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Abstract. On the basis of data constructed with large-eddy simulation (LES), an attempt is made to
improve the Mellor–Yamada (M–Y) turbulence closure model. Firstly, stably-stratified and convect-
ive planetary boundary layers without moisture are simulated by a LES model to obtain a database
for the improvement. Secondly, based on the LES data, closure constants are re-evaluated and a new
diagnostic equation for the master length scaleL is proposed. The new equation is characterized
by allowingL in the surface layer to vary with stability instead of constantkz, wherek is the von
Kármán constant, andz is height.

The non-dimensional eddy-diffusivity coefficients calculated from the modified M–Ymodel are
in satisfactory agreement with those from the LES data. It is found that the modified M–Ymodel
improves the original one largely, and that the improvement is achieved by considering buoyancy
effects on the pressure covariances andby using the newly proposed equation forL.

Keywords: Closure constant, Eddy-diffusivity coefficient, Large-eddy simulation, Length scale,
Level 3 model, Turbulence closure model.

1. Introduction

One of the most important physical processes in the planetary boundary layer
(PBL) is turbulence. In the 1970s, several high-order turbulence closure models
were developed, and Mellor (1973) and Lewellen and Teske (1973) proposed
second-order closure models. Mellor’s model was thereafter classified into four
hierarchy levels, according to the degree of anisotropy, by Mellor and Yamada
(1974), and has been widely applied not only to numerical experiments (e.g.,
Yamada, 1977; Miyakoda et al., 1983) but also to operational weather forecasts
(e.g., Numerical Prediction Division of Japan Meteorological Agency, 1997). Their
model is now termed the Mellor–Yamada (M–Y) model.

One of the reasons for the preference of the M–Y model is that it uses
a minimum number of universal constants (closure constants) determined from
laboratory and field experiments in neutral stratification and yet reproduces nicely
the observed non-dimensional gradient functions in the surface layer (Mellor,
1973). However, several problems in the M–Y model have been noted; e.g., Sun
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and Ogura (1980) pointed out that the M–Y model underestimates the depth of the
mixed layer and destabilizes the stratification in the bulk of the mixed layer.

Three major deficiencies of second-order closure models such as the M–Y
model have been mentioned in the literature (e.g., Moeng and Wyngaard, 1989);
the first deficiency is the neglect of buoyancy effects on the pressure covariances;
the second is the uncertain expression for a length scale, and the third is the
downgradient-diffusion assumption for turbulent transports. With respect to the
first deficiency, however, Mellor and Yamada (1982) stated that “We use a relat-
ively low-order version of Rotta’s ‘energy redistribution’ hypothesis. Other authors
claim some benefit in adding more nonlinear terms; however, our perception is that
the benefits are marginal and may even create errors in one application relative to
the one in which the additional, requisite, constants were obtained”. The aim of
the present study is to examine the first two deficiencies, and to improve the M–Y
model, based on data constructed with large-eddy simulation (LES).

Turbulence closure models have several unknown parameters to be determined
from experiments and/or simulations. Although a large number of observations
have been performed in the surface layer and applied to the determination of
the unknown parameters, the evaluation of turbulence in stable stratification may
be unsatisfactory because of its weakness and the presence of gravity waves.
Also, observations throughout the PBL available for the study on turbulence
closure modelling, do not exist in sufficient quantity, partly because only a few
observational techniques can make such observations.

LES can simulate explicitly turbulent motions whose scale is larger than a grid
size. Since the pioneering work of Deardorff (1972), it has been applied to simu-
lations of neutral or convective PBLs and has provided important information on
turbulence. A subgrid model proposed by Sullivan et al. (1994) further improved
the performance of the LES model in the surface layer and was applied also to a
stably-stratified PBL (Andrén, 1995).

In this study we first use a LES model similar to that of Sullivan et al. (1994)
(Nakanishi, 2000) to obtain turbulent quantities in dry PBLs with variously strat-
ified conditions. Secondly, we present a M–Y model in which buoyancy effects
are incorporated into the parameterization for the pressure covariances. Thereafter,
based on the LES data, closure constants are re-evaluated and a new expression for
the master length scale is proposed.

2. Construction of LES Database

In the present paper, capital letters denote ensemble-average variables, small letters
turbulent variables, the angle brackets〈 〉 an ensemble average, and a subscript 0
a reference state.
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2.1. LESMODEL AND NUMERICAL CONDITIONS

The LES code used here is described in detail in Nakanishi (2000); the moisture
and radiation effects, however, are excluded. The subgrid model is similar to that
of Sullivan et al. (1994) except that we use a diagnostic equation for the subgrid
turbulent kinetic energy (TKE). To simulate steady-state PBL flows, the heat flux
〈wθ〉g at the ground surface is fixed at a constant value, wherew is the vertical
velocity component,θ the potential temperature, and the subscriptg denotes the
ground surface. The surface momentum flux, on the other hand, is determined
from Monin–Obukhov theory with the roughness lengthz0m set at 0.15 m for
momentum.

The computational domain consists of 96× 96 grids horizontally and 60 grids
vertically. The lateral boundaries are periodic and the top boundary is treated as a
stress-free rigid lid; a grid spacing of either 3 or 4 m is used in all directions and
the time step is set to 0.2 s.

According to Canuto and Minotti (1993), the grid spacing has to be smal-
ler than the buoyancy-subrange scale given by(π/

√
6/5)(q2/2)1/2/N if it is

used as the length scale, whereq2/2 ≡ 〈
u2+ v2+ w2

〉
/2 is the TKE,N ≡[

(g/20)∂2/∂z
]1/2

the Brunt–Väisälä frequency,g the gravitational acceleration,
and(u, v) are the horizontal velocity components. This constraint becomes severe
as stability increases. From preliminary runs, and Monin–Obukhov theory for the
most stable case, the magnitudes ofq2/2 in the surface layer and∂2/∂z at a height
of z0m were estimated to be about 0.02 m2 s−2 and 0.26 K m−1, respectively;
accordingly the buoyancy-subrange scale for our simulations is considered to be
more than about 4.4 m. Only for the most stable case, however, the grid spacing of
3 m is adopted for safety’s sake. For unstable cases, a larger grid spacing is allowed
and a larger computational domain is proper to simulate typical convective PBLs.
To unify with simulations for stable cases, however, the grid spacing for unstable
cases is also chosen to be 4 m.

By varying 〈wθ〉g, six types of PBL flows were simulated; Cases 1–3 refer to
stably-stratified PBLs and Cases 4–6 convective PBLs. To limit the growth of the
PBLs, an inversion with a potential-temperature gradient of 0.2 K m−1 was placed
between 122 and 162 m. The initial profile of the mean potential temperature was
uniform (293 K) below the inversion base and had a vertical gradient of 0.004
K m−1 above the inversion top. The mean wind was initially geostrophic and was
everywhere equal to 2 m s−1. For Cases 1–3, however, these profiles were replaced
by those close to a steady state obtained from a M–Y model (Mellor and Yamada,
1982) in order to reduce the calculation time. The simulations were initialized by
adding small random perturbations to the above profiles.



352 MIKIO NAKANISHI

r l

Distance: lx4 (m)
0 50 100 150 200

 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

x-direction
y-direction

Figure 1. Two-point correlationrl of the horizontal velocity component at the centre of the PBL
(z = 70 m) for Case 6. The solid and dashed lines representrl for the x-direction (parallel to the
geostrophic wind) andy-direction, respectively. Only about a half of the computational-domain size
is shown, since the other half is the same.

2.2. RESULTS

In order to justify the choice of the computational domain, Figure 1 shows two-
point correlationrl of the horizontal velocity componentu: e.g., for thex-direction
(parallel to the geostrophic wind),

rl =

96∑
i=1

96∑
j=1

ui,j ui+l,j

96∑
i=1

96∑
j=1

u2
i,j

, 0≤ l < 96 (1)

at the centre of the PBL for Case 6 with the largest PBL depth.rl for both the
x- and y-directions decreases exponentially with increasingl, and its absolute
value for largel settles down to less than about 0.1; accordingly the choice of
the computational domain is considered to be allowable.
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TABLE I

Input and output parameters for the LESs.1 is the grid spacing,τ∗ the
large-eddy turnover time, andLM the Obukhov length. Time averaging is made
over a period of 30 minutes after the simulations are run for about 10τ∗.

Case 1 〈wθ〉g h, zi u∗ w∗ τ∗ h/LM ,

(m) (K m s−1) (m) (m s−1) (m s−1) (s) zi/LM

1 3 –0.001 69 0.074 – 927 2.24

2 4 –0.0006 100 0.084 – 1187 1.34

3 4 –0.0003 116 0.092 – 1260 0.60

4 4 0.003 128 0.108 0.234 547 –4.05

5 4 0.01 132 0.116 0.353 374 –11.25

6 4 0.025 140 0.124 0.489 286 –24.37

Figure 2.Comparison of (a)φm and (b)φh calculated from the LES data with the empirical functions.
Full circles show the LES results (z/h < 0.4 for Cases 1–3 andz/zi < 0.4 for Cases 4–6) and solid
lines the empirical functions by Businger et al. (1971) (Appendix A).

The statistical quantities are obtained by averaging over a horizontal plane and
over a period of 30 min after a statistically quasi-steady state is reached. The quasi-
steady state may be reached within a few large-eddy turnover times, where one
large-eddy turnover time is given byh/u∗ for Cases 1–3 andzi/w∗ for Cases
4–6; here,u∗ is the friction velocity,w∗ ≡

[
(g/20)〈wθ〉gzi

]1/3
the convective

velocity, andh andzi are the depths of the stably-stratified and convective PBLs,
respectively. Note thath is defined as the height where the buoyancy flux falls to
5% of its surface value, whilezi is the height where the buoyancy flux is minimum.
The input parameters and the resulting statistics are summarized in Table I.
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To verify the reliability of the LES data, Figure 2 comparesφm(ζ ) andφh(ζ )
calculated from the LES data with those experimentally obtained by Businger et
al. (1971) (Appendix A).φm andφh are the non-dimensional gradient functions for
momentum and heat, respectively, and are given by

φm = kz

u∗

[(
∂U

∂z

)2

+
(
∂V

∂z

)2
]1/2

, (2)

φh = kz

θ∗
∂2

∂z
, (3)

wherek is the von Kármán constant andθ∗ the scaling temperature.ζ ≡ z/LM is
the non-dimensional height normalized by the Obukhov lengthLM :

LM = − 20u
3∗

kg〈wθ〉g . (4)

Although the depth of the surface layer is considered to be about 10% of the
PBL depth, the LES data are plotted for 0< z < 0.4h or 0.4zi. For Cases 4–6
(ζ < 0), bothφm andφh computed from the LES data are in good agreement with
the empirical functions. For Cases 1–3 (ζ > 0), however, they fluctuate slightly
around the empirical functions. The difference between the LES results and the
empirical functions is especially large forφh in Case 1, which is for the most stable
condition (Figure 2b). Since the form ofφh experimentally determined so far varies
considerably (e.g., Yaglom, 1977), however, the present LES data are considered
to reproduce the properties of the surface layer satisfactorily.

3. Description of the Mellor–Yamada Model

3.1. PARAM ETERIZATION

In second-order closure models such as the M–Y model, the dissipation rates,
the pressure covariances, and the third moments are parameterized. Mellor (1973)
expressed the dissipation rates of TKEq2/2 and temperature variance〈θ2〉 as

ε = q3

B1L
, (5)

εθ = q

B2L
〈θ2〉, (6)

respectively, whereL is the turbulent master length scale, andB1 andB2 are the
closure constants.

On the other hand, the pressure-strain and pressure-temperature-gradient cov-
ariances are usually parameterized as
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〈
p

(
∂ui

∂xj
+ ∂uj
∂xi

)〉
= − q

3A1L

(〈
uiuj

〉− 1

3
q2δij

)
+ C1q

2

(
∂Ui

∂xj
+ ∂Uj
∂xi

)
− C2

g

20

(
〈uiθ〉 δj3+

〈
ujθ

〉
δi3− 2

3
〈u3θ〉 δij

)
+ C4

(
〈uiuk〉 ∂Uj

∂xk
+ 〈ujuk〉 ∂Ui

∂xk
− 2

3
〈ukul〉 ∂Uk

∂xl
δij

)
, (7)〈

p
∂θ

∂xi

〉
= − q

3A2L
〈uiθ〉 − C3

g

20
〈θ2〉δi3+ C5 〈ukθ〉 ∂Ui

∂xk
, (8)

respectively (e.g., Denby, 1999), whereui is the velocity vector,p the pressure
divided by the mean density, andA andC with subscripts are also the closure
constants. The terms withC1,C4, orC5 and those withC2 orC3 represent effects of
shear and buoyancy, respectively, and are neglected in Mellor (1973) except for the
term withC1. Although these terms are likely to be effective for the parameteriza-
tion for the pressure covariances as suggested by Moeng and Wyngaard (1986) and
Andrén and Moeng (1993), it is found that the term withC4 (in this formulation)
has a contrary effect on the reproduction of the horizontal velocity variance given
by our LES data. Since shear effects are considered through the term withC1, we
will adoptC4 = 0.

As for the parameterization for the third moments, it is especially important in
the convective PBL but is not discussed in the present paper.

Based on several measurements, Mellor and Yamada (1982) estimated the
closure constants as

(A1, A2, B1, B2, C1) = (0.92,0.74,16.6,10.1,0.08),
(C2, C3, C4, C5) = (0,0,0,0). (9)

3.2. EXPRESSION IN THE SURFACE LAYER

If the boundary-layer approximation is applied and the time-tendency, advection,
and diffusion terms are neglected (Level 2 model; Mellor and Yamada, 1974,
1982), the variances and the turbulent fluxes are written as

〈u2〉 = γ1q
2+ 2A1C2

L

q

g

20
〈wθ〉 − 6A1

L

q
〈uw〉∂U

∂z
, (10)

〈v2〉 = γ1q
2+ 2A1C2

L

q

g

20
〈wθ〉, (11)

〈w2〉 = γ1q
2+ 2A1(3− 2C2)

L

q

g

20
〈wθ〉, (12)
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〈uw〉 = 3A1
L

q

[
− (〈w2〉 − C1q

2
) ∂U
∂z
+ (1− C2)

g

20
〈uθ〉

]
, (13)

〈uθ〉 = 3A2
L

q

[
−〈uw〉∂2

∂z
− (1− C5) 〈wθ〉∂U

∂z

]
, (14)

〈wθ〉 = 3A2
L

q

[
−〈w2〉∂2

∂z
+ (1− C3)

g

20
〈θ2〉

]
, (15)

q2 = B1
L

q

(
−〈uw〉∂U

∂z
+ g

20
〈wθ〉

)
, (16)

〈θ2〉 = − B2
L

q
〈wθ〉∂2

∂z
, (17)

where the coordinate system is oriented so that〈vw〉 = 0, andγ1 ≡ 1/3−2A1/B1.
Substitution of the relationships in the surface layer:

〈uw〉 = −u2∗, 〈wθ〉 = −u∗θ∗, ζ = z/LM,
∂U

∂z
= u∗
kz
φm,

∂2

∂z
= θ∗
kz
φh

(18)

into the above equations gives some non-dimensional variables:

q3

u3∗
≡ q∗3 = B1

L

kz
(φm − ζ ) , (19)

〈u2〉
q2
= γ1+

(
1

3
− γ1

)
3φm − C2ζ

φm − ζ , (20)

〈θ2〉
θ2∗
=
(
L

kz

)2/3
B2

B
1/3
1

φh

(φm − ζ )1/3, (21)

〈uθ〉
u∗θ∗

=
(
L

kz

)2/3 3A2

B
1/3
1

(1− C5)φm + φh
(φm − ζ )1/3 (22)

and simultaneous equations for the non-dimensional gradient functions,φm andφh:

φm

{
γ1− C1− [2A1(3− 2C2)+ 3A2(1− C2)(1− C5)]

ζ

q∗3
L

kz

}
− φh

[
3A2(1− C2)

ζ

q∗3
L

kz

]
= 1

3A1q∗
kz

L
, (23)

φh

{
γ1− [2A1(3− 2C2)+ B2(1− C3)]

ζ

q∗3
L

kz

}
= 1

3A2q
∗
kz

L
. (24)

In addition, sinceφm = 1, φh = Pr, andL = kz in neutral stratification (ζ = 0),
we obtain

A1 = B1
1− 3γ1

6
, A2 = 1

3γ1B
1/3
1 Pr

, C1 = γ1− 1

3A1B
1/3
1

, (25)
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wherePr is the turbulent Prandtl number.

3.3. LEVEL 3 MODEL

In the Level 3 model (Mellor and Yamada, 1974, 1982), the TKEq2/2 and the
temperature variance〈θ2〉 are predicted by applying prognostic equations, while
the other turbulent variables are solved diagnostically as given by Equations (10)–
(15). The equations for the velocity variances, however, are changed by eliminating
q2/B1, which is the term associated with the dissipation, using Equation (16); e.g.,
the equation for the vertical velocity variance〈w2〉 is

〈w2〉 = q2

3
+ 2A1

L

q
〈uw〉∂U

∂z
+ 4A1(1− C2)

L

q

g

20
〈wθ〉 (26)

instead of Equation (12).
We will define non-dimensional variables:

GM = L2

q2

(
∂U

∂z

)2

, GH = −L
2

q2

g

20

∂2

∂z
,

Cw = 〈w2〉/q2, Cθ = 〈θ2〉
/
L2

(
∂2

∂z

)2

,

Tu = 〈uθ〉
/
L2∂U

∂z

∂2

∂z
, (27)

SM ≡ SM2.5+ S ′M = −〈uw〉
/
Lq
∂U

∂z
,

SH ≡ SH2.5+ S ′H = −〈wθ〉
/
Lq
∂2

∂z
,

where a subscript 2.5 denotes a variable in the Level 2.5 model (Yamada, 1977;
Mellor and Yamada, 1982) and a prime the fluctuation from it. In the Level 2.5
model,〈θ2〉 is also solved diagnostically using Equation (17). Substitution of these
variables into Equations (13)–(15), (17), and (26) gives

Cθ2.5 = B2SH2.5,

Cw = 1/3− 2A1GMSM + 4A1(1− C2)GHSH ,

Tu = 3A2 [SM + (1− C5)SH ] ,
SM = 3A1 [Cw − C1+ (1− C2)GHTu] ,
SH = 3A2 [Cw + (1− C3)GHCθ ] .

(28)

After some algebra, the non-dimensional eddy-diffusivity coefficients,SM2.5, SH2.5,
S ′M , andS ′H , reduce to
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SM2.5 = A2E2 − R1E4

E2E3 − E1E4
, S ′M =

R′2E2

E2E3− E1E
′
4

, (29)

SH2.5 = R1E3− A2E1

E2E3 − E1E4
, S ′H =

− R′2E1

E2E3 − E1E
′
4

, (30)

where

E1 = 1+ 6A2
1GM − 9A1A2(1− C2)GH ,

E2 = − 3A1 [4A1+ 3A2(1− C5)] (1− C2)GH,

E3 = 6A1A2GM,

E′4 = 1− 12A1A2(1− C2)GH,

E4 = E′4− 3A2B2(1− C3)GH ,

R1 = A1(1− 3C1),

R′2 = 3A2(1− C3)GH(Cθ − B2SH2.5).

(31)

The Level 2.5 model is known to behave pathologically for growing turbulence.
Helfand and Labraga (1988) modified the Level 2.5 model so as to ensure its real-
izability (Schumann, 1977) and to remove its pathological behaviour; when TKE
q2/2 is smaller than TKEq2

2/2 predicted by the Level 2 model, i.e., in the case of
growing turbulence,SM2.5 andSH2.5 are replaced bySM2× q/q2 andSH2× q/q2,
respectively. In addition to these modifications,Cθ − B2SH2.5 in Equation (31) is
changed for

Cθ − q

q2
B2SH2.5 = Cθ − q

2

q2
2

B2SH2. (32)

SM2 andSH2 are specified in Appendix B.
Since Helfand and Labraga (1988) paid attention to the Level 2.5 model, they

expressed no idea for modifications ofS ′M andS ′H . Characteristics of the Level 3
model may also need to be examined, for example, with a scheme similar to that
of Gerrity et al. (1994).

4. Evaluation of the Closure Constants and the Length Scale

4.1. LENGTH SCALE IN THE SURFACE LAYER

Mellor (1973) assumed that the master length scaleL in the surface layer is given
by kz regardless of stability. According to some observations, however,L varies
with stability (Busch and Larsen, 1972). Dubrulle and Niino (1992) reported that,
in the M–Y model, the normalized TKE given by Equation (19) withL = kz

increases infinitely as stability increases, and that this shortcoming can be improved
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by considering the dependence ofL on stability. Here we will first examineL in
the surface layer based on the LES data.

In the M–Y model,L is representative of both the diffusion and dissipation
length scales. In the convective PBL the diffusion length scale is not easy to de-
termine accurately, since the vertical gradient of physical quantities is small. Thus
we will evaluate the dissipation length scale.

The dissipationε of the TKE is parameterized as Equation (5). If a local-
equilibrium state of the TKE in the surface layer is assumed (Equation (19)), we
obtain

B1
L

kz

(
= q3

ε kz

)
= q3

u3∗

1

φm − ζ . (33)

The LES computesε, the TKEq2/2, and the friction velocityu∗ as a total of the
resolved-scale and subgrid-scale quantities. First, these quantities at several height
levels were substituted intoq3/ε kz and the resulting non-dimensional length scale
B1L/kz was plotted against the non-dimensional heightζ . The plotted points for
the stable cases seem to lie nearly in a single curve but with some scatter (not
shown). This scatter is perhaps because the turbulent transports ofq2/2 andε exist
a little even in stable conditions. Instead of such a plot, shown in Figure 3 is the
plot ofB1L/kz in Equation (33), where the non-dimensional gradient functionφm
is given by the empirical function by Businger et al. (1971).

Figure 3 demonstrates thatL varies with stability and thatB1L/kz for Cases
1–3 (ζ > 0) is approximated by a curve:

B1
L

kz
= 24.0(1+ 2.7ζ )−1. (34)

SinceL = kz in neutral stratification (ζ = 0), B1 = 24.0 andL in stable
stratification becomes

L ≡ LS = kz(1+ 2.7ζ )−1 for ζ ≥ 0. (35)

This value ofB1 is somewhat larger than 16.6 estimated by Mellor and Yamada
(1982), but is close to 27.4 obtained from their LES by Andrén and Moeng (1993)
and 22.6 used by Therry and Lacarrère (1983).

On the other hand,B1L/kz for Cases 4–6 (ζ < 0) shows a large scatter. Al-
thoughB1L/kz tends to increase with decreasingζ , its increasing curve depends
upon the height. This may be because the turbulent transport throughout the con-
vective mixed layer has a significant influence also on the surface layer. In the
Level 2 version used for the analysis of the surface layer (see Section 3.2), all
the turbulent diffusions are neglected; accordingly the contribution of the turbulent
diffusion toL should be also removed here. Since it cannot be estimated from the
present LES data, however,L in unstable stratification is assumed to be given by
kz for simplicity.
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Figure 3.Plot ofB1L/kz as a function ofζ . A number in a circle indicates the case number in Table
I. The LES results are plotted only between the second (4.5 or 6 m) and fifth (13.5 or 18 m) grid
points above the ground surface, which are considered to be nearly in the surface layer. The dashed
line represents the best fit curve for Cases 1–3 and the dotted line the line ofL = kz.

4.2. CLOSURE CONSTANTS

The closure constants can be evaluated by comparing the non-dimensional vari-
ables in the surface layer, given by Equations (20)–(22), with those calculated from
the LES data. The non-dimensional gradient functions,φm andφh, are derived from
Equations (19), (23), (24), (35), andL = kz for ζ < 0, by an iterative procedure.

In order to obtain the total (resolved-scale plus subgrid-scale) temperature
variance〈θ2〉 in the LES, the subgrid temperature varianceθ ′′2 was given by

θ ′′2 = 2l

cθ e
1/2

(
−u′′j θ ′′

∂θ

∂xj

)
, (36)

where an overbar denotes a resolved-scale variable, a double prime a subgrid-scale
variable,e is the subgrid TKE, andl the length scale set equal to the grid spacing
(Nakanishi, 2000). A constantcθ was taken to be 2.1 as in Moeng and Wyngaard
(1988).

Figure 4 shows plots of〈u2〉/q2, 〈θ2〉/θ2∗ , and〈uθ〉/u∗θ∗ at four height levels,
computed from the LES data. Since the LES results illustrate that〈u2〉/q2 atζ = 0
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Figure 4.Plots of (a)〈u2〉/q2, (b) 〈θ2〉/θ2∗ , and (c)〈uθ〉/u∗θ∗ as a function ofζ . The dashed line
in (a) represents Equation (20) withγ1 = 0.235 andC2 = 0.65, that in (b) Equation (21) with
B1 = 24.0, B2 = 15.0, andPr = 0.74, and that in (c) Equation (22) withA2 = 0.665 and
C5 = 0.2, whereφm andφh are derived from Equations (19), (23), and (24), andL is given by
Equation (35) andkz for ζ < 0. Others are the same as in Figure 3. For reference, dotted lines show
the corresponding equations with the original closure constants (Equation (9)) andL = kz.

(= 1− 2γ1 in Equation (20)) is nearly equal to 0.53, we obtainγ1 ≈ 0.235 (Figure
4a). The results of the M–Y model with modified closure constants (dashed line)
nearly coincide with those of the LES, where a selected value ofC2 = 0.65 is the
same as that of Gambo (1978).

Since the magnitude of〈θ2〉/θ2∗ at ζ = 0 (= B2Pr/B
1/3
1 in Equation (21) with

φm = 1, φh = Pr, andL = kz) is difficult to determine from the LES results,
we choose values ofPr = 0.74 andB2 = 15.0 so that, for the unstable cases, the
results of a modified M–Y model (dashed line) may agree with those of the LES
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(Figure 4b). The resulting value ofB2/B1 = 0.625 is very close to that of Mellor
and Yamada (1982).

With the closure constants determined above and Equation (25), the magnitude
of 〈uθ〉/u∗θ∗ atζ = 0 (= 3A2(1−C5+Pr)/B1/3

1 in Equation (22)) is smaller than
1.2 as long asC5 is positive, and is somewhat smaller than that of the LES results
(Figure 4c). With respect to its magnitude nearζ = 0, the original M–Y model
(dotted line) makes a better prediction mainly because of the smaller value ofB1

(see Equation (9)). However, the original M–Y model has a defect that〈uθ〉/u∗θ∗
increases infinitely with increasingζ . Since Andrén and Moeng (1993) concluded
that shear effects, which are parameterized as the term withC5 for the pressure-
temperature-gradient covariance, must be included in any model,C5 is chosen to
be 0.2 so that the results of a modified M–Y model (dashed line) may not become
worse than those of the original M–Y model.

Finally, C3 is selected to be 0.294 so thatφh derived from Equations (23) and
(24) may approach 4.7ζ asζ →+∞ as in Businger et al. (1971). The resultingφm
approaches 5.11ζ asζ → +∞. It is mentioned that the asymptotic line at≈ 4.7ζ
is inadequate for largeζ (e.g., Beljaars and Holtslag, 1991). The present model,
however, does not allow us to adopt their proposed asymptotic line (φm → ζ and
φh ∼ ζ 3/2), since it requires that, as stability increases,φm should approachaζ
with a > 1.0 andφh should be proportional toζ .

Although Figure 3 suggests that the turbulent diffusion under unstable condi-
tions is important even in the surface layer, it is neglected in the Level 2 version
(see Section 3.2); nevertheless, the modified M–Y model reproduces the LES
results reasonably well. We believe that, fortunately, the height variation of the non-
dimensional length scaleB1L/kz nearly cancels the contribution of the turbulent
diffusion.

In summary, the LES data give a revised set of the closure constants as

(A1, A2, B1, B2, C1) = (1.18,0.665,24.0,15.0, 0.137),
(C2, C3, C4, C5) = (0.65,0.294,0.0,0.2).

(37)

Consequently the modified M–Y model predicts a critical flux Richardson number
of 0.279 (Equation (B5) in Appendix B).

4.3. DIAGNOSTIC EQUATION FOR THE LENGTH SCALE

The determination of the master length scaleL is one of the most difficult problems
in turbulence closure modelling. Although an attempt has been made to evaluateL

using a prognostic equation (e.g., Mellor and Yamada, 1982), such an equation is
still of a qualitative nature with little physical foundation. In fact, if their equation
is incorporated into a Level 4 model (Mellor and Yamada, 1974, 1982) and applied
to the surface layer, one cannot obtain solutions for very unstable and very stable
conditions (Niino, 1990).
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Numerous diagnostic equations forL have been proposed in the literature. As
shown by Therry and Lacarrère (1983), however, several diagnostic equations give
L considerably different from each other. This is considered to be due partly to the
variety of turbulence closure modelling, but mainly to the lack of data available for
the formulation for such an equation.

Since the present LES data cover a relatively wide range of stability, a more
general equation forL is expected to be formulated. We propose a new diagnostic
equation forL that consists of three length scales,LS , LT , andLB , i.e.,

1

L
= 1

LS
+ 1

LT
+ 1

LB
, (38)

whereLS is the length scale in the surface layer as obtained in Section 4.1,LT
the length scale depending upon the turbulent structure of the PBL (Mellor and
Yamada, 1974), andLB the length scale limited by the buoyancy effect. This ex-
pression is designed in order that the shortest length (or time) scale may controlL.
LS, LT , andLB are given by

LS =
 kz/3.7, ζ ≥ 1
kz(1+ 2.7ζ )−1, 0≤ ζ < 1
kz(1− α4ζ )

0.2, ζ < 0,
(39)

LT = α1

∫ ∞
0
qz dz∫ ∞

0
q dz

, (40)

LB =
α2q/N, ∂2/∂z > 0 andζ ≥ 0[
α2q + α3q(qc/LTN)

1/2
]
/N, ∂2/∂z > 0 andζ < 0

∞, ∂2/∂z ≤ 0,
(41)

whereα1, α2, α3, andα4 are empirical constants, andqc ≡
[
(g/20)〈wθ〉gLT

]1/3
is a velocity scale similar to the convective velocityw∗.

UnlikeLS in Equation (35), we adoptLS = kz/3.7 in the range ofζ ≥ 1, partly
because the adequacy ofLS is not examined in very stable conditions (see Figure
3) and partly becauseL without this limit is found to cause excessive dissipation
of TKE in a test one-dimensional simulation. AlsoLS for ζ < 0 is assumed to
be given bykz(1− α4ζ )

0.2 instead ofkz by considering effects of the turbulent
transport throughout the convective PBL, where a power of 0.2 is determined from
the variation ofLS with ζ at the same height in Figure 3. This functional form
is arbitrary.LS for ζ < 0 is also estimated to be a function ofζ , however, since
the observed and simulated non-dimensional gradient functions normalized by the
length scale ofkz lie nearly on a single curve againstζ (see Figure 2).

The expressionq/N for LB is considered to underestimate a length scale in the
upper part of the convective PBL, since it is obtained from the balance between
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the TKE and the potential energy without considering the increase of TKE due
to the turbulent transport and the buoyancy production. According to Moeng and
Sullivan (1994), in the highly convective PBL, the sum of the increase rates of TKE
due to the turbulent transport and the buoyancy production is nearly proportional to
w3∗/zi. If the time scale is assumed to beN−1, the increase of TKE is proportional
tow3∗/ziN . Above the convective PBL, however, it must decrease gradually to zero
with increasing height. Thus we will tentatively replacew3∗/ziN by q2w∗/ziN ,
sinceq2 is expected to be nearly uniform owing to the uniform productionw3∗/zi
belowzi and decreases gradually to zero abovezi. Whenqc andLT are used instead
of w∗ andzi, respectively, we obtain the expressionq2qc/LTN in Equation (41).

The empirical constants are determined by tuningL obtained from the new
equation to that from the LES data (L = q3/B1ε; see Equation (5)). While noting
α2 ≤ 1.0, we first adoptα1 = 0.23 andα2 = 1.0 through the tuning for Cases
1–3. Secondly,α3 = 5.0 andα4 = 100.0 are determined from the tuning near
the PBL top (z = zi) and the surface, respectively, for Cases 4–6. The value of
α1 = 0.23 falls within the range of 0.20–0.25 estimated for a neutral PBL by
Andrén (1991), and is close to 0.2 suggested using a prognostic equation forq2L

by Mellor (personal communication quoted from Moeng and Wyngaard, 1989).
Figure 5 comparesL obtained from the new equation with the LES results.L

in the LES becomes very large aboveh or zi, sinceε of the denominator becomes
nearly equal to zero there. For reference,L computed from a diagnostic equation
by Therry and Lacarrère (1983) (Appendix C) is shown by dotted lines. Although
the form of our equation is simpler than that of Therry and Lacarrère’s equation,
L from our equation is in better agreement with the LES results except for Case
1 (Figure 5a). The major factor of the simpler form consists inLS varying with
stability and that of the better agreement lies inLB involving the effect of the
increase of TKE in the convective PBL.

5. Verification of the Modified Mellor–Yamada Model

5.1. φm AND φh

In order to examine the performance of the M–Y model after the modification of
the closure constants, we will first compare the non-dimensional gradient functions
for momentum and heat,φm andφh, derived from Equations (23) and (24) with the
empirical functions by Businger et al. (1971).

Figure 6 showsφm andφh before and after that modification and the empirical
functions. In stable conditions (ζ > 0), bothφm andφh before and after the modi-
fication are in good accordance with the empirical functions. In unstable conditions
(ζ < 0), φh after the modification agrees very well with the empirical function
(Figure 6b).φm after the modification is also improved considerably compared
with φm before the modification (Figure 6a), although it remains slightly smaller
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Figure 5.Vertical profiles ofL for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f)
Case 6. Solid lines representL obtained from the LES data, dashed linesL from Equations (38)–(41)
with α1 = 0.23,α2 = 1.0,α3 = 5.0, andα4 = 100.0, and dotted linesL from the equation by Therry
and Lacarr̀ere (1983) (Appendix C). The altitude is normalized byh for Cases 1–3 (a–c) andzi for
Cases 4–6 (d–f).

than the empirical function. As will be shown in the following section, it is found
that the improvement ofφm andφh depends upon the consideration of buoyancy
effects on the pressure covariances.
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Figure 6.Comparison of the predicted (a)φm and (b)φh with the empirical functions. Dotted lines
represent the results of the original M–Y model (Equation (9)), dashed lines those of the modified
M–Y model (Equation (37)), and solid lines the empirical functions by Businger et al. (1971).

5.2. SM AND SH

Secondly, we will compare the non-dimensional eddy-diffusivity coefficients for
momentum and heat,SM ≡ SM2.5 + S ′M andSH ≡ SH2.5 + S ′H , in the modified
M–Y model with those in the LES.SM andSH in the M–Y model are derived from
Equations (29) and (30) after all the physical quantities, includingL, are given by
the LES data. Note thatL given by Equations (38)–(41) nearly coincides with the
LES results.SM andSH in the LES, on the other hand, are calculated from

SM =
(〈uw〉2+ 〈vw〉2)1/2

Lq
[
(∂U/∂z)2+ (∂V /∂z)2]1/2 , (42)

SH = − 〈wθ〉
Lq (∂2/∂z)

. (43)

Figure 7 shows vertical profiles ofSM in the modified M–Y model and the LES.
Here, for the stable cases (Figures 7a–c),SM in the M–Y model is estimated from
the Level 2.5 model in which the turbulent diffusion of the temperature variance is
neglected (S ′M = 0). This is because the temperature variance and/or its turbulent
transport in these cases seem to be a little unsteady as will be shown later (Figures
11a–c) and consequentlyS ′M cannot be estimated properly.SM in the modified
M–Y model agrees fairly well with the LES results except near the centre of the
PBL for Case 4 (Figure 7d), for whichSM in the LES seems to be large compared
with that for Cases 5 and 6 (Figures 7e and f). If one looks at the figure more
carefully, however, one notices thatSM near the surface in the LES for the stable
cases is somewhat large (Figures 7a–c). This may be because physical quantities
near the surface vary significantly with height and consequently the evaluation of



IMPROVEMENT OF THE MELLOR–YAMADA MODEL 367

the denominators in Equation (42) becomes inaccurate. Also, for the unstable cases
(Figures 7d–f),SM in the modified M–Y model becomes larger than that in the LES
as stability decreases, partly becauseφm in the M–Y model forζ < 0 is smaller
than the empirical function (see Figure 6a).

Figure 8 shows vertical profiles ofSH as in Figure 7. For the stable cases
(Figures 8a–c),SH in the M–Y model is also estimated from the Level 2.5 model
(S ′H = 0). SH in the modified M–Y model nearly coincides with the LES results.
For the stable cases (Figures 8a–c), however,SH in the LES is generally larger than
that in the modified M–Y model, partly becauseφh in the LES forζ > 0 is smaller
than the empirical function (see Figure 2b). In the unstable cases (Figure 8d–f),SH
above the middle of the PBL is negative, illustrating that the upper part of the PBL
has the structure of the countergradient diffusion. The absolute value ofSH near
the centre of the PBL in the modified M–Y model becomes larger than that in the
LES as stability decreases.

In order to demonstrate that the present modification of the closure constants
leads to the improvement of the M–Y model, Figure 9 shows vertical profiles ofSM
computed from the original M–Y model. Clearly,SM in the original M–Y model
(dashed line) is excessively large in the bulk of the convective PBL (Figures 9d–
f). To improve the M–Y model, Kantha and Clayson (1994) changed two closure
constants,C3 andC5, in Equation (9) to 0.2 and 0.7, respectively. Their modific-
ation, however, makes only a little improvement on the M–Y model (not shown).
Dotted lines representSM in the case ofC2 = 0.65,C3 = 0.2, andC5 = 0.7. The
magnitude ofSM for the unstable cases is reduced to some degree, althoughSM for
the stable cases becomes slightly larger than that in the LES (Figures 9a–c).

Thus, the consideration of buoyancy effects on the pressure covariances is likely
to be necessary for the improvement of the M–Y model. Also the adequate expres-
sion forL is indispensable for that improvement; if the diagnostic equation forL

by Mellor and Yamada (1974) is used for the unstable cases, both the original and
modified M–Y models predict the eddy-diffusivity coefficientLqSM smaller than
half the LES results (not shown). Note that, in that case,SM as well asL becomes
small becauseSM also depends uponL (see Equations (27)–(31)). Since this small
LqSM decreases the production of the TKE, it can become even smaller and is
considered to cause the problems pointed out by Sun and Ogura (1980).

5.3. Sq AND Sθ

Mellor (1973) parameterized the third moments, e.g., the turbulent transports of
the TKE and the temperature variance, by assuming downgradient diffusion. It
is mentioned, however, that the downgradient-diffusion assumption for them is
inadequate in the convective PBL (e.g., Moeng and Wyngaard, 1989).

Since the parameterization for the third moments is not examined in the present
study, we will only show the non-dimensional eddy-diffusivity coefficients for the
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Figure 7.Comparison ofSM computed from the modified M–Y model (dashed line) with that from
the LES data (solid line) for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.
The altitude is normalized as in Figure 5.
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Figure 8.Same as Figure 7 except forSH .
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Figure 9.Same as Figure 7 except forSM computed from the original M–Y model (dashed line).
Dotted lines, however, representSM in the case ofC2 = 0.65,C3 = 0.2, andC5 = 0.7, where the
last two values are the same as those of Kantha and Clayson (1994). Note that the magnitude ofSM
from the LES data in this figure is smaller than that in Figure 7 because of the smaller value ofB1
and consequently a larger value ofL.
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TKE and the temperature variance,Sq andSθ , similar toSM andSH . Sq andSθ in
the LES are calculated from

Sq = −
〈
w(u2+ v2+ w2)/2

〉+ 〈wp〉
Lq

[
∂(q2/2)/∂z

] , (44)

Sθ = −
〈
wθ2

〉
Lq

(
∂〈θ2〉/∂z) , (45)

where the subgrid turbulent transports are not included.
Figure 10 comparesSq with SM computed from the LES data using Equation

(42). Sq for the unstable cases is considerably larger than the constant value of
0.2 adopted by Mellor and Yamada (1982), except near the surface and the PBL
top (Figures 10d–f), and becomes larger thanSM as stability decreases. Since such
large values are considered to be unrealistic (e.g., Moeng and Wyngaard, 1989), it
seems that the difference betweenSq andSM should be expressed in terms of the
buoyancy flux as suggested by Therry and Lacarrère (1983).

Figure 11 comparesSθ with SM . For the stable cases (Figures 11a–c),Sθ in the
lower part of the PBL fluctuates largely, whileSθ in the upper part of the PBL is
as small asSM . Unlike Sq , Sθ for the unstable cases is nearly comparable withSM
except nearz/zi = 0.7 (Figures 11d–f). It seems that the turbulent transport of the
temperature variance may be approximated based on the downgradient-diffusion
assumption.

6. Summary and Conclusions

The M–Y turbulence closure model has several deficiencies that are common to
almost all second-order closure models (e.g., Moeng and Wyngaard, 1989). We
attempted to improve two of the deficiencies of the M–Y model.

To obtain a database for the improvement, stably-stratified and convective PBLs
without moisture were simulated by a LES model (Nakanishi, 2000). Although
LES is a well-established tool for the study of turbulent flows, the resulting data
were compared with the empirical functions by Businger et al. (1971). The LES
data reproduce the observed properties of the surface layer very well.

The first deficiency of the M–Y model is the neglect of buoyancy effects on
the pressure covariances. We added the parameterization of its effects to the M–Y
model, and presented a useful expression for the Level 3 model, and re-evaluated
closure constants based on the LES data. The second deficiency is the uncertain
expression for the master length scaleL. We proposed a new diagnostic equation
for L based on the LES data. The new equation allowsL in the surface layer to
vary with stability, and givesL in the upper part of the convective PBL with little
underestimation.



372 MIKIO NAKANISHI

Z
/h

Sq

-1 0 1 2
 

0.0

0.2

0.4

0.6

0.8

1.0

 

(a)

-1 0 1 2
 

 

(b)

-1 0 1 2
 

 

(c)
Z

/Z
i

Sq

-4 0 4 8
 

0.0

0.2

0.4

0.6

0.8

1.0

 

(d)

-4 0 4 8
 

 

(e)

-4 0 4 8
 

 

(f)

Figure 10.Vertical profiles ofSq (solid line) andSM (dotted line) computed from the LES data for
(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6. The altitude is normalized
as in Figure 5.
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Figure 11.Same as Figure 10 except forSθ .
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The non-dimensional eddy-diffusivity coefficients for momentum and heat,
computed from the modified M–Y model, agree well with those from the LES
data. Such agreement is not obtained from the original M–Y model. The improve-
ment is achieved by incorporating buoyancy effects into the parameterization for
the pressure covariances and by using an adequate expression, such as our new
diagnostic equation, forL.

The parameterization for the third moments, which is also important for tur-
bulence closure modelling, was not discussed in the present paper. For reference,
however, the non-dimensional eddy-diffusivity coefficients for the TKE and the
temperature variance,Sq andSθ , were compared with that for momentum,SM . It is
found thatSθ is nearly comparable withSM , althoughSq needs to be parameterized
by considering buoyancy effects.

The performance of the modified M–Y model is expected to be satisfactory in
a clear PBL. In a real PBL, however, moisture exists, and cloud and fog appear
through its condensation. We have carried out the simulation of a radiation fog
with the LES model (Nakanishi, 2000). We are now examining the performance of
the modified M–Y model against the LES data on the radiation fog.
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Appendix A. Non-Dimensional Gradient Functions by Businger et al. (1971)

Based on the Kansas data, Businger et al. (1971) determined the non-dimensional
gradient functions for momentum and heat,φm andφh, as

φm =
{

1+ 4.7ζ, ζ ≥ 0
(1− 15ζ )−1/4, ζ < 0,

(A1)

φh =
{
Pr + 4.7ζ, ζ ≥ 0

Pr
[
1− 9(P r/0.74)2ζ

]−1/2
, ζ < 0,

(A2)

where the turbulent Prandtl numberPr is estimated to be 0.74.
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Appendix B. Level 2 Model

In the Level 2 model (Mellor and Yamada, 1974, 1982), turbulent motions are
assumed to be in a local-equilibrium state and all turbulent variables are solved
diagnostically.

The equation for the TKE in a local-equilibrium state (Equation (16)) is written
as

1= B1 (GMSM2+GHSH2) = B1GMSM2 (1− Rf) (B1)

with similar notations in Equation (27), where Rf is the flux Richardson number.
By eliminatingGM andGH from Equation (28) using the above equation, the non-
dimensional eddy-diffusivity coefficients for momentum and heat,SM2 andSH2, in
the Level 2 model are obtained as

SM2 = A1F1

A2F2

Rf 1− Rf

Rf 2− Rf
SH2, (B2)

SH2 = 3A2(γ1+ γ2)
Rfc − Rf

1− Rf
, (B3)

where

γ2 = 2A1(3− 2C2)/B1+ B2(1− C3)/B1,

F1 = B1(γ1− C1)+ 2A1(3− 2C2)+ 3A2(1− C2)(1− C5),

F2 = B1(γ1+ γ2)− 3A1(1− C2),

Rf1 = B1(γ1− C1)/F1,

Rf2 = B1γ1/F2,

(B4)

and Rfc is the critical flux Richardson number given by

Rfc = γ1

γ1+ γ2
. (B5)

These expressions can be also obtained from Equations (23) and (24).SM2 andSH2

are characterized by not depending upon histories of the TKE and the master length
scale, which exist inGM andGH .

The flux Richardson number Rf can be expressed in terms of the gradient
Richardson number, Ri≡ −GH/GM = Rf SM2/SH2, as

Rf = Ri1
[
Ri+ Ri2− (Ri2− Ri3Ri+ R2

i2)
1/2
]
, (B6)

where

Ri1 = 1

2

A2F2

A1F1
, Ri2 = 1

2

Rf 1

Ri1
, Ri3 = 2Rf 2− Rf1

Ri1
. (B7)
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Appendix C. Diagnostic Equation by Therry and Lacarrère (1983)

Based on the dissipation length scaleLε obtained from field observation, laboratory
experiment, and simulation, Therry and Lacarrère (1983) proposed a diagnostic
equation forLε:

1

Lε
= 1

kz
+ Ce1
H
−
(

1

kz
+ Ce2
H

)
m1m2+ Ce5

Lb
, (C1)

where

m1 = 1/(1+ Ce3H/kz), (C2)

m2 =
{

0, ζ ≥ 0
1/(1− Ce4LM/H), ζ < 0,

(C3)

1

Lb
=
{
N/(q2/2)1/2, ∂2/∂z > 0
0, ∂2/∂z ≤ 0.

(C4)

H is the PBL depth given by

H =
{

0.3u∗/f, ζ ≥ 0
zi, ζ < 0,

(C5)

where f is the vertical component of the Coriolis parameter. The set of the
constants is

(Ce1, Ce2, Ce3, Ce4, Ce5) = (15.0,5.0,0.005,1.0,1.5). (C6)
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