

- My simulation needs in a nutshell
- How I identified a person doing relevant work
- How I became a Visiting Researcher
- OFFIS Energie, Univ. of Oldenburg
- My research experience there
- Quick visual tour

My simulation needs in a nutshell

My simulation needs in a nutshell

- Power system models represent high-voltage transmission OR low-voltage grids, not both
- Wanted to address transmission-level needs, given high wind penetration
- Goal: simulate thousands of air conditioners in low-voltage grids responding each day
- Wanted to avoid developing a combined highvoltage/low-voltage model from scratch

How I identified a person doing relevant work

Stefan Scherfke

Searching on "discrete event simulation" -> Video of conference talk on SimPy -> Projects listed on Stefan's homepage

mosaik

- Allows simulations to exchange data
- Stefan Scherfke, S. Schutte were original developers.

SimPy

- Discrete event simulation.
- S. Scherfke developed
 SimPy 3
- Supports simulations in mosaik

Projects listed on Stefan Scherfke's homepage -> OFFIS -> Contacted Stefan

How I became a Visiting Researcher

Expressed enthusiasm about common and complementary interests

- Overlapping interest in co-simulation
- OFFIS project: distributed energy resources
- Me: distributed demand resources
- Stefan put me in touch with group manager of Simulation and Automation for Complex Energy Systems, Dr.-Ing. Sebastian Rohjans
- I noted that I had funding

Articulated my research goals and simulation plans

 Wrote proposal with problem statement, modeling approach, assumptions, and data sources.

Contents	
Problem Statement	3
Introduction	3
Challenge	3
Research Project Plan	3
Modeling	1
Day-ahead Unit Commitment and Scheduling	5
Demand Participation in Day-ahead Bidding	5
Demand Participation in Ancillary Services (AS)	5
Household Load (non-TCL load shapes)6	5
Thermostatic Controlled Loads	5
Scenarios	5
Scenario Output6	5
Current Market Processes	7
Day-ahead	7
Requirements for Ancillary Services	7
Role of demand in day-ahead	7
Real-time (Intra-day Market and Dispatch)	3
LSE	3
Wind forecast	3

Overview of OFFIS
Energie and Energy
Research at University
of Oldenburg

OFFIS Energie

- Associated institute
- Application-oriented
- ●-50 software engineers,PhDs, current PhD students
- •Jun.-Prof. Lehnhoff oversees two groups
- Dr. Rohjans leads simulation group

Simulation and Automation of Complex Energy Systems

Systems Analysis and Distributed Optimization

Architecture Engineering and Interoperability

Smart Resource Integration

Energy Research in Oldenburg

OFFIS

- Systems-level simulation
- Information and Communication Technology (ICT)
- Smart Grid, Renewables, Markets, Demand-side, EVs

Image: forwind.de

ForWind

- Aerodynamics, damage detection, power train, structures, numerical simulation, offshore
- Joint center w/ Bremen, Hannover
- Partners: German Aerospace Center, Fraunhofer IWES Nordwest

NextEnergy

- PV, fuel cells, combined heat and power, energy storage
- Founded with EWE

My research experience there

Areas of research

- Item 1: Made high-voltage simulator PyPower run with PV buses and solve for gens' least-cost output
 Item 2: Collected data for
- •Item 2: Collected data for air conditioner simulation, system benchmark
- Item 3: Developed equations for air conditioner model entities

Item 1: Made high-voltage simulator minimize cost

Before

- When using mosaik to run PyPower, PyPower ran power flow for distributed generation
- When using mosaik to run PyPower, mosaik accepted Excel and JSON text formats as inputs

After

- When using mosaik to run PyPower, PyPower runs high-voltage optimal power flow (least cost)
- When using mosaik to run PyPower, mosaik accepts Excel, JSON and standard PyPower case format

Item 2: Web-scraped public power system (ERCOT) and weather through automation

Benchmarking:
 Total ERCOT
 demand, system
 capacity, total wind
 (every 5 mins.)

Benchmarking:
 Online generation
 capacity, controllable
 load (every 5 mins.)

•Input to air conditioner simulation by Texas region: temp., wind, cloud cover (hourly)

Reserves

Energy

Weather

Item 3: Derived temperature equation for air conditioner model entities

Temperature as a function of time

The following functions have been derived, beginning with a solution to the differential equation 13 from Ihara and Schweppe.

 τ Thermal constant for building

 T_f Ambient (outdoor) temperature

w Air conditioner on (1), off (0)

Tg Heat gain for air conditioner (< 0)

$$\frac{dT}{dt} = -\frac{1}{\tau}(T - T_f - wT_g)$$

Solution:

$$T(t) = T_f + wT_g + \frac{T(0) - T_f - wT_g}{\exp\left(\frac{t}{\tau}\right)}$$

Item 3: Derived cycle duration equation for air conditioner model entities

Time as function of starting, ending temperatures

The derivation begins with the formula for T(t) previously derived. The constant c is again based on $T(0) - T_f - T_g$.

 T_{end} is the ending temperature and represents T(t), while t is the duration of temperature change.

$$T_{end} = T_f + wT_g + \frac{c}{\exp(\frac{t}{\sigma})}$$

Solution:

$$t = \tau \ln \left(\frac{T(0) - T_f - wT_g}{T_{end} - T_f - wT_g} \right)$$

Ongoing discussion and support

Quick visual tour

Next to Campus Haarentor

Wheels

