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Regionally Downscaled Climate (RDC) Model Data

Work part of two separate, but highly-related projects:

“Co-optimization and anticipative planning 
methods for bulk transmission and resource 
planning under long-run uncertainties”   
(Bonneville Power Administration)

“Integrated Electric/Water Systems Modeling for 
the Pacific Northwest”  (Ames National 
Laboratory/DOE)”



Impact of climate change on electric power grid expansion
 Projected likely increase in average near-surface temperature over the U.S. 

by more than 1.5 ˚C by end of century (Collins et al. 2013)

 Projected decrease in average precipitation over mid-latitudes (Collins et al. 

2013)

 Projected 8-10% decrease in average wind speed over N. America by mid-
century (Karnauskas et al. 2017)

Would result in:

 Increase in demand for cooling, increased load
 Decrease in hydro power potential
 Decrease in wind power potential

These are continental projections, what are the projections 
specifically for the Pacific Northwest?



Global Climate Models are used to forecast the state of 
the environment decades into the future

 The Coupled Model Intercomparison Project 5 (CMIP5) of the World Climate 
Research Programme (WCRP) has generated 100+ climate forecast projections out 
to 2100

 Based on different climate models from centers around the world
 With different parameterization schemes (convective weather, microphysics, 

turbulence, etc.) and/or different model initialization approaches
 Climate projections available for research purposes at various data portals 

including:   
 http://cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf
 https://climate.northwestknowledge.net
 https://esgf-data.dkrz.de 



Partial list of CMIP5 GCM models and contributors 

Model Institution Country

CNRM-CM5 Centre National de Recherches Meteorologiques France

CESM National Center for Atmospheric Research USA

ACCESS Commonwealth Scientific and Ind. Research Org. Australia

MPI-ESM Max Planck Institut für Meteorologie Germany

BCC-CSM Beijing Climate Center (国家气候中心) China (PRC)

CCCMA Canadian Centre for Climate Modelling and Analysis Canada

• Total 29 contributing entities world-wide
• Full list given at https://cmip.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf



Regional down-scaling of GCM data

 GCM data are global, ~1-2° spatial resolution
 To study regional effects of climate, GCM data on a finer spatial scale is 

needed
 Several collaborative efforts have produced regionally down-scaled climate 

(RDC) data at 1/8 ° (~12 km)  resolution 
 Using statistical, bias-correction techniques
 Using a regional climate model



CMIP5-related RDC efforts

 Lawrence Livermore National Laboratory (LLNL) and Bureau of Reclamation
 Collaborators:  Climate Analytics Group, Climate Central, Santa Clara U., Scripps Instit. 

of Oceanography, U.S. Army Corps of Engineers, U.S. Geological Survey

 Multivariate Adaptive Constructed Analogs (MACA) datasets
 Collaborators:  U. of Idaho, Regional Approaches to Climate Change, Climate Impacts 

Research Consortium, NOAA’s Regional Integrated Sciences and Assessments, 
Northwest Climate Science Center, Dept. of the Interior Southeast Climate Science 
Center

 Coordinated Regional Climate Downscaling Experiment (CORDEX)
 Associated with the World Climate Research Programme (WCRP)
 Collaborators from N. America:   Nat. Ctr. for Atm. Research, Iowa State U., Cornell U., 

OURANOS (Quebec)



Domain of interest in the Pacific Northwest



CMIP5 RDC Data

Ensembles
 LLNL:   42 RDC datasets
 MACA:   20 RDC datasets
 CORDEX:   1-3 RDC datasets

Annual average near-surface 
forecast and observational analysis 
temperatures for the Pacific 
Northwest

Bold lines show temporal trend of 
ensemble averages



 LLNL data
 Training dataset (Maurer, 2002)

 MACA data
 Training dataset (Abatzoglou, 2013)

 North American Regional Reanalysis (NARR)
 Produced by NOAA’s Nat. Center for Environmental Prediction (NCEP)
 Data available 1979-present

 PRISM
 Produced by Oregon State U.
 Data 1981-present; average daily/monthly re-analysis
 Precip, mean max/min temps., mean dewpt. temp.  (no wind data)

Observational datasets
 Objectively analyzed observations with model for (dynamically balanced) background state

 Provides 3D gridded depiction of the current environment (including points for which 

explicit observations are not available)

Various datasets:



Evaluation of observational datasets using ASOS data

• Automated Surface Observing 
System (ASOS)

• Hourly recording of temperature, 
pressure, dewpoint temperature, 
wind speed, wind direction, cloud 
cover

• 900 sites mainly located at airports



Evaluation of observational datasets using ASOS data 

Data averaged across 9 ASOS sites.



Bias-correction methods

 Bias-correction spatial disaggregation (BCSD) (Wood et al. 2002 & 2004)

• Quantile mapping to map one probability distribution to another, 
removes systematic errors 

• Spatial-disaggregation
 Bias-correction constructed analogues (BCCA) (Hidalgo et al. 2008, Maurer et al. 2010)

 Multivariate Adaptive Constructed Analogs (MACA) (Abatzoglou and Brown, 2011)

• Uses a training dataset of observed cases to match spatial patterns in 
climate models



Bias-correction:  Quantile mapping

 Generate cumulative distribution 
functions (CDFs) of average 
monthly temperature by location 
(1˚ cell)

 CDFs generated for observational 
analysis (black), each GCM 
ensemble member (red)

Figure from Reclamation, 2013



 For a GCM temperature, use the CDF 
for the given month and location to 
identify rank probability

 Match the rank probability of the 
observational analysis CDF and use its 
corresponding temperature as the 
adjusted GCM value

Reclamation, 2013

Bias-correction:  Quantile mapping



Spatial Disaggregation

 Calculate “factor” as difference 
between monthly mean GCM and 
observational analysis precipitation 
data on coarse (1˚) grid

 Interpolate “factors” to 1/8 ˚ grid 
using an inverse-distance-squared 
method

 Multiply interpolated factors with 
mean GCM 1˚ data to achieve 1/8 ˚ 
data 

Reclamation (2013)



MACA

 Similar to BCSD method, bias-correction is 
based on quantile mapping using CDFs 
(based on 15-day period rather than 
monthly)

 Matches 1 deg GCM data with same spatial 
pattern from observed cases of previous 
years

 An analog “best” case matching the GCM is a 
superposition from 100 best observed cases 
using matrix inversion to estimate 
coefficients for each of the 100 cases 

 The fine-scale (1/24˚, 4 km) versions of the 
100 observed cases along with their estimate 
coefficients are used to construct a down-
scaled GCM

Figures from https://climate.northwestknowledge.net/MACA/MACAmethod.php



CORDEX

 Regional climate model using initial and boundary 
conditions from GCM 

 Explicitly calculate weather variables at a relatively 
fine resolution (e.g. 0.44˚), not statistically generated

 Computationally expensive
 Accounts for effects of local features such as terrain 

and land/vegetation type as well as relatively smaller-
scale weather phenomena such as local storms 



Domain of interest in the Pacific Northwest



Annual average near-surface (2 m) temperature



Annual average near-surface (10 m) wind speed



Annual average daily precipitation rate



Identify the optimal regional climate dataset

 Method follows that given in Rupp et al. 2016, who evaluated GCM (i.e., not 
RDC data) performance over the PNW

 Calculate a normalized mean absolute error (MAE) by variable (mean temp., 
wind, precip.)

𝐸 =
𝑀𝐴𝐸 −𝑀𝐴𝐸min

𝑀𝐴𝐸max −𝑀𝐴𝐸min

𝐸𝑡𝑜𝑡 = ෍

𝑣𝑎𝑟=1

𝑚

𝑤𝑣𝑎𝑟 𝐸𝑣𝑎𝑟

 Combine errors for all variables
Weights by variable:

Precip.  0.7
Temp.   0.25
Wind     0.05



Identify the optimal regional climate dataset



Identifying the optimal regional climate dataset

Regional Climate Dataset Associated Entity

Lowest total error 

(w/o trend error)

bcsd-cesm1-cam5.1 NCAR (USA)

Lowest total error 

(w/ trend error)

bcsd-mri-cgcm3.1 MRI (Japan)

Lowest temp. error bcsd-inmcm4.1 RINM (Russia)

Lowest wind error bcsd-ipsl-cm5a.mr.1 IPSAL (France)

Lowest precip. 

error

bcsd-cnrm-cm5.1 CNRM (France)

Lowest temp. trend 

error

bcsd-giss-e2-r.1 NASA (USA)

Lowest precip. 

trend error

bcsd-hadgem2-ao.1 Met Office (UK)



Results for different climate scenarios:   RCP 4.5, 8.5

 Representative Concentration 
Pathways (RCPs) represent projected 
greenhouse gas (GHG) 
concentrations

 Dependent on population growth, 
energy production, land use, etc.

 GCMs run with different RCP 
scenarios

Source:  portal.enes.org/data/enes-model-data/cmip5/datastructure



Results for different climate scenarios:   RCP 4.5, 8.5

Shown are 5-year running averages



Hydrology Modeling

 Collaborators are the same as listed for the 
CMIP5 RDC datasets (LLNL, Bureau of Reclamation 

et al.)

 Variable Infiltration Capacity (VIC) Model 
 Developed at the U. of WA
 Solves the water balance for each model 

grid cell
 Inputs include:  precip., temp., wind speed, 

solar rad., RH, vapor pressure, veg. type, soil 
type

 Maintains states of soil moisture and snow
 Produces evapotranspiration, baseflow, 

sublimation, runoff

Reclamation (2014), Wood and Mizukami (2014)



Hydrology Modeling

 VIC river network routing model 
that aggregates runoff and baseflow
from each cell identified with a 
given tributary to give streamflow

 Hydrology projections based on 
CMIP5 BCSD RDC datasets

Reclamation (2014)



Streamflow Projection

Forecast streamflow and std. dev. at Ice Harbor, WA based 
on one RDC projection (NCAR’s bcsd-cesm1-cam5)



Calculating hydropower

𝑃ℎ𝑦𝑑𝑟𝑜 = 𝑔𝜌𝜂𝑄𝐻

𝑄 = streamflow [m3 s−1]
H = height of water above turbine [m]
𝜌 = density of water [1000 kg m-3]
𝜂 = efficiency coefficient = 0.9

𝐻 =
𝑃ℎ𝑦𝑑𝑟𝑜−𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑔𝜌𝜂𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦



Diagnosing diurnal variation of mo. mean temperature

𝑇 𝑡 = 𝑇min + 𝑇max − 𝑇𝑚𝑖𝑛 𝛤𝑃 𝑡

𝛤𝑃 𝑡 = 𝑒−𝑡𝛾 1 +
𝑡

𝑎

𝛾𝑎

Pearson type III distribution

t = number of hours either prior to (t < 0) or after the normal 
curve maximum (t > 0)   
a = time in hours from the normal curve minimum to its 

maximum   
γ = empirically-defined for a given normal curve by iteratively 
varying its value to generate a Pearson-fit function that fits the 
given 30-year

Follows method of Satterlund et al. (1983). 
30 year normal diurnal curves by 
month for Yakima, WA from the 
National Centers for Environmental 
Information (www.ncdc.noaa.gov). 

http://www.ncdc.noaa.gov/


Diagnosing diurnal variation of temperature

𝑇 𝑡 = 𝑇min + 𝑇max − 𝑇𝑚𝑖𝑛 𝛤𝑃 𝑡

Diurnal variation of average monthly near-
surface temperature using Pearson III 
distribution curves for Yakima, WA and for 
designated months of year 2015.

Used average monthly max/min temperature 
projection of bcsd-cesm1-cam5.1 (NCAR).

Useful for projecting daily load in the future.



Calculating wind power

𝑧𝑜= roughness length = 0.3
(consistent with broad open areas)

𝑣ℎ𝑢𝑏 = 𝑣10𝑚[
ln

𝑧ℎ𝑢𝑏
𝑧𝑜

ln
10
𝑧𝑜

]

Extrapolate near-surface wind to turbine height.

Forecast annual average hub height 
wind speed at Hopkin Ridge, WA

Wind speed projections from mri-cgcm3.1 
model (Japan).



• 30-year normal and monthly 2015 derived curves from 
Yakima, WA  (close to but not at Hopkins Ridge)

• For Hopkins Ridge, do not have max/min projected winds, 
only mean wind

30-year normal curves Derived wind curves for 2015

Generate monthly-averaged diurnal curves



Calculating wind power:  Hopkins Ridge Wind Facility

• NE of Dayton, WA (46.38, -117.81)
• Total 157 MW capacity from 87 turbines
• Vestas V80 1.8 MW turbines

• 80m diameter, 5027 m2 sweep area
• Hub height 67m
• Cut-in/cut-out wind speed:   4, 25 m/s

• Assume 0.4 efficiency
• Account for wake effect

V80-1.8 MW power curves
Air density 1.225 kg/m 3
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𝑃𝑤𝑖𝑛𝑑 = 0.5 𝜂 𝜌 𝐴 𝑢3

𝑈𝑐𝑒𝑙𝑙=𝐶𝑤𝑎𝑘𝑒×𝑈𝑀𝑒𝑡

𝐶𝑤𝑎𝑘𝑒 = 1 −
1

140
(𝑁𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 − 1)

• Adjust for forecast low wind speed bias

(NREL Tech Rpt 2014)



Calculating wind power:  Hopkins Ridge Wind Facility

• NE of Dayton, WA (46.38, -117.81)
• Total 157 MW capacity from 87 turbines
• Vestas V80 1.8 MW turbines

• 80m diameter, 5027 m2 sweep area
• Hub height 67m
• Cut-in/cut-out wind speed:   4, 25 m/s

• Assume 0.4 efficiency
• Account for wake effect

𝑃𝑤𝑖𝑛𝑑 = 0.5 𝜂 𝜌 𝐴 𝑢3

𝑈𝑐𝑒𝑙𝑙=𝐶𝑤𝑎𝑘𝑒×𝑈𝑀𝑒𝑡

𝐶𝑤𝑎𝑘𝑒 = 1 −
1

140
(𝑁𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 − 1)

• Adjust for forecast low wind speed bias

(NREL Tech Rpt 2014)

Power across entire wind farm



 Year 2011 gives the largest observed departure from mean temperature trend (~5 deg.)
 Identify reasonable future extreme event by adding observed extreme departure (5 deg) to 

projected future mean at 2050.
 BUT, what is appropriate means of extrapolating mean temperature to 2050?

What about forecasting climate extremes?
Trends of observations and “hottest” projections (RCP8.5 data for Austin)



Forecast extremes:  consistency among temp., wind, pcp.

 For example, to consider the range of plausible extreme events would give 
a matrix of scenarios:   
 High temp/high pcp/low wind
 Low temp/high pcp/high wind

 Low temp/low pcp/high wind … etc.
 Could investigate correlations among temp., wind, precip. extremes in the 

historical data
 Models would impose physical constraints such that certain scenarios 

would not occur:   
 Extreme high temp/high pcp would not occur, because it takes more energy to heat 

moist air vs. dry air (heat capacity of water vapor is nearly double dry air), thus 
extreme heat events occur only in cases of low pcp



Overview of Results

 There is projected an increase of 0.5 C in average annual temperature in the 
PNW by 2040

 Average annual wind speeds and precipitation will remain nearly the same 
over the PNW through 2040

 These trends are consistent among the RDC ensemble sets (even if actual 
magnitudes of temp., wind, and precip. rate differ among the RDC 
ensembles) 

 Using LLNL observational dataset to determine RDC error, the bcsd-cesm1-
cam5.1 (NCAR, US) and bcsd-mri-cgcm3.1 (MRI, Japan) datasets scored 
overall the best



Future work

 More work can be done to identify an appropriate observational data for 
RDC validation (such as considering PRISM)

 More observations are needed at wind farm locations for validation of wind 
power forecasts 

 More precipitation observations needed in remote areas as well as data on 
water use in the PNW to aid validation of hydro power forecasts

 In evaluating optimal RDC datasets, consider observational datasets for 
validation other than LLNL and NARR, and, depending on end-use 
application, reconsider arbitrary weights per variable for normalized total 
error

 Evaluate RDC data on a seasonal basis
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