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A Reminder of History for Context

Year Events

Circa 1920- The electric power sector started as a collection of unconnected townships with their own generation 

and demand – effectively local grids and distributed generation

Circa 1930- Townships interconnected to share reserve

Circa 1920- Large scale remotely located generation emerged around fuel (coal and hydro) – increasing

economies of scale

Circa 1920-60 Major transmission developed from remote sites to cities

State electrification programs

Circa 1950-90 Township generation progressively retired – withered away – but connected by state-wide grids –

electrification of the state seen as a major positive

1980-2000 Central generation dominates

2000- Technology and policies for distributed generation returning distributed generation to economic 

prospect

2010- Beginning of reversal to historical trend and move to off-grid township based on solar/wind/thermal 

and storage
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Renewable Integration
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Energy in Australia
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Renewables (Cont.)

Drivers and Targets

– Increased interest and investment in renewable energy sources

– Drivers:

1. Environmental concerns, carbon emission

2. Energy security, geopolitical concerns

– Ambitious targets:

1. AU: 20% renewable penetration by 2020

2. US: 20% wind penetration by 2030

3. DK: 50% wind penetration by 2025

– How will we meet this aggressive target in Australia?
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Renewables (Cont.)

Where and how much?

– Transmission-level: large-scale onshore/offshore wind farms, large PV 
facilities, thermal-solar plants

1. away from population centres

2. need transmission investment

3. centralized dispatch

– Distribution-level: small rooftop PV

1. local generation/consumption

2. transition to off-grid

3. decentralized control

– Large fraction of renewable investments will be on distribution-
level.

 -

 1,000

 2,000

 3,000

 4,000

 5,000

NSW + ACT VIC TAS SA QLD

M
W

NEM connected renewables (large-scale) Small-scale solar PV



The University of Sydney Page 8

Renewables (Cont.)

Enabling Technologies

– Balancing supply and demand

– Grid-side:

1. better planning

2. improved forecasting

3. stronger transmission system

– Demand-side:

1. microgrid, energy storage, electric vehicles

2. HVACs

– Market-side:

1. new incentive strategies

2. trading schemes
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Transmission Level
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Wind Farm Planning

Background

– Design process

1. potential site selection (wind resource, land use, topography, 
hydrology, soil, etc.);

2. potential impacts assessment (fire, flora and fauna, vegetation, 
heritage, noise, landscape and visual, aviation, transportation, 
telecommunications, socioeconomic, etc.);

3. onsite turbine micrositing determination (turbine type, wake effect, 
terrain, etc.);

4. electrical layout design and electromagnetic interference 
evaluation (cables, transformers, reactive power compensation, 
energy storage, reliability evaluation, etc.).
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Micrositing Optimization
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Micrositing Optimization (Cont.)
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Electrical Layout Design

Mitigation Approaches

– Electrical layout design is an engineering task that

1. optimizes the equipment installation and maintenance costs

2. subject to geographic, environmental, social, and legal constraints

– We developed an efficient optimal electrical layout design approach 
for large-scale offshore wind farms

1. to minimize the capital cost, power loss cost, and network 
maintenance cost

2. taking into account the constraints of wind turbines, electrical 
cables, substations

Y. Chen, Z.Y. Dong, K. Meng, and et al., IEEE Transactions on Sustainable Energy, 2016.
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Electrical Layout Design (Cont.)

Constraints

– Active power flow constraints:

– Reactive power flow constraints:

– Capability limits of cables:

– Bus voltage limits:

– Radial constraints:
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Y. Chen, Z.Y. Dong, K. Meng, and et al., IEEE Transactions on Sustainable Energy, 2016.
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Electrical Layout Design (Cont.)

Y. Chen, Z.Y. Dong, K. Meng, and et al., IEEE Transactions on Sustainable Energy, 2016.
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Electrical Layout Design (Cont.)
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Wind Farm Dispatch

Core Problems

– Balancing supply and demand

1. economically through markets;

2. with transmission constraints, assuring reliability against 
contingencies, and maintaining power quality (voltage, frequency).

– Today

1. all renewable power taken, treated as negative load

2. subsidies: feed-in tariffs, etc

3. tailor supply to meet random demand

– Tomorrow

1. renewables are market participants

2. tailor demand to meet random supply
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F. Yao, Z.Y. Dong, K. Meng, and et al., IEEE Transactions on Industrial Informatics, 2010.
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Flexible Operational Planning Framework
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K. Meng, Z.Y. Dong, and et al., IEEE Transactions on Sustainable Energy, 2016.
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Flexible Operational Planning Framework (Cont.)
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K. Meng, Z.Y. Dong, and et al., IEEE Transactions on Sustainable Energy, 2016.
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Wind Farm Dispatch

Wind Farm-BESS Dispatch Scheme

– The benefits of this idea are, the wind power output can be controlled; 
the maximum capacity of battery storage system can be reduced, the 
optimal size can be estimated; the lifetime of energy storage device 
can be prolonged.

F. Luo, K. Meng, Z.Y. Dong, and et al., IEEE Transactions on Sustainable Energy, 2015.
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Future Grid Cluster - $13 million research collaboration 

between CSIRO and four leading Australian universities

Aims – Project II

– Develop the nation’s capacity to plan and design the most efficient, low 
emission electricity for Australia;

– Deliver the first analytical framework of its kind for Australian electricity 
and natural gas networks;

– Allow systematic investigation of the most economically efficient energy 
network configurations, enabling the power sector to make operating 
and planning decisions to develop and evolve the nation’s future grid.
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Co-planning

Gas-CCGT-Electricity

– Primary energy

– Gas wells/producers

– Transmission pipelines/gas 
interconnection, distribution 
pipelines, underground 
storages, compressors and 
valves

– Customers

– Branch, nodes, pressure, net 
gas supply

– Gas flow simulation

– Secondary energy

– Generators

– Transmission system, distribution 
system, energy storage, 
controls

– Customers

– Branch, nodes (buses), voltage, 
injection power 

– Power flow computation
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Co-planning

Accumulated construction costs
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Co-planning

J. Qiu, Z.Y. Dong, D. Hill, and et al., IEEE Transactions on Power Systems, 2015 and 2016.
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Clean Energy Highway (Grants)

– Wide-area Interconnected Clean Energy Highway; Z.Y. Dong, K. 
Muttaqi, K. Meng, S. Rahman, D. Hill; Australian Research Council (ARC) 
Discovery Grant (DP170103427), Australia, AUD $406.5K, 2017-
2019.

– Modelling and Control of Multi-terminal HVDC Grids in Future Pan-Asia 
Energy Highway; K. Meng, Z.Y. Dong, and Yong-June Shin; The 
University of Sydney and Yonsei University Joint IPDF, The University of 
Sydney, Australia, AUD 20K, 2017-2018.

– Inter-islands Multi-terminal High-voltage Direct Current Transmission 
System for Renewable Integration; K. Meng, Z.Y. Dong, W. Zhang; 
Australia-Indonesia Centre Energy Cluster, Australia, AUD 20K, 
08/2016-03/2018.

– Fault-tolerant Multi-terminal HVDC Grid Power Dispatch Framework; K. 
Meng, J. Berteen; Clean Energy and Intelligent Networks Cluster 
Funding, Faculty of Engineering & Information Technologies, The 
University of Sydney, Australia, AUD 7.5K, 2016.
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Multi-terminal HVDC Power Dispatching

Wind Farm

PMTDC,1

WFVSC1

WFVSCnw

GSVSC1

AC System

GSVSCnm

AC System

MTDC

Grids

PMTDC,nw

PMTDC,nw+1

PMTDC,nm

Wind Farm

vsc

vsc

vsc

G

G

G

G

G

12 13 15

14

10

11

6

5

2

19

18
3

4 8

7

917

1 16

W

W

K. Meng, W. Zhang, Z.Y. Dong, and et al., submitted to IEEE Transactions on Power Systems, 2016.
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MTDC

Research Opportunities

– Unique/sequential ac/dc power flow

– Optimal topology design

– Autonomous power sharing

– Control and protection

– MVDC/LVDC microgrid
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Distribution Level
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Why Microgrid Matters

is one with fewer and 
shorter power interruptions

is one better prepared to 
recover from adverse events

A more RELIABILITY grid A more RESILIENT grid

What is a microgrid?

– electricity distribution systems

– loads and distributed energy resources (such as distributed generators, 
storage devices, or controllable loads)

– operated in a controlled, coordinated way

– connected to the main power network or islanded.
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Microgrid Landscape

Five
most commonly used 
classes of Microgrids
(vary in size: 
generation, storage, 
control)
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Microgrid

Technical Challenge

– High complexity of feeder topology and network characteristics, no 
standard management framework for microgrid

– Controller as the brain of microgrid systems coordinating with upstream 
substation, peer microgrids and downstream device controllers

– Capability of both grid-connected and islanded operating modes and 
seamless transition between two operating modes

– Protection solutions for microgrid

Economical/Market challenges

– Responsibilities, costs and benefits allocation due to ownership

– Development of a market mechanism of microgrid services and business 
model
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Microgrid (Grants)

– Reliable Microgrid Technologies for Remote Communities with a 
Communication based Control Architecture; Z.Y. Dong, K. Meng, J. Ma, Y. 
Li, Tyree Foundation, Australia, AUD 3M, 2017-2019.

– Distributed Control Platform for Wireless Networked Microgrids; K. 
Meng and Z.Y. Dong; Major Equipment Scheme, Faculty of Engineering 
& Information Technologies, The University of Sydney, Australia, AUD 
140K, 2017. 

– Nested Microgrids for Remote Indigenous Communities in Australia; K. 
Meng; Mid-Career Researcher Development Scheme, Faculty of 
Engineering & Information Technologies, The University of Sydney, 
Australia, AUD 35K, 2017.

– Development of a Demonstration System of Hybrid Smart Power System 
to Emulate the Energy Efficiency and Reliability of Deployed Base 
Power Supply System; Z.Y. Dong, D. Lu, D. Hill, K. Meng; Department of 
Defence: Army Research Funding, Australia, AUD 77K, 09/2015-
08/2016.
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Laboratory-scale Microgrid

– Source: Ten PV panels (3 kWp), Diesel generator (4kW)

– Energy storage: Lithium-ion battery (6.5 kWh)

– Load: lighting system, programmable ac/dc load

Z.Y. Dong, D. Lu, D. Hill, K. Meng, Department of Defence, 2016.
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50MW Commercial Microgrid (SIEMENS-Hunterlee)
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Shared Facilities and Collaborations

Share Complementary Skills

– Foster a group with critical mass in microgrid technology

– Power: Joe Dong, Ke Meng, John Fletcher, Jayashri Ravishankar

– Telecommunication: Yonghui Li, Jinhong Yuan

– Control: Jin Ma, Hendra Nurdin

Share Laboratory Facilities

– Sir William Tyree Laboratory

– RTDS facility at Tyree Energy Technologies Building

– ABB Power Engineering Lab

– Microgeneration Test Bench

– Centre of Excellence in Telecommunications
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Wireless Networked Microgrids (Tyree Foundation)
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Bus
Proposed method PSCAD/EMTDC

Vac [pu] δ [pu] Vdc [pu] Pac [pu] Q [pu] Pdc [pu] Vac [pu] δ [pu] Vdc [pu] Pac [pu] Q [pu] Pdc [pu]

1 0.9908 0 0.9893 -1.6140 -1.0680 -1.0000 0.9907 0 0.9893 -1.6170 -1.0540 -1.0000

2 0.9934 -0.0002 0.9944 0.0456 0.8880 -0.0046 0.9934 -0.0002 0.9944 0.0513 0.9182 -0.0046

3 0.9884 -0.0061 0.9970 -2.1450 -1.5160 1.1834 0.9881 -0.0060 0.9970 -2.1470 -1.5190 1.1834

4 0.9987 0.0116 0.9946 1.2439 0.1780 -0.7300 0.9986 0.0116 0.9946 1.2430 0.1756 -0.7300

5 0.9980 0.0053 0.9946 1.2439 0.2746 -0.7300 0.9979 0.0054 0.9946 1.2430 0.2712 -0.7300

6 0.9907 -0.0053 0.9968 1.2439 1.2804 1.2922 0.9904 -0.0052 0.9968 1.2430 -1.3050 1.2922

PIC [pu] 45.6273 45.6998

Sequential/Unified Power Flow for Mixed AC/DC Microgrids
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L. Marpaung, K. Meng, Z.Y. Dong, and et al., submitted to IEEE Transactions on Power Systems, 2016.
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Microgrid

Research Opportunities

– Planning and design: addressing system architecture, monitoring and 
analysis, and system design; and

– Operations and control: addressing steady-state control and 
coordination, transient-state control and protection, stability evaluation, 
and operational optimization.
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Demand Side Management (DSM)

A Paradigm Shift

– Today: tailor generation to meet random load

– Tomorrow: tailor load to meet random generation

– Enabling ingredient: flexible loads

1. residential HVAC

2. commercial HVAC

3. deferrable appliance loads

4. electric vehicles

– Flexible loads will enable deep renewable penetration without large 
increases in reserves
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Demand Side Management (Cont.)
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Demand Side Management (Cont.)
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Demand Side Management (Cont.)
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Big Data Analytics
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The “Smart” Meter

• It can report the energy consumption every 

15 minutes or an hour remotely!

• It can refresh power consumption reading 

every 5 or 10 seconds1!

It is smart because …

Therefore,

• It can improve energy saving awareness, 

facilitate smart grid technologies, …

Really? The Gap is huge…

1NSMP, "Smart Metering Infrastructure Minimum Functionality Specification," 2011.
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Can smart meter be smarter?

Smart Meter

Aggregated Profile Appliance-wise load profile

Non-Intrusive Load Monitoring  (NILM)

disaggregate

5 sec res
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Facilitate Smart Grid Tech: Demand Response

High DR Potential Low DR Potential

• Break the aggregated load profile down to 

device-level profiles

• DR potential differs among appliances

• Allows dynamic assessment of DR 

performance/potential

Non-Intrusive Load Monitoring (NILM)

Smart Meter

Aggregated Profile
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Facilitate Smart Grid Tech: Demand Response

• This is an example of what insights the NILM technology can provide

• After disaggregating, we found that house3 consumes the most for air-con. Therefore, house3 may 

be of the greatest interest for monetary based demand reduction program

• Also, we may look deeper into the minute-to-minute consumption profile of each appliance to learn 

the time when this user is most likely to participate in demand reduction.
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Facilitate Smart Grid Tech: Energy Awareness

• by disclosing the comparison of the NILM results between the customers, it will trigger the behavioral 

reaction leading to save more energy and lower the electricity bills2

• In this example, house3 can realize that they are using much higher electricity in air-con than social 

average. This may make the householders to double check whether their high usage is necessary 

and remember to switch off the air-con when no one is in the room
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2https://opower.com/
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Facilitate Smart Grid Tech: Energy Awareness
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• With NILM technology, the electricity bill of an 

household can be itemized

• This information cultivates better energy 

awareness for customers
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Facilitate Smart Grid Tech: Advertisement
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• As this example, NILM may help us to spot that house 5 

consume much higher energy than social average for 

refrigerator

• This could mean that either this household uses an aged 

model or a low efficient model

• So we can target this house to recommend more 

efficient models of fridge or alert the user to inspect 

the fridge
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Facilitate Smart Grid Tech: Advertisement
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• On the other hand, house5, 7, 9 and 10 are found that they are equipped with 

dishwasher. Using dishwasher is a much more economical and efficient way to wash 

cooking utensils and plates

• So these customers can be targeted for dishwasher recommendations.
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Challenge

Each type of electric appliances has a unique 

fingerprint, it is also called the Power Signature.
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Our Approach

• Based on readily available smart meter data

• smart meters are required to update the reading of power consumption every 5 seconds 

according to Australian National Smart Metering Program’s minimum functionality specification8

• Dynamic probabilistic models are built by analysing different appliances 

to capture the distinct state transition relationships

• Can effectively work with data sampled at 5-second interval to 1-minute 

interval to provide appliance-level insight

Example of an Air-conditioning operation 

cycle

OFF

ON

Start-up

OFF

...
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Electricity Plan Recommendation

If your electricity or gas bills are on the rise, Talk 

to me! We can compare residential electricity and 

gas plans and find the one that’s right for you! 
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Research Directions
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Future Energy Grid

Research Directions

– Renewable energy: multi-terminal high voltage direct current, energy 
storage…

– Demand side management: big data, retail pricing, customized 
advertising….

– System operation and planning: co-planning (gas and electricity, traffic 
and electricity), risk-based dispatch and planning…

– System stability and control: stability assessment (rotor, voltage, and 
frequency), cyber security (false data injection, detection, and 
protection), centralized vs. distributed control (hierarchical, coordination, 
delay), distributed optimization…

– Energy internet: communication protocols, energy USB, energy router…
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Thanks!

Ke Meng

Lecturer

School of Electrical and Information Engineering

Email: ke.meng@sydney.edu.au


