). This filtered displacement data can then be used to
generate velocity and acceleration time-histories by finite
difference formulation. For numerical simulation, a noise-
free vertical displacement time-history (referred to as
actual displacement time-history) was contaminated with
Gaussian white noise and the noisy time-history is shown
in Fig. 2. MATLAB was used for zero-phase digital fil-
tering of the noisy displacement time-history. A low-pass
digital ‘Butterworth’ fi lter was built for this purpose. The

Fig. 2. Noisy displacement time-history.

Fig. 3. Digitally filtered displacement time-history.

cutoff frequency for the filter can be estimated from the
knowledge of approximate zero-wind speed frequencies
of the dynamic system. The actual (noise free) displace-
ment and the filtered displacement are plotted in Fig. 3.
The filtered displacement data were used to generate velo-
city and acceleration time-histories by finite difference
formulation, as shown in Figs. 4 and 5, respectively.

It can be seen from Figs. 3–5 that the digitally filtered
displacement and the numerically obtained velocity and
acceleration time-histories deviate from the actual time-
histories at the two extreme ends of the total time range.
This is an inherent error for zero-phase digital filtering
using MATLAB function. To circumvent the misfit at
the two ends, a ‘windowing’ method was applied which
used only the middle portion of each of the three time-
histories for system identification. A ‘window’ , which
discards the first and last quarter of each time-history,
was found to be suitable for obtaining parameters
through system identification. Thus, only the middle half

Fig. 4. Numerically obtained velocity time-history.
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Fig. 5. Numerically obtained acceleration time-history.

of each time-history is considered for extracting elements
of the A matrix by the ILS approach. The A matrix
obtained for zero wind case, will give the Cmech and Kmech

matrices. The A matrix obtained for non-zero wind speeds,
will give the Ceff and Keff matrices. After estimating the
elements of these matrices, the frequency-dependent flutter
derivatives can be calculated from Eqs. (4)–(6).

2.4. Algorithm for the iterative least squares (ILS) approach

Based on the ILS approach, a computer code has been
developed to identify the elements of A matrix from
noisy displacement time-histories. The ILS approach is
effectively described by the following algorithm

.

3. Experimental set-up

A three-DOF elastic suspension system (Fig. 6) has
been developed and built for testing at the Wind Simul-
ation and Testing (WiST) Laboratory, Department of
Aerospace Engineering, Iowa State University. The
schematic diagram of the system is shown in Fig. 7,
which illustrates different views of the system and their
corresponding dimensions. This system enables simul-
taneous vertical, horizontal, and torsional motion of the
suspended model and captures the effect of coupling
between different degree of freedom of a flexible struc-
ture immersed in a dynamic flow field. The system util-
izes pneumatic bushings that glide along polished steel
shafts in the vertical and horizontal directions of motion.
Two torsional assemblies on each side are used to gener-
ate torsional motion of the model. Each assembly can be
housed in a built-up aluminum box having dimension,
300 × 150 × 64 mm (shown in Fig. 7) to give it a com-
pact finish. Vibration frequencies of the system are tuned
with combination of springs. System damping is low due
to the low-friction pneumatic bushings, restriction of coil
spring wire to small diameters, and highly polished
stainless steel guide shafts. Relatively large displace-
ments can be generated by the suspension system.

Force measurements were accomplished with strain
gage force transducers applied to four of the spring
attachment points, two vertical and two horizontal. The
force transducers that were used are miniature load cells
with 11.34 kg (25 lb) capacity. These load cells were
chosen based on their light-weight and compact size.
The torque-sensor, which has a capacity of 1.152 kg-m
(100 lb-in), was fixed to the back wall of one of the two
torsional assemblies. The front end of the torque sensor
was connected to the rigid bottom bar, and thus could
measure the torque produced by the pair of springs. The
torsional assemblies allowed the model to undergo
rotational motion under wind loading and the torque-
sensor measured the aerodynamic moment caused by the
motion. LabView (National Instruments) was used for
data acquisition from wind tunnel experiments.

For wind tunnel testing, a section model of NACA
0020 airfoil was mounted on the three-DOF elastic sus-
pension system. The airfoil was symmetric about its
chord and had a thickness-to-chord ratio of 20%. The
Styrofoam airfoil model had a chord length of 314 mm.
The airfoil model was 550 mm long, with two elliptical
Plexiglas end plates to reduce aerodynamic end effects.
The model was built with foam and wrapped around with
fiberglass to simulate the smooth airfoil skin. A hollow
aluminum shaft ran through the model. It was supported
on high precision ball bearings at two ends. The shaft
was connected to the torsional assembly at both ends to
facilitate the rotational DOF. The center-of-gravity of the
model coincided with the elastic axis to avoid static
imbalance.
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Fig. 6. Three-DOF elastic suspension system inside Bill James wind tunnel test section, WiST Laboratory.

Fig. 7. Schematic diagram of three-DOF elastic suspension system (all dimensions are in mm).

While designing the elastic suspension system and the
airfoil model, the mechanical frequencies for the verti-
cal, lateral, and torsional motions were carefully chosen.
The desired frequencies were then obtained by a suitable
combination of springs. The mechanical frequencies of
the dynamic system were designed close to 1.8, 2.5, and
3.5 Hz for the lateral, vertical, and torsional-DOF,
respectively. These frequencies were selected such that
they were distinct from each other and provide the
maximum reduced velocity desired in the experiment

corresponding to a pre-selected wind speed below the
estimated flutter speed of the model. The frequency
along the vertical DOF was used for the calculation of
the reduced velocities.

4. Results and discussion

4.1. Numerical simulations

ILS method was programmed and tested for typical
one, two, and three-DOF dynamic systems whose mass,
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stiffness, and damping matrices were assumed. The pur-
pose of the numerical simulation was to determine the
percentage of error for the elements of the damping and
stiffness matrices, which were extracted from noisy dis-
placement time-histories. Cases with different noise-to-
signal ratios were considered during numerical simul-
ation. The average errors for the stiffness and damping
terms are given in Table 1, where errors in parameter
estimation for a two-DOF system were compared with
the MITD [3] method, because its algorithm was readily
available. The average percentage errors for two-DOF
parameters extracted using the ILS method for 10%
noise are significantly less than those using the MITD
method for 5% noise. As expected for the numerical
simulations, the errors in diagonal terms are less com-
pared to the errors in non-diagonal terms for the stiffness
and damping matrices. The parameter errors increase
with increasing number of degree of freedom. It is evi-
dent from Table 1 that the errors for three-DOF para-
meters for the 5% noise case are more than the errors
for two-DOF parameters for the 20% noise case. Thus,
parameters extracted for a two-DOF model in a turbulent
flow is more accurate than parameters extracted for a
three-DOF model in comparatively less turbulent flow.
This particular phenomenon bolsters the concept of gen-
erating all 18 flutter derivatives from different two-DOF
combinations instead of performing a single three-DOF
testing. The current method is capable of generating
good estimates of parameters even for high noise-to-sig-
nal ratio for one and two-DOF systems (e.g. error in
extracted parameters is much less than 10% for 20%
noise). For three DOF system, the method works satis-
factorily for moderate noise level (e.g. error in extracted
parameters is less than 10% for 10% noise).

From the numerical simulations, it is evident that the
ILS method estimates the parameters more accurately
than the MITD method for a given noise level. Thus, the
ILS method can extract parameters even at relatively
high noise level, which can occur for turbulent flows or
inadequate resolution of transducers. Moreover for
MITD method, the time shifts N1 and N2 [5] cannot be
arbitrarily chosen because they affect the accuracy of
parameter extraction. Since the ILS method does not

Table 1
Average percentage errors for numerical simulations

Case Noise-to-signal ratio Diagonal stiffness Non-diagonal stiffness Diagonal damping Non-diagonal
terms terms terms damping terms

1-DOF (ILS) 20% 0.02 – 1.67 –
2-DOF (MITD) 5% 0.19 2.22 0.81 2.02
2-DOF (MITD) 10% 0.37 4.47 1.60 2.92
2-DOF (ILS) 10% 0.06 0.82 0.56 1.41
2-DOF (ILS) 20% 0.13 0.96 2.01 5.04
3-DOF (ILS) 5% 0.44 1.51 2.55 5.99
3-DOF (ILS) 10% 0.89 2.34 4.83 8.43

involve N1 and N2, the accuracy of the estimated para-
meters are independent of the estimated values of N1
and N2. Also the ILS method estimates the elements of
Ceff and Keff matrices directly instead of obtaining them
from complex eigenvalues and eigenvectors, thereby
reducing mathematical complexity.

4.2. Experimental results

All 18 flutter derivatives were obtained for the NACA
0020 airfoil model by using the ILS approach. For com-
parison, all the possible DOF combinations were tested
in the wind tunnel. Thus, the estimates of flutter deriva-
tives obtained from different combinations of DOF could
be compared. The versatility of the three-DOF elastic
suspension system remains in the fact that all possible
combinations (e.g. 1-DOF, 2-DOF, and 3-DOF) could
be tested by restraining one or more DOF as required
for a particular experimental set-up. Thus, the accuracy
of a particular flutter derivative could be determined by
matching the results from more than one set of DOF
combinations. Table 2 shows all possible DOF combi-
nations and the flutter derivatives that were obtained
from each combination.

For wind tunnel experiments, a sampling rate of 800
Hz was used for obtaining the vertical, lateral, and tor-
sional time-histories at zero and different non-zero wind
velocities. Number of sample points, 2N + 2 was taken
as 3002 for each displacement time-history. This number
was considered to keep the amplitude levels of decaying
sinusoidal motions above a certain fixed level to avoid
high background noise ratio. An ensemble of 10 time-
histories was taken for each wind speed. The ILS pro-
gram was used for processing the data. The cut-off fre-
quency for the Butterworth filter was chosen to be
slightly higher than the maximum zero-wind speed natu-
ral frequency of the dynamic system (i.e. 3.5 Hz for the
three-DOF case). A cut-off frequency chosen between 5
and 6 Hz was found to work effectively for filtering pur-
poses of the three-DOF noisy displacement time-histor-
ies. Finite difference formulation (central-difference
with truncation error TE = O[(�t)2]) was used to obtain
the velocity and acceleration time-histories from the
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Table 2
DOF combinations and corresponding flutter derivatives obtained

Case DOF combination Flutter-derivatives extracted

1 1-DOF vertical (V) H1∗, H4∗
2 1-DOF torsional (T) A2∗, A3∗
3 1-DOF lateral (L) P1∗, P4∗
4 2-DOF vertical and torsional (V&T) H1∗, H2∗, H3∗, H4∗, A1∗, A2∗, A3∗, A4∗
5 2-DOF vertical and lateral (V&L) H1∗, H4∗, H5∗, H6∗, P1∗, P4∗, P5∗, P6∗
6 2-DOF lateral and torsional (L&T) P1∗, P4∗, P2∗, P3∗, A2∗, A3∗, A5∗, A6∗
7 3-DOF All 18 flutter derivatives

digitally filtered displacement data. ‘Windowing’ oper-
ation was performed and middle half of each time-his-
tory was considered for extracting elements of the A
matrix by the ILS approach.

The convergence of A matrix was obtained based on
the residuals Ri,j which were taken as absolute values of
differences between elements of A matrices obtained
from two consecutive iteration levels as shown in the
algorithm. Criteria for convergence was to have the
maximum residual max(Ri,j) less than or equal to 10�6.
While extracting elements of the state matrix from the
experimental data, it took ILS method five to seven iter-
ations to converge based on the above criteria. After esti-
mating the elements of A matrix at zero wind speed and
several non-zero wind speeds, the frequency-dependent
flutter derivatives were calculated using Eqs. (4)–(6).

The flutter derivatives thus obtained from different
DOF combinations are plotted in Figs. 8–10. All the

Fig. 8. Vertical flutter derivatives (Hi
∗, i = 1, 2, ..., 6).

Fig. 9. Torsional flutter derivatives (Ai
∗, i = 1,2, ..., 6).

flutter derivatives were calculated for a range of reduced
velocities. The vertical frequency of the dynamic system
was used to obtain the non-dimensional reduced velocity
for all cases. Good agreement is seen between vertical
and torsional flutter derivatives H1∗, H2∗, H3∗, H4∗,
A1∗, A2∗, A3∗, A4∗ obtained from 1-DOF, 2-DOF and
3-DOF testing. The lateral derivative P1∗, which rep-
resents the damping of lateral displacement, shows very
good agreement when obtained from different DOF
combinations. Though there are some deviations at iso-
lated points, the trends for the other derivatives, obtained
from various DOF combinations, namely, H5∗, H6∗,
A5∗, A6∗, P2∗, P3∗, P4∗, P5∗, P6∗ are consistent.
These isolated variations, especially for some of the lat-
eral derivatives, need further investigation. Flutter
derivatives extraction from three-DOF testing is com-
paratively more difficult than obtaining them from one-
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Fig. 10. Lateral flutter derivatives (Pi
∗, i = 1, 2, ..., 6).

DOF and two-DOF tests. Thus, it is recommended to
extract all 18 derivatives for a section model by per-
forming three different sets of two-DOF testing namely,
vertical-torsional, vertical-lateral, and lateral-torsional.

5. Conclusions

Work in the field of identifying all 18 flutter deriva-
tives for a section model has been limited. This mot-
ivated the development of a new system identification
method (iterative least squares method or ILS method)
to efficiently extract all 18 flutter derivatives. The identi-
fication technique used experimentally obtained free-
vibration displacement time-histories generated by a sec-
tion model supported by a three-DOF elastic suspension
system in the wind tunnel test section. Numerical simul-
ations demonstrated the efficiency of the ILS method. It
was evident that the errors in parameter extraction
increased when number of DOF increased from two to
three. The numerical simulations showed that the ILS
method was capable of generating good parameter esti-
mates for one- and two-DOF testing with high noise-
to-signal ratio and for three-DOF testing with moderate
noise-to-signal ratio. All 18 flutter derivatives for an air-
foil section model were extracted using the ILS method
to demonstrate the extraction technique. The accuracy of
a particular flutter derivative was determined by match-
ing the results obtained from all possible DOF combi-

nations. Trends of the flutter derivatives coincided when
obtained from more than one set of DOF combination.
Flutter derivatives extraction from three-DOF testing
was comparatively more difficult than obtaining them
from one-DOF and two-DOF tests. Performing three dif-
ferent sets of two-DOF testing namely, vertical-torsional,
vertical-lateral, and lateral-torsional, instead of three-
DOF testing, would be an efficient technique for accur-
ate extraction of all 18 derivatives for a section model.

6. Dedication

This paper is dedicated to the late Professor Robert
H. Scanlan, The Johns Hopkins University, Baltimore,
MD, USA, who had been a mentor and Ph.D. disser-
tation advisor of co-author, Partha P. Sarkar. Professor
Scanlan had provided the initial inspiration and motiv-
ation for the work that is presented here.
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