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An Experiment at Home
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Very simple to make one cup of coffee
Need water, roasted beans, a filter

Have some basic steps you follow, and it should be
"okay" to drink.

"Okay" is - a very imprecise standard
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Here is a more precise standard...

COFFEE BREWING CONTROL CHART

Brewing Ratio: Grams per Liter

709 659 609 559
1.60
; STRONG STRONG | |/ | sTRoKG
= 150
= D) BITER
9] / / 09
<4 /
o} /
a 140 7
c
kel
4
4§ 1.30 59
= DEAL RITTER
€ DEAL
0
O 120
2.
o
o 40g
o /
D 110 /
o /
E} / |/
3 7
__1.00 WEAK K WERK
T D BITTER
=
O 00 V
2 0.
w
o<
=
© 080

14 15 16 17 18 19 20 21 22 23 24 25 26
EXTRACTION | Solubles Yield | Percent

Figure: A Standard in Two Dimensions Source.

http://paradiseroasters.com/content/Brewing
Control Chart.pdf



Aggregated, Wind Looks "Okay"

Apr. 30, 2014 - Interval 23:59 EST
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Figure: 24 Hours of Wind in MISO

Source: MISO Real-Time Market Data
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Predicting Resource Needs

Serving Net Load Across Spatial and Temporal
Scales

>

Day-ahead wind forecasts based on numerical
weather prediction (NWP)

Resources are committed (on/off) based on net load
forecast

Within 2-3 hours, not feasible to generate further
NWP

Statistical prediction used for short-term predictions
In addition to predicting overall trend, need to
anticipate timing of large, sustained changes

If timing of forecast is off (known as phase error),
need to be able to readjust dispatch of resources
quickly



Load and Renewables

Example: Winter 2020
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Projected Load and Net Load

Example: Winter 2020
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Simulation with High Wind Penetration
Historical Data

» To simulate, need to analyze and characterize wind

» lowa Energy Center Tall Tower study covering
2007-2009

» Begin analyzing 10-minute data from single location -
Altoona, IA

» Objective: understand level of variability and
uncertainty across time scales

» Support simulation with representative windows of
time for many wind farms, with realistic uncertainty



Altoona
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Altoona
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Figure: Altoona Monthly Wind Speed



Altoona
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Figure: Altoona - Monthly Standard Deviation at 50m



Characterizing Altoona Wind Speed for Full
Year

Weibull(5.85108,2.2988)
— LogMNormal(1.6725,0 57457)
— Nermal(8.07863,2.78279)

Figure: Altoona Distribution Fits - Weibull, Lognormal, Normal



Characterizing Altoona Wind Speed -
December

— Weibull(7.93652,2.34825)
— LogNormal(1.81226,0.60589)
— Mormal(7.05062,3.17722)

Figure: Altoona Distribution Fits - Weibull, Lognormal, Normal
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Monthly Characterization is Diagnostic

» Based on maximum-likelihood estimation (MLE),
Weibull is better fit than normal or lognormal
distribution

» For longer-term simulation, Weibull could tell whether
the 5- or 10-minute wind speeds used are realistic

» Good to have long-term distributions for reference,
but net load and operations have weekly, daily, hourly
and sub-hourly cycles

» Would we want to use the Weibull itself to synthesize
a range of daily wind speed simulations?



Altoona - June 1
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Figure: Altoona Average Wind Speed at 50m - June 1, 2008



Attempt to Fit Single Day
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Weibull(5.11679,4.07878)
LogMormal(1.46724,0.42017)
Mermal(4.64948,1.38783)

Figure: Altoona Distribution Fits - Weibull, Lognormal, Normal



Trend
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Figure: Moving Average of Wind Speed at 50m - June 1, 2008



Histogram Leads to...
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Figure: Altoona - June 1, 2008



Kernel Density Estimate
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Summary

Infinite Scenarios - Not Feasible

» Distributions based on kernel density may provide
way to generate variability and uncertainty across
time scales

» Main objective is to represent, but not reproduce in
full detail, realistic situations that reflect both typical
and extreme net load situations on grid

» Next steps are to consider other study sites and
correlation with Altoona over 24-hour periods, and
wind power at level of wind farms, based on wind
speed



