Algorithm for Damage Detection in Wind Turbine Blades using a Hybrid Dense Sensor Network with Feature Level Data Fusion

Austin Downey NSF-IGERT fellow Wind Energy Science Engineering and Policy

austindowney@gmail.com - adowney2.public.iastate.com

February 1st 2017

IOWA STATE UNIVERSITY

Hybrid Dense Sensor Network for Damage Detection on Wind Turbine Blades

Soft Elastomeric Capacitor (SEC) Fiber Bragg Grating (FBG) Resistive Strain Gauge (RSG)

Overview

Contents

1

Introduction (lowa!) Motivation

Hybrid Dense Sensor Networks (HDSN)

- Soft Elastomeric Capacitor
- Unidirectional strain maps
- Unidirectional strain maps
- Network Reconstruction Feature (NeRF)
- Simulation
- Conclusion

Failure of a 49 meter wind turbine blade wind-watch

Center for wind

US wind energy share of electricity generation during 2015 iowa.gov

Motivation

- In 2015 the United States was the world's number one producer of wind energy.
- In total, domestic wind energy provided 181.79 terawatt-hours or 5.1% of the nations end use electricity demand in 2015. NREL

Largest wind project (building)

Wind XI will add 1000 2-megawatt machines. slate.com

Taller towers

MidAmerican building tallest land-based (US) wind turbine (115 meter hub height) ${\tt Donnelle}$ ${\tt Eller}$

Bigger Blades

Enercon has introduced low-wind speed versions to its 4MW and 2MW onshore wind turbine platform.

Remote and Extreme Conditions

Blade installation in Kotezbue Alaska, used with permission KEA

Structural Health Monitoring of Wind Turbine Blades

Utilizing large area electronics for global coverage

Soft Elastomeric Capacitor (SEC)

(Iowa State University)

SEC Model

Parallel plate capacitor

$$\Delta C = \epsilon_r \epsilon_0 \frac{\Delta A}{t} \tag{1}$$

 ϵ_r is the relative static permittivity and ϵ_0 is the dielectric constant. Using hooks law;

$$\frac{\Delta C}{C} = \lambda(\varepsilon_x + \varepsilon_y) \tag{2}$$

where ε_x is the strain in the x direction, ε_y is the strain in the y direction and λ is the sec's gauge factor ≈ 2 for mechanical excitation under < 15 hz

SEC sensor

Advantages of SEC for Mesosystem Monitoring

When arranged in an array the SEC's offer several advantages over current state-of-the-art strain sensors.

Accelerometers

- Measures strain results in direct and and simple signal processing
- Damage detection is simplified as the sensor measures discrete areas.

Resistive Strain Gauges

- Can be easily deployed over large surfaces.
- Capacitor-based strain gauges require a lower excitation energy.
- Easy manufacturing of complex 2D Shapes.

Unidirectional strain maps

Develop a bi-directional surface strain map:

- Assume a model.
- Build a shape function.
- Impose boundary conditions.
- Introduce sensor signals.
- Calculate function parameters via a least square estimation.

Unidirectional strain maps

Develop a bi-directional surface strain map:

- Assume a model.
- Build a shape function.
- Impose boundary conditions.
- Introduce sensor signals.
- Calculate function parameters via a least square estimation.

Selected models, shape function and the method of imposed boundary conditions vary from system to system.

Shape Function

schematic representation of cantilever plate with SEC array

Pascals Triangle for displacement function

Shape function

Shape Function

a x + y $x^{2} + xy + y^{2}$ $x^{3} + x^{2}y + xy^{2} + y^{3}$ $x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4}$

schematic representation of cantilever plate with SEC array

Pascals Triangle for displacement function

Kirchroff's theory of thin plates

$$\varepsilon_{x}(x,y) = -\frac{c}{2}\frac{\partial^{2}z}{\partial x^{2}} = -\frac{c}{2}\left(2a_{2} + 2a_{5}y + 6a_{6}x + 2a_{9}y^{2} + 6a_{10}xy + 12a_{11}x^{2}\right)$$

$$\varepsilon_{y}(x,y) = -\frac{c}{2}\frac{\partial^{2}z}{\partial y^{2}} = -\frac{c}{2}\left(2a_{3} + 2a_{4}x + 6a_{7}y + 6a_{8}xy + 2a_{9}x^{2} + 12a_{12}y^{2}\right)$$

Strain maps

Unidirectional strain maps

$$\hat{\varepsilon_x}(x,y) = \hat{b}_1 + \hat{b}_2 x + \hat{b}_3 y + \hat{b}_4 x^2 + \hat{b}_5 xy + \hat{b}_6 y^2$$
$$\hat{\varepsilon_y}(x,y) = \hat{b}_7 + \hat{b}_8 x + \hat{b}_9 y + \hat{b}_{10} x^2 + \hat{b}_{11} xy + \hat{b}_{12} y^2$$

Unidirectional strain maps

$$\hat{c_x}(x,y) = \hat{b}_1 + \hat{b}_2 x + \hat{b}_3 y + \hat{b}_4 x^2 + \hat{b}_5 xy + \hat{b}_6 y^2$$
$$\hat{c_y}(x,y) = \hat{b}_7 + \hat{b}_8 x + \hat{b}_9 y + \hat{b}_{10} x^2 + \hat{b}_{11} xy + \hat{b}_{12} y^2$$

solve for *b* using least squares estimator (LSE):

$$\hat{\mathbf{B}} = rac{1}{\lambda} (\mathbf{H}^{\mathcal{T}} \mathbf{H})^{-1} \mathbf{H}^{\mathcal{T}} \mathbf{S}$$

Adaptive Genetic Algorithm for Optimal Sensor Placement

Optimal placement of RSG sensors:

- Not all potential sensor locations contain the same level of information.
- Learning gene pool teaches subsequent generations.
- Finds key locations needed for unidirectional strain inputs.

Generational improvements

Generational improvement archived on a 20 SEC HDSN

Hybrid Dense Sensor Networks (HDSN)

HDSN: 20-SEC, 46-RGSs. Austin Downey

HDSN: 40-SEC, 10-RGSs Austin Downey

HDSN: 276-SECs and 140-FBG nodes. Austin Downey

HDSN: 12-SEC, 8-RGSs. Austin Downey

Strain maps

Wind Tunnel Testing

Wind Tunnel Testing

Strain Maps

Implementation

- Deployable inside wind turbine blades.
- Ø Retrofit or OEM.
- Useful for other large structures, e.g. buildings, bridges, aircraft.

Inside a 45 meter GE blade Austin Downey

Damage Cases

Typical damage cases: 1) through crack; 2-3) edge split; 4) impact. Austin Downey

Deploying Hybrid Dense Sensor Networks

Subdividing a wind turbine blade's complex geometry into independent sections of different resolutions

Damage detection and localization through a Network Reconstruction Feature (NeRF)

Damage detection and localization through a Network Reconstruction Feature (NeRF)

- **1** Data fusion of the additive SEC signal and unidirectional FBG signal.
- ② Distinguish healthy states form possibly damaged states.
- **③** Capable of damage detection, quantification and localization.
- Oan function without historical data set or external models.

Extract damage features based on the fit of a shape function

(lowa S	State l	Jniversity)
---------	---------	-------------

(Iowa State Universit	y)
-----------------------	----

Building a HDSN

Cantilever plate with damage induced as reduction of stiffness.

Damage Cases

Cantilever plate with damage induced as reduction of stiffness.

(Iowa State University)

WESEP 594

Damage Cases

Cantilever plate with damage induced as reduction of stiffness.

Error Detection

Error Detection

Error in strain map reconstitution measures at sensor locations.

Feature Extraction

Feature Extraction

Features extracted from change in fit with increasing shape function complexity

Damage Quantification

Different damage levels in a feature-feature plot.

Damage Quantification

Different damage levels in a feature-feature plot.

Damage localization within an HDSN

Damage localization within an HDSN: left) damage case III and associated HDSN; right) absolute difference (error) between the estimated and measured strain for SECs within the HDSN $\,$

Wind Turbine Blade Example

Wind turbine blade shaped cantilever plate with damage induced as reduction of stiffens, pressure loading on face.

Damage localization within an HDSN

Damage localization within an HDSN: left) damage case IV and associated HDSN; right) absolute difference (error) between the estimated and measured strain for SECs within the HDSN $\,$

Conclusion

- Low cost measurement system for large area structures.
- Developed a damage detection technique using a HDSN.
- Demonstrated its ability to detect and localize damage.
- Developed basic understanding of the methods limitations.

SEC technology: 1) SEC sensor; 2) 4 channel DAQ; and 3) HDSN; 4) HDSN.

Conclusion

Benefits

- No need for a external model or prolonged monitoring.
- Computationally efficient way to categorize HDSNs as healthy or possibly damaged.

Limitations

• Can be difficult to distinguish damage from complex loading.

SECs of varying size.

(Iowa St	ate Uni	versity)
----------	---------	----------

Future Work

Thank you

Upcoming wind energy conference

