IOWA STATE UNIVERSITY College of Engineering

A Numerical Investigation of Dual Rotor Wind Turbines

Aaron Rosenberg Department of Aerospace Engineering Mentor: Dr. Anupam Sharma

Motivation

- Betz limit: $C_P = 0.593$
 - Modern HAWTs operate well below this
- Root loss (≈5%)
 - Poor root performance
 - Designed for structural integrity
- Wake loss (≈8-40%)
 - Not operating in isolation
- 1% Increase in C_P could save as much \$1.31 Billion annually

IOWA STATE UNIVERSITY

Concept and Design

- Dual Rotor Wind Turbine (DRWT)
 - Rotate independently
- Reduce root loss
- Reduce wake loss
 - Enhance mixing
 - Like turbulent atmosphere
- Secondary rotor inversely designed using BEM

IOWA STATE UNIVERSITY

Theoretical Power Extraction

- Newman 1985
- 1-D Momentum Theory
 - 1 Disk: $C_{P_{\text{max}}} = 0.593$
 - Betz Limit
 - 2 Disks: $C_{P_{\text{max}}} = 0.640$
 - 4 Disks: $C_{P_{\text{max}}} = 0.658$
- Diminishing Returns

IOWA STATE UNIVERSITY

RANS Validation

- Selvaraj, Master's Thesis
- Reynold's Averaged Navier-Stokes
- Equal Sized Rotors
- Uniformly loaded
- Spacing = $0.5R_{blade}$

IOWA STATE UNIVERSITY

RANS Validation: Two Rotors

IOWA STATE UNIVERSITY

RANS Validation: Three Rotors

IOWA STATE UNIVERSITY

RANS Validation: Four Rotors

IOWA STATE UNIVERSITY

DUAL ROTOR DESIGN

IOWA STATE UNIVERSITY

Primary Rotor Design – NREL 5 MW

- Not optimal
 - Transportation
 - Manufacturability
- Root designed to withstand loads
 - Aerodynamically inefficient
 - Negative torque

IOWA STATE UNIVERSITY

Secondary Rotor Design

Input: DU 96 Airfoil (Betz Optimum Rotor)

Output (Nearly Optimal)

IOWA STATE UNIVERSITY

Optimization Study (RANS)

- Find optimal configuration
- Parametric study 1: Rotor Size
 - Vary secondary rotor size, tip speed ratio
 - Constant axial spacing ($\Delta x = 0.5 R_{main}$)
- Parametric study 2: Axial Spacing
 - Vary secondary spacing, tip speed ratio
 - Constant rotor size $R_{secondary} = 0.3R_{main}$

IOWA STATE UNIVERSITY

Rotor Size (Counter-Rotating)

IOWA STATE UNIVERSITY

Rotor Size (Co-Rotating)

IOWA STATE UNIVERSITY

Rotor Spacing (Counter-Rotating)

IOWA STATE UNIVERSITY

Rotor Spacing (Co-Rotating)

IOWA STATE UNIVERSITY

Optimization Study

- Optimal Spacing
 - $\Delta x \approx 0.2 R_{main}$
- Optimal Size
 - $R_{secondary} \approx 0.3 R_{main}$
- Torque captured by secondary rotor near root
 - Constant angle of attack
 - 7% Increase in Cp

IOWA STATE UNIVERSITY

LARGE EDDY SIMULATIONS

IOWA STATE UNIVERSITY

Large Eddy Simulations

- SOWFA
- Stampede Super Computer
 - Texas Advanced Computing Center
 - 7th Most Powerful Supercomputer in the world
- Computationally expensive simulations

IOWA STATE UNIVERSITY

LES DRWT Simulations

- Motivation
 - Visualize wake evolution
 - Analyze wake mixing
 - Unsteady features
- RANS optimized configuration
 - Co-rotating
- Compare with SRWT
- SOWFA
 - LES + Actuator Line

IOWA STATE UNIVERSITY

LES DRWT Simulations

- 170 Seconds
 - Averaged from 150 to 170 seconds
 - Quasi-steady state
- $U_{\infty} = 8 \text{ m/s}$
- Periodic Boundary Conditions
 - Infinite array of turbines
- Nacelle and tower are not considered

LES DRWT Simulations

IOWA STATE UNIVERSITY

LES DRWT Results: Wake Evolution

Radial wake (a) and turbulence (b) variation comparisons between a single-rotor (SRWT) and a dual-rotor (DRWT) turbine at four downstream distances.

IOWA STATE UNIVERSITY

LES DRWT Conclusions

- Preliminary Results
 - Mixing is NOT enhanced
 - C_P increases by 6% (RANS: 7%)
 - Efficient extraction of energy in root region
- Future Research
 - Add turbines
 - Longer simulations
 - Different rotor configurations
 - Atmospheric Boundary Layer

IOWA STATE UNIVERSITY

FUTURE WORK

IOWA STATE UNIVERSITY

Wind Farm Simulation

- Investigate turbines in full/partial wake
- With and without turbulent ABL
 - PrecursorABL (SOWFA)
 - Does atmospheric turbulence show increased mixing?
- DRWT
 - Enhance mixing?
 - More energy capture?

IOWA STATE UNIVERSITY

Wind Farm Layout

PrecursorABL

From NREL

IOWA STATE UNIVERSITY

PrecursorABL

IOWA STATE UNIVERSITY

PrecursorABL

From NREL

IOWA STATE UNIVERSITY

Acknowledgments

- Mentors: Dr. Anupam Sharma
- Suganthi Selvaraj
- Bharat Agrawal

IOWA STATE UNIVERSITY

QUESTIONS?

IOWA STATE UNIVERSITY