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Hybrid Dense Sensor Network
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Introduction (lowa!)

Center for wind

US wind energy share of electricity generation during 2015 iowa.gov
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Continued Growth
Motivation

@ In 2015 the United States was the world’s number one producer of
wind energy.

@ In total, domestic wind energy provided 181.79 terawatt-hours or
5.1% of the nations end use electricity demand in 2015. NREL
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Largest wind project (building)

EUIRERT THE CITIZEN'S GUIDE TO THE FUTURE

FROM SLATE. NEW AMEIRICA, AND ASI /

The Most Impressive State
for Clean Energy

It's lowa. Really!

(o] 000

Wind XI will add 1000 2-megawatt machines. slate.com
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Taller towers

MidAmerican building tallest land-based (US) wind turbine (115 meter hub height) Donnelle
Eller
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Low Wind Turbines

Bigger Blades

HOME > OMNSHOREWIND > ENERCOMN ADDS LOW-WIND TURBINES

Enercon adds low-wind turbines

18/11/2015

Enercon has introduced low-wind speed versions to its 4MW and 2MW anshore wind turbine
platform
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Remote and Extreme Conditions

Blade installation in Kotezbue Alaska, used with permission KEA

(lowa State University) WESEP 594 February 1st 2017 9 /37



Structural Health Monitoring of Wind Turbine Blades

Utilizing large area electronics for global coverage

SHM Problem Technology

Wind Turbine sensi i Characterization
Blades ' ) : -

Applications

Dense Sensor
Network

-
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Hybrid Dense Sensor Networks (HDSN)

Soft Elastomeric Capacitor (SEC)

Titanium dioxide

(Styrene-cthylene/butyleng-styrene)

©

Carbon Black

(lowa State University)

Toluene /
o,

sonic dismembrator

N\
|

sonic bath

(a) dissolution
of SEBS

(b) dispersion of
doping material

WESEP 594

Soft Elastomeric Capacitor

(c) dropcast dielectric

:

(d) paint electrodes
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Hybrid Dense Sensor Networks (HDSN) Soft Elastomeric Capacitor
SEC Model

Parallel plate capacitor

AA
AC = ErEOT (1) &2

€r is the relative static permittivity and ¢ is the

dielectric constant. Using hooks law; &, —di

AC . - - 3 i 1
— = e e 2 T conducting
C ( X + y) ( ) ‘{"1‘-/ l plates
where ¢, is the strain in the x direction, ¢, is the SEC sensor

strain in the y direction and ) is the sec's gauge
factor = 2 for mechanical excitation under < 15 hz
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S A
Advantages of SEC for Mesosystem Monitoring

When arranged in an array the SEC's offer several advantages over current
state-of-the-art strain sensors.

Accelerometers Resistive Strain Gauges

@ Measures strain results in direct @ Can be easily deployed over
and and simple signal processing large surfaces.

@ Damage detection is simplified @ Capacitor-based strain gauges
as the sensor measures discrete require a lower excitation energy.
areas. @ Easy manufacturing of complex

2D Shapes.
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Hybrid Dense Sensor Networks (HDSN) Soft Elastomeric Capacitor

Unidirectional strain maps
Develop a bi-directional surface strain map:

Assume a model.

Build a shape function.

o
o
@ Impose boundary conditions.
@ Introduce sensor signals.

o

Calculate function parameters via a
least square estimation.
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Hybrid Dense Sensor Networks (HDSN) Soft Elastomeric Capacitor

Unidirectional strain maps
Develop a bi-directional surface strain map:

Assume a model.

Build a shape function.

o
o
@ Impose boundary conditions.
@ Introduce sensor signals.

o

Calculate function parameters via a
least square estimation.

Selected models, shape function and the method of imposed boundary
conditions vary from system to system.

(lowa State University) WESEP 594 February 1st 2017

14 / 37



Hybrid Dens nsor Networks (H ) Shape function

Shape Function

a
Xty
X2—1—xy—i—y2
x3+x2y+xy2+y3
x4-|—x3y-|—x2y2 -|—xy3+y4

schematic representation of cantilever plate

. Pascals Triangle for displacement function
with SEC array

(lowa State University) WESEP 594 February 1st 2017 15 / 37



TG e
Shape Function

a
Xty
X2—{—xy—i—y2
x3+x2y+xy2+y3
x4-|-x3y-|—x2y2 -I-Xy3+y4

schematic representation of cantilever plate

. Pascals Triangle for displacement function
with SEC array

Kirchroff’s theory of thin plates

cd? c
ex(x,y) = —Ea—xz =-3 (232 + 2asy + 6asx + 2agy2 + 6aioxy + 12aux2>

82
ey(x,y) = —g a—yz —% (2a3 + 2a4x + 6ary + 6agxy + 2a0x> + 12a12y2)
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Hybrid Dense Sensor Networks (HDSN) Strain maps

Unidirectional strain maps

~

&(x,y) = b1 + bypx + bsy + bax® + bsxy + bgy?

~

g(x,y) = 37 + BSX + 59)/ + BIOXZ + Bllxy + 512y2
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Hybrid Dense Sensor Networks (HDSN) ESHEIENERS

Unidirectional strain maps

E(x,y) = by + box + B3y + byx® + 135xy + Bﬁyz
&y(x,y) = by + bgx + boy + biox? + biixy + bioy?

solve for b using least squares estimator (LSE):

L1
B = X(HTH)—lHTs

I
X

P
,‘/
<
X — ¥

Unidirectional strain maps, ex and ¢y.

1800
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Salner
Adaptive Genetic Algorithm for Optimal Sensor Placement

Optimal placement of RSG sensors:

@ Not all potential sensor locations

contain the same level of
information.

@ Learning gene pool teaches
subsequent generations.

@ Finds key locations needed for

unidirectional strain inputs.

(lowa State University)
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Hybrid Dens nsor Networks (H )

Generational improvements
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Hyl Dense Sensor Networks (HDSN) Strain maps

Hybrid Dense Sensor Networks (HDSN)

HDSN: 12-SEC, 8-RGSs. Austin Downey HDSN: 276-SECs and 140-FBG nodes. Austin Downey
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ST
Wind Tunnel Testing

Wind Tunnel Testing Strain Maps
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Hybrid Dense Sensor Networks (HDSN) EREiTERIEGIE eh]

Implementation

© Deployable inside wind
turbine blades.

@ Retrofit or OEM.
© Useful for other large

structures, e.g. buildings,
bridges, aircraft.

Inside a 45 meter GE blade Austin Downey
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Hybrid Dense Sensor Networks (H ) Damage Cases

Damage Cases

”

i
|

Typical damage cases: 1) through crack; 2-3) edge split; 4) impact. Austin Downey

(lowa State University) WESEP 594 February 1st 2017 22 /37



el
Deploying Hybrid Dense Sensor Networks

dense sensor
network

SEC

HDSN

‘0 '
In]n uiak

SEC—monoQ!

HDSN

Subdividing a wind turbine blade's complex geometry into independent sections of different

resolutions
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Network Reconstruction Feature (NeRF) Proposed solution

Damage detection and localization through a Network
Reconstruction Feature (NeRF)

(lowa State University) WESEP 594 February 1st 2017 24 / 37



Network Reconstruction Feature (NeRF) Proposed solution

Damage detection and localization through a Network
Reconstruction Feature (NeRF)

@ Data fusion of the additive SEC signal and unidirectional FBG signal.
@ Distinguish healthy states form possibly damaged states.
© Capable of damage detection, quantification and localization.

@ Can function without historical data set or external models.

| enhanced LSE |

| I SEC signal I—h- +I x strain map l -:)

j [ shape | o I} sE | MSE|>|  feature
! fuction )

| I RSG signal I—b- —I-I ¥ strain map I >

Extract damage features based on the fit of a shape function
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utiacklel
Building a HDSN

plate>

(lowa State University)

Deploying HDSN of SECs and FBG onto a plate.
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utiacklel
Building a HDSN

plate>

(lowa State University)
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Deploying HDSN of SECs and FBG onto a plate.
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utiacklel
Building a HDSN
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Deploying HDSN of SECs and FBG onto a plate.
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Building 2 HDSN
Building a HDSN
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Deploying HDSN of SECs and FBG onto a plate.
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Damage Cases

Cantilever plate with damage induced as reduction of stiffness.
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Damage Cases
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Cantilever plate with damage induced as reduction of stiffness.
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Damage Cases
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Cantilever plate with damage induced as reduction of stiffness.
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Error Detection

2000 o T o <

Error in strain map reconstitution measures at sensor locations.
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Feature Extraction

Features extracted from change in fit with increasing shape function complexity
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Damage Quantification

Different damage levels in a feature-feature plot.
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Damage Quantification

Different damage levels in a feature-feature plot.
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Damage Localization

20 —— |
15
10

5

0

Damage localization on cantilever plate with damage induced as reduction of stiffness.

feature distance
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Damage Localization
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Damage localization on cantilever plate with damage induced as reduction of stiffness.

feature distance
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Damage Localization
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Damage localization on cantilever plate with damage induced as reduction of stiffness.

feature distance
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Damage Localization

30
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Damage localization on cantilever plate with damage induced as reduction of stiffness.

feature distance
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Damage localization within an HDSN
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Damage localization within an HDSN: left) damage case Il and associated HDSN; right)
absolute difference (error) between the estimated and measured strain for SECs within the

HDSN
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Wind Turbine Blade Example

5 L

=

Wind turbine blade shaped cantilever plate with damage induced as reduction of stiffens,
pressure loading on face.
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Damage Localization

7200 T T .
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Damage localization on wind turbine shaped cantilever plate.
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Damage Localization
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Damage localization on wind turbine shaped cantilever plate.
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Damage Localization
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Damage localization on wind turbine shaped cantilever plate.
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Damage Localization

R
e

Damage localization on wind turbine shaped cantilever plate.
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Damage localization within an HDSN

Damage localization within an HDSN: left) damage case IV and associated HDSN; right)
absolute difference (error) between the estimated and measured strain for SECs within the
HDSN
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Conclusion

Conclusion

Low cost measurement system for large area structures.
Developed a damage detection technique using a HDSN.
Demonstrated its ability to detect and localize damage.

Developed basic understanding of the methods limitations.

SEC technology: 1) SEC sensor; 2) 4 channel DAQ; and 3) HDSN; 4) HDSN.
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Conclusion Review

Conclusion

Benefits

@ No need for a external model or prolonged monitoring.
o Computationally efficient way to categorize HDSNs as healthy or
possibly damaged.

Limitations

@ Can be difficult to distinguish damage from complex loading.

SECs of varying size.
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Thank you

Sponsors

IGERT

“ energy
center

Upcoming wind energy conference

Sep 26-29, 2017 ' NAWEA

Ames, lowa JEECZEE ARy
WIND ENERGY ACADEMY

Addressing challenges to achieving 35% of North Ametica’s electricity from wind by 2035
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