WESEP 594 Research Seminar

Aaron J Rosenberg

Department of Aerospace Engineering lowa State University

Major: WESEP

Co-major: Aerospace Engineering

Motivation

Increase Wind Energy Capture

- Betz limit:
 - 59.3% of energy capture
 - Modern HAWTs operate well below this
- Root loss (≈5%)
 - Inner 25% of rotor ...
 - ... designed for structural integrity
 - → Poor root aerodynamics
- Wake loss (≈8–40%)
 - Not operating in isolation

Novel Turbine Concept

- Dual Rotor Wind Turbine (DRWT)
 - Add a secondary, co-axial rotor
 - Rotors rotate independently
 - Co- or counter rotating
- Aims:
 - Reduce root loss
 - Reduce wake loss
 - · Enhance wake mixing
- Secondary rotor inversely designed using BEM
 - Betz optimal rotor
- Analyzed design using RANS and LES

DUAL ROTOR DESIGN

Primary Rotor – NREL 5 MW offshore

- Conceptual design
 - D = 126.0 m

- Constraints:
 - Transportation (chord)
 - Manufacturability (twist)
 - Loads (thickness)
- → Aero losses

Applies to all utility-scale HAWTs

Secondary Rotor Design

- Betz optimum rotor
 - a = 1/3

Output

- Chord distribution
- Twist distribution
- Non-dimensional

NUMERICAL METHODS

- 1. RANS + Actuator Disk
- 2. LES + Actuator Line

CFD: RANS + Actuator Disk

- Selvaraj, 2014 (M.S. thesis)
- Reynold's Averaged Navier-Stokes + Actuator Disk
 - Incompressible flow
- Axisymmetric computations
- Implemented in OpenFOAM (SimpleFOAM)

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0$$

$$\bar{u}_j \frac{\partial \bar{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j^2} - \frac{\partial \overline{u}_i' u_j'}{\partial x_j} + \underbrace{f_i}_{\rho}$$

CFD Validation: Single Rotor HAWTs

Risø Turbine:

- Conventional, single-rotor design
- 100 kW
- Fixed Pitch, Stall Regulated
- D = 19.0 m

Multiple Actuator Disk Validation

- Newman (1985)* extended 1-D theory to multiple disks
- Equal-size, uniformly-loaded disks in tandem
- Validate against analytical solutions for 2, 3, & 4 disks
- Specify C_T, compute C_T and C_P

^{*}Newman, B 1986 Journal of Wind Engineering and Industrial Aerodynamics 24 pp. 215-225

10

RANS Validation: Two Disks

Thrust force coefficient

Power coefficient

RANS Validation: Three Disks

Thrust force coefficient

Power coefficient

RANS Validation: Four Disks

Thrust force coefficient

Power coefficient

Optimization Study (RANS)

- Optimum Betz rotor design for secondary rotor ignores rotorrotor interaction effects → not optimum for DRWT use
- Optimize secondary rotor for DRWT performance
 - Still isolated turbine ... not wind plant
- Parametric sweeps; vary:
 - #1: Secondary rotor size & TSR Hold rotor-rotor separation: $\Delta x = 0.5 \times r_{t_{main}}$
 - #2: Rotor-rotor separation & TSR Hold secondary rotor size: $r_{t_{secondary}} = 0.3 \times r_{t_{main}}$

Rotor Size

Size of the secondary rotor varied

Percent Change in Power Coefficient

Rotor Spacing

Axial spacing between primary & secondary rotors varied

Percent Change in Power Coefficient %Ср Axial separation between rotors 0.6 0.2 10 12 TSR

Co- Versus Counter-Rotation

- Little influence of rotation direction
- Counter-rotation gives slightly better performance

Optimization Study

Results:

- Secondary rotor:
 - Optimal size:

$$r_{t_{secondary}} = 0.3 \times r_{t_{main}}$$

Optimal spacing:

$$\Delta x = 0.2 r_{tip}$$

- Optimal TSR = 6
- DRWT design:
 - Reasonable AoA
 - Efficient torque (power) generation in root region

7% increase in C_P observed

NUMERICAL METHODS

- 1. RANS + Actuator Disk
- 2. LES + Actuator Line

Large Eddy Simulations

- Motivation
 - Analyze wake mixing
 - Unsteady features
 - Unsteady loading
- RANS optimized DRWT config
 - Counter-rotating
- Compare with SRWT
- SOWFA
 - LES + Actuator Line
 - SGS model: Smagorinsky

LES + Actuator Line

- Governing eqs.: unsteady, incompressible N-S
- Spatially filtering → resolve variable denoted by (~)

$$\frac{\partial \widetilde{u}_{i}}{\partial x_{i}} = 0,$$

$$\frac{\partial \widetilde{u}_{i}}{\partial t} + \widetilde{u}_{j} \left(\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} - \frac{\partial \widetilde{u}_{j}}{\partial x_{i}} \right) = -\frac{\partial \widetilde{p}^{*}}{\partial x_{i}} - \frac{\partial \tau_{ij}}{\partial x_{j}} + \nu \frac{\partial^{2} \widetilde{u}_{i}}{\partial x_{j}^{2}} - \underbrace{f_{i}/\rho_{0}}_{\text{turbine force}}$$

- Assumptions:
 - Neutral atmosphere → buoyancy ignored
 - Small domain → Coriolis plays little role
 - Zero inflow & background turbulence
 - Turbines represented w/ body forces (Actuator line)

DRWT LES

- Simulated 200 sec
 - Averaged from 150 200 s for performance comparisons
- $U_{\infty} = 8 \text{ m/s}$
- Periodic BCs (side & top):
 - Infinite array in cross stream dir...
 - ... but large separation \rightarrow isolated
- Nacelle & tower ignored
- Uniform flow, no turb, no buoyancy, no Coriolis
- 1 simulation ~ 6K core hours (~24 hrs on 256 cores)

DRWT LES

~5% increase in C_P observed

DRWT LES Results: Wake Evolution

- Secondary rotor extracting energy → higher deficit near root
- Insignificant difference in wake deficit near tip

DRWT LES Results: Wake Evolution

X = 4D

- Root: higher turbulence intensity
- Tip: Insignificant difference

Absence of background turbulence, ABL, tower → wake /vortex systems of the 2 rotors not interacting

25

Conclusions

- Designed a DRWT using inverse BEM
- Validated RANS + Actuator disk
 - Single and multi-rotor turbines
- Optimized DRWT using RANS + AD

- Performance analysis using LES
 - $-C_p$ increase of ~5% (RANS: 7%)

FUTURE WORK

Future Work

- 1. ABL Simulations
- 2. Wind Farm Simulations
- 3. Enhance Wake Mixing
- 4. Acoustic Study
- 5. Cost Analysis
- 6. Experimental Validation

Atmospheric Boundary Layer Simulations

- Uniform inflow is not realistic
- What are the effects of a fully turbulent ABL?
 - Power Production
 - Acoustics
 - Stochastic Loading
- SOWFA Precursor ABL
 - Wall model for ground
 - Potential temperature profile
 - Unstable vs Neutral vs Stable

From SOWFA webinar

Wind Farm Simulations

- DRWT vs SRWT
 - Do DRWT arrays act more efficiently?
- Full vs partial wake effects
- Fully turbulent ABL
 - Coriolis & buoyancy included

(b) Vorticity magnitude

Enhance Wake Mixing

- Wake Loss > Root Loss
- Instigate excitation of vortexpair instability
- Re-energize wake
- Wake Control
 - Secondary blade size/design?
 - Control Algorithm?

Acoustic Study

- Airfoil-Rod interaction
 - Leading edge noise from primary rotor
 - Thin airfoil of secondary rotor
 - Thick root section of primary rotor
- Potential Field
 - Trailing edge noise from secondary rotor
- Semi-analytical models
 - Sears (1941)
 - Cascade Response
- A lot to learn here!

Courtesy Bharat Agrawal

Cost Analysis

- Wind Turbine Design Cost and Scaling Model (2006)
 - Calculates LCOE
 - Function of turbine size
- Extended to DRWT
 - Refine analysis
- Drivetrain Costs?
 - Collaborate w/ industry

	SRWT	DRWT
Onshore	\$0.0464/kWh	\$0.0438/kWh
Offshore	\$0.0807/kWh	\$0.0767/kWh

33

Experimental Validation

- Validate CFD results w/
 Dr. Hu's research group
 - Replicate previous wind tunnel experiments
- AABL + Model Turbines
 - Fabricate DRWT models
- Isolated and Array

From *Hu et al.* (2012)

QUESTIONS?

