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Abstract. On the basis of data constructed with large-eddy simulation (LES), an attempt is made to
improve the Mellor-Yamada (M-Y) turbulence closure model. Firstly, stably-stratified and convect-
ive planetary boundary layers without moisture are simulated by a LES model to obtain a database
for the improvement. Secondly, based on the LES data, closure constants are re-evaluated and a new
diagnostic equation for the master length scales proposed. The new equation is characterized

by allowing L in the surface layer to vary with stability instead of constantwherek is the von

Karman constant, angis height.

The non-dimensional eddy-diffusivity coefficients calculated from the modified M—Ymodel are
in satisfactory agreement with those from the LES data. It is found that the modified M—Ymodel
improves the original one largely, and that the improvement is achieved by considering buoyancy
effects on the pressure covariances andby using the newly proposed equation for

Keywords: Closure constant, Eddy-diffusivity coefficient, Large-eddy simulation, Length scale,
Level 3 model, Turbulence closure model.

1. Introduction

One of the most important physical processes in the planetary boundary layer
(PBL) is turbulence. In the 1970s, several high-order turbulence closure models
were developed, and Mellor (1973) and Lewellen and Teske (1973) proposed
second-order closure models. Mellor's model was thereafter classified into four
hierarchy levels, according to the degree of anisotropy, by Mellor and Yamada
(1974), and has been widely applied not only to numerical experiments (e.g.,
Yamada, 1977; Miyakoda et al., 1983) but also to operational weather forecasts
(e.g., Numerical Prediction Division of Japan Meteorological Agency, 1997). Their

model is now termed the Mellor—-Yamada (M-Y) model.

One of the reasons for the preference of the M-Y model is that it uses

a minimum number of universal constants (closure constants) determined from
laboratory and field experiments in neutral stratification and yet reproduces nicely
the observed non-dimensional gradient functions in the surface layer (Mellor,

1973). However, several problems in the M-Y model have been noted; e.g., Sun
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and Ogura (1980) pointed out that the M—Y model underestimates the depth of the
mixed layer and destabilizes the stratification in the bulk of the mixed layer.

Three major deficiencies of second-order closure models such as the M-Y
model have been mentioned in the literature (e.g., Moeng and Wyngaard, 1989);
the first deficiency is the neglect of buoyancy effects on the pressure covariances;
the second is the uncertain expression for a length scale, and the third is the
downgradient-diffusion assumption for turbulent transports. With respect to the
first deficiency, however, Mellor and Yamada (1982) stated that “We use a relat-
ively low-order version of Rotta’s ‘energy redistribution’ hypothesis. Other authors
claim some benefit in adding more nonlinear terms; however, our perception is that
the benefits are marginal and may even create errors in one application relative to
the one in which the additional, requisite, constants were obtained”. The aim of
the present study is to examine the first two deficiencies, and to improve the M-Y
model, based on data constructed with large-eddy simulation (LES).

Turbulence closure models have several unknown parameters to be determined
from experiments and/or simulations. Although a large number of observations
have been performed in the surface layer and applied to the determination of
the unknown parameters, the evaluation of turbulence in stable stratification may
be unsatisfactory because of its weakness and the presence of gravity waves.
Also, observations throughout the PBL available for the study on turbulence
closure modelling, do not exist in sufficient quantity, partly because only a few
observational techniques can make such observations.

LES can simulate explicitly turbulent motions whose scale is larger than a grid
size. Since the pioneering work of Deardorff (1972), it has been applied to simu-
lations of neutral or convective PBLs and has provided important information on
turbulence. A subgrid model proposed by Sullivan et al. (1994) further improved
the performance of the LES model in the surface layer and was applied also to a
stably-stratified PBL (Andrén, 1995).

In this study we first use a LES model similar to that of Sullivan et al. (1994)
(Nakanishi, 2000) to obtain turbulent quantities in dry PBLs with variously strat-
ified conditions. Secondly, we present a M-Y model in which buoyancy effects
are incorporated into the parameterization for the pressure covariances. Thereafter,
based on the LES data, closure constants are re-evaluated and a new expression for
the master length scale is proposed.

2. Construction of LES Database

In the present paper, capital letters denote ensemble-average variables, small letters
turbulent variables, the angle brackeéts) an ensemble average, and a subscript 0
a reference state.
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2.1. LESMODEL AND NUMERICAL CONDITIONS

The LES code used here is described in detail in Nakanishi (2000); the moisture
and radiation effects, however, are excluded. The subgrid model is similar to that
of Sullivan et al. (1994) except that we use a diagnostic equation for the subgrid
turbulent kinetic energy (TKE). To simulate steady-state PBL flows, the heat flux
(w#), at the ground surface is fixed at a constant value, wherg the vertical
velocity componentd the potential temperature, and the subscgigtenotes the
ground surface. The surface momentum flux, on the other hand, is determined
from Monin—Obukhov theory with the roughness lengt) set at 0.15 m for
momentum.

The computational domain consists of Q86 grids horizontally and 60 grids
vertically. The lateral boundaries are periodic and the top boundary is treated as a
stress-free rigid lid; a grid spacing of either 3 or 4 m is used in all directions and
the time step is setto 0.2 s.

According to Canuto and Minotti (1993), the grid spacing has to be smal-
ler than the buoyancy-subrange scale given(by./6/5)(¢%/2)%?/N if it is
used as the length scale, wher&/2 = (u? 4+ v?+ w?)/2 is the TKE,N =

[(g /Bg)0O /az]l/ ? the Brunt-Vaisala frequency, the gravitational acceleration,
and(u, v) are the horizontal velocity components. This constraint becomes severe
as stability increases. From preliminary runs, and Monin—Obukhov theory for the
most stable case, the magnitudeg9f2 in the surface layer artd /97 at a height

of zo, Were estimated to be about 0.02 812 and 0.26 K n1!, respectively;
accordingly the buoyancy-subrange scale for our simulations is considered to be
more than about 4.4 m. Only for the most stable case, however, the grid spacing of
3 mis adopted for safety’s sake. For unstable cases, a larger grid spacing is allowed
and a larger computational domain is proper to simulate typical convective PBLs.
To unify with simulations for stable cases, however, the grid spacing for unstable
cases is also chosen to be 4 m.

By varying (wb),, six types of PBL flows were simulated; Cases 1-3 refer to
stably-stratified PBLs and Cases 4-6 convective PBLs. To limit the growth of the
PBLs, an inversion with a potential-temperature gradient of 0.2K was placed
between 122 and 162 m. The initial profile of the mean potential temperature was
uniform (293 K) below the inversion base and had a vertical gradientGif40
K m~! above the inversion top. The mean wind was initially geostrophic and was
everywhere equal to 2 nT& For Cases 1-3, however, these profiles were replaced
by those close to a steady state obtained from a M-Y model (Mellor and Yamada,
1982) in order to reduce the calculation time. The simulations were initialized by
adding small random perturbations to the above profiles.
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Figure 1. Two-point correlation; of the horizontal velocity component at the centre of the PBL
(z = 70 m) for Case 6. The solid and dashed lines represéfor the x-direction (parallel to the
geostrophic wind) ang-direction, respectively. Only about a half of the computational-domain size
is shown, since the other half is the same.

2.2. RESULTS

In order to justify the choice of the computational domain, Figure 1 shows two-
point correlatiory; of the horizontal velocity component e.g., for thex-direction
(parallel to the geostrophic wind),
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at the centre of the PBL for Case 6 with the largest PBL deptfor both the

x- and y-directions decreases exponentially with increasingnd its absolute
value for largel settles down to less than about 0.1; accordingly the choice of
the computational domain is considered to be allowable.
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TABLE |
Input and output parameters for the LESSs.is the grid spacingz, the
large-eddy turnover time, aridy; the Obukhov length. Time averaging is made
over a period of 30 minutes after the simulations are run for about 10

Case A (wh)g h,z; U Wy Tx h/Ly,
m Kms?1 m msl msl () z/Lm

1 3 -0.001 69 0.074 - 927 2.24

2 4 —0.0006 100 0.084 - 1187 1.34

3 4 —-0.0003 116 0.092 - 1260 0.60

4 4 0.003 128 0.108 0.234 547 -4.05

5 4 0.01 132 0.116 0.353 374 -11.25

6 4 0.025 140 0.124 0.489 286 —24.37
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Figure 2.Comparison of (ap,, and (b)p,, calculated from the LES data with the empirical functions.
Full circles show the LES results(k < 0.4 for Cases 1-3 ang/z; < 0.4 for Cases 4-6) and solid
lines the empirical functions by Businger et al. (1971) (Appendix A).

The statistical quantities are obtained by averaging over a horizontal plane and
over a period of 30 min after a statistically quasi-steady state is reached. The quasi-
steady state may be reached within a few large-eddy turnover times, where one
large-eddy turnover time is given by/u, for Cases 1-3 and;/w, for Cases
4-6; hereu, is the friction velocity,w, = [(g/@o)(u)@)gzi]l/3 the convective
velocity, andh andz; are the depths of the stably-stratified and convective PBLs,
respectively. Note thait is defined as the height where the buoyancy flux falls to
5% of its surface value, whilg is the height where the buoyancy flux is minimum.
The input parameters and the resulting statistics are summarized in Table |.
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To verify the reliability of the LES data, Figure 2 compakgs(¢) and¢,(¢)
calculated from the LES data with those experimentally obtained by Businger et
al. (1971) (Appendix A)¢,, andg,, are the non-dimensional gradient functions for
momentum and heat, respectively, and are given by

1/2
kz [ (a2 [av 2]
o= — (=) +(5) | - e
Uy 0z 0z
kz 00
= = 3
®n 5. 0z )
wherek is the von Karman constant afddthe scaling temperature.= z/Ly, is

the non-dimensional height normalized by the Obukhov leigih

3
3 4)

Ly =— .
M kg (wh),

Although the depth of the surface layer is considered to be about 10% of the
PBL depth, the LES data are plotted for<0 z < 0.4k or 0.4z;. For Cases 4-6

(¢ < 0), bothg,, and¢, computed from the LES data are in good agreement with
the empirical functions. For Cases 13 £ 0), however, they fluctuate slightly
around the empirical functions. The difference between the LES results and the
empirical functions is especially large fgy in Case 1, which is for the most stable
condition (Figure 2b). Since the form ¢f experimentally determined so far varies
considerably (e.g., Yaglom, 1977), however, the present LES data are considered
to reproduce the properties of the surface layer satisfactorily.

3. Description of the Mellor-Yamada Model

3.1. RRAMETERIZATION

In second-order closure models such as the M-Y model, the dissipation rates,
the pressure covariances, and the third moments are parameterized. Mellor (1973)
expressed the dissipation rates of T2 and temperature varian¢g?) as

q3

© = B ©)
_ 9 2
& = BT 62, (6)

respectively, wherd. is the turbulent master length scale, aBgdand B, are the
closure constants.

On the other hand, the pressure-strain and pressure-temperature-gradient cov-
ariances are usually parameterized as
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Bu, ) 1 25
Plax, T 8x, 3A1L (iej) = 30°0i

aU,
+C1q (8 +8x)

2
— Cz— < )i+ (1;0) i3 — 3 <u39>5,~,~>

ou;, 2 Uy
C Y, A ks, 7
+ 4((” Ug) —= ™ + (1 jug) ™ 3(Mk141> ox) ]> (7)

a0 q g - aU;
TN L 060) — C32- (67813 + Cs (up) <2 8
<p8x,-> 3,1 (u;0) 3®0( )8i3 + Cs (ur >8xk 8

respectively (e.g., Denby, 1999), whergis the velocity vectorp the pressure
divided by the mean density, artl and C with subscripts are also the closure
constants. The terms witty, C4, or Cs and those withC, or C3 represent effects of
shear and buoyancy, respectively, and are neglected in Mellor (1973) except for the
term with C;. Although these terms are likely to be effective for the parameteriza-
tion for the pressure covariances as suggested by Moeng and Wyngaard (1986) and
Andrén and Moeng (1993), it is found that the term with(in this formulation)
has a contrary effect on the reproduction of the horizontal velocity variance given
by our LES data. Since shear effects are considered through the terr@wyitre
will adopt C4 = 0.

As for the parameterization for the third moments, it is especially important in
the convective PBL but is not discussed in the present paper.

Based on several measurements, Mellor and Yamada (1982) estimated the
closure constants as

(A1, Ay, B1, B>, C1) = (0.92,0.74, 16.6, 10.1, 0.08), ©)
(C2, C3,C4,C5) =(0,0,0,0).

3.2. BEXPRESSION IN THE SURFACE LAYER

If the boundary-layer approximation is applied and the time-tendency, advection,
and diffusion terms are neglected (Level 2 model; Mellor and Yamada, 1974,
1982), the variances and the turbulent fluxes are written as

L U

L
W) = y1g% + 2A1Co— > (wh) — BA1— (uw) — (10)
q ©9 q az’

L
W?) = yg?+241C— 5 (we), (11)
q ©9

L
(w2 = y1g? +2A1(3— zcz)ggomm, (12)
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LT U
(uw) = 3A1; _—(<w2> —clq2)¥+<1—cz>®io<ue>] (13)
(uf) = ?>A2£ (uw)@—(l Cs) (w@)aU] (14)
q L 0z 0z
LT 00
(wh) = 34— | —(w?)— + (1 — cg)—< >], (15)
q L 0z Op
o _ L Ww s
i = B ( ) + ®O<we>) (16)
%) = — By Zwe) 22, (17)
q 9z

where the coordinate system is oriented so thaty = 0, andy, = 1/3—2A,/B;.
Substitution of the relationships in the surface layer:

(ww) = —u?, (wh) = —u.b,, ¢=2z/Ly,

U u, 00 0, (18)
9z - kz¢m’ 3z — kZ¢h

into the above equations gives some non-dimensional variables:
3

q L

1 = B1— (¢ — C), 19
<u2> 1 3¢m - C2§
A i -m e 20
q° yl+(3 yl) bm — ¢ (20)
62 L\?® B
G- (2) Bt (21)
62 kz)  BY3(pw— )13
() _ (L\*" 345 (1= Co)pn + 22)
U0y B kz Bi'/g (Pm — é‘)l/g

and simultaneous equations for the non-dimensional gradient funatigrsde,, :

L
P {Vl — C1—[241(3—2C2) + 342(1 — Co)(1 - Cy)] *3 e }

L 1 &k
~ ¢ [3A2(1 C2) is kz} = Alq*f, (23)
(L)l 1 ks
Pn {J/l —[2A1(3 = 2C2) + Ba(1 - C3)] q*gg} =3 L (24)

In addition, sincep,, = 1, ¢, = Pr, andL = kz in neutral stratificationy = 0),
we obtain

1-3 1 1
e A , Ci=y1—

Al = Bl P 2= T a2 — _1/3°
6 3]/131/3P}" 3A1 1/3

(25)
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wherePr is the turbulent Prandtl number.

3.3. LEVEL 3 MODEL

In the Level 3 model (Mellor and Yamada, 1974, 1982), the T4€#2 and the
temperature varianc®?) are predicted by applying prognostic equations, while
the other turbulent variables are solved diagnostically as given by Equations (10)—
(15). The equations for the velocity variances, however, are changed by eliminating
g?/B1, which is the term associated with the dissipation, using Equation (16); e.g.,
the equation for the vertical velocity variante?) is

2

L oU L
(w?) =L 424, % (uw) == + 44,1 — C) =5 (wo) (26)
3 q 0z q ©o
instead of Equation (12).
We will define non-dimensional variables:
o o LP(UN o L% g 90
M_q2 9z = q? Qg 9z
30\?
Cw = (w?/q% Cop= (07 / L? (—) :
0z
oU 00
T, = (ub) [ LP——, (27)
dz 0z
, U
Su = Sues+ Sy = —(uw) LCIB—Z,
00
Sy = Suas+ Sy = —<UJ9)/L618—Z,

where a subscript 2.5 denotes a variable in the Level 2.5 model (Yamada, 1977,
Mellor and Yamada, 1982) and a prime the fluctuation from it. In the Level 2.5
model,(0?) is also solved diagnostically using Equation (17). Substitution of these
variables into Equations (13)—(15), (17), and (26) gives

Co25 = BaSp2s,

Cy,=1/3—2A1Gy Sy +4A1(1 — C2)GySy,

T, = 3A2[Sy + (1 — Cs)Sy], (28)
Su =3A1[Cy —C1+ (1 —-Co)GyT,],

Sy =3A2[Cy, + (1 —C3)GyCyl.

After some algebra, the non-dimensional eddy-diffusivity coefficiefiiss, Sx25,
Sy andS’,, reduce to



358 MIKIO NAKANISHI

A2E2 — R1E4 R/2E2

S = -, = 29

M25 = EoEs — E1Ey4 M~ E,Es— E7E, (29)
R1E3 — AzE — RYE

Spps = ——3 7271 S, = —21/ (30)
EoE3 — E1E4 EoE3 — ELE,

where

E1=1+6A3Gy —9A1A2(1 — C2)Gy,

E; = —3A1[4A1+3A2(1 - Cs5)] (1 - C)Gy,

E3 = 6A1A2GM,

E,=1-12A;A5(1 — C2)Gy, (31)

Es= Ej, — 3A42B,(1 — C3)Gy,
R1 = A1(1-3Cy),
R, = 3A2(1 - C3)Gy(Cy — B2Sh25).

The Level 2.5 model is known to behave pathologically for growing turbulence.
Helfand and Labraga (1988) modified the Level 2.5 model so as to ensure its real-
izability (Schumann, 1977) and to remove its pathological behaviour; when TKE
q?/2 is smaller than TKEZ/2 predicted by the Level 2 model, i.e., in the case of
growing turbulencesS,;»s andSy2 5 are replaced by x /g2 andSy2 x q/qo,
respectively. In addition to these modificatiold®, — B>Sy2 5 in Equation (31) is
changed for

q q°
Cy — —B2Su2s5 = Cg — — B2Sho. (32)
q2 q>

Sy2 and Sy, are specified in Appendix B.

Since Helfand and Labraga (1988) paid attention to the Level 2.5 model, they
expressed no idea for modifications &jf andS’,. Characteristics of the Level 3
model may also need to be examined, for example, with a scheme similar to that
of Gerrity et al. (1994).

4. Evaluation of the Closure Constants and the Length Scale

4.1. LENGTH SCALE IN THE SURFACE LAYER

Mellor (1973) assumed that the master length séaile the surface layer is given

by kz regardless of stability. According to some observations, howdvearies

with stability (Busch and Larsen, 1972). Dubrulle and Niino (1992) reported that,
in the M-=Y model, the normalized TKE given by Equation (19) with= kz
increases infinitely as stability increases, and that this shortcoming can be improved



IMPROVEMENT OF THE MELLOR-YAMADA MODEL 359

by considering the dependence Iofon stability. Here we will first examiné in
the surface layer based on the LES data.

In the M-Y model,L is representative of both the diffusion and dissipation
length scales. In the convective PBL the diffusion length scale is not easy to de-
termine accurately, since the vertical gradient of physical quantities is small. Thus
we will evaluate the dissipation length scale.

The dissipations of the TKE is parameterized as Equation (5). If a local-
equilibrium state of the TKE in the surface layer is assumed (Equation (19)), we
obtain

5L (: ‘13> ¢ 1 (33)

k2 \ ekz) T WBn—¢

The LES computes, the TKE4?/2, and the friction velocity:, as a total of the
resolved-scale and subgrid-scale quantities. First, these quantities at several height
levels were substituted intg®/s kz and the resulting non-dimensional length scale
B1L/kz was plotted against the non-dimensional heightThe plotted points for
the stable cases seem to lie nearly in a single curve but with some scatter (not
shown). This scatter is perhaps because the turbulent transpgi&2adnds exist
a little even in stable conditions. Instead of such a plot, shown in Figure 3 is the
plot of B;L/kz in Equation (33), where the non-dimensional gradient funagipn
is given by the empirical function by Businger et al. (1971).

Figure 3 demonstrates thatvaries with stability and thaB,L/kz for Cases
1-3 ¢ > 0) is approximated by a curve:

L -1
By~ =2401+270) (34)
Z

Since L = kz in neutral stratificationy{ = 0), By = 24.0 and L in stable
stratification becomes

L=Ls=kz(14+27¢)"t for ¢=>0. (35)

This value ofB; is somewhat larger than Boestimated by Mellor and Yamada
(1982), but is close to 27 obtained from their LES by Andrén and Moeng (1993)
and 226 used by Therry and Lacarrére (1983).

On the other handB.L/kz for Cases 4-6¢ < 0) shows a large scatter. Al-
though B, L/ kz tends to increase with decreasiqgits increasing curve depends
upon the height. This may be because the turbulent transport throughout the con-
vective mixed layer has a significant influence also on the surface layer. In the
Level 2 version used for the analysis of the surface layer (see Section 3.2), all
the turbulent diffusions are neglected; accordingly the contribution of the turbulent
diffusion to L should be also removed here. Since it cannot be estimated from the
present LES data, howevdr,in unstable stratification is assumed to be given by
kz for simplicity.



360 MIKIO NAKANISHI

50 F T T T ~T T T ]
®
40 |- -
B ® @ i
®
30 F @ -
RV, ® ©
= e DL .
5 ® @
D 2t 4
10+ O LESdata ®®\ ]
---- Best fit curve Sl
T L=kz 7]
0 [ 1 | 1 | 1 1 .
-3.0 -2.0 -1.0 0.0 1.0
4

Figure 3.Plot of B1L/kz as a function of . A number in a circle indicates the case number in Table

I. The LES results are plotted only between the second (4.5 or 6 m) and fifth (13.5 or 18 m) grid
points above the ground surface, which are considered to be nearly in the surface layer. The dashed
line represents the best fit curve for Cases 1-3 and the dotted line the line &t.

4.2. QLOSURE CONSTANTS

The closure constants can be evaluated by comparing the non-dimensional vari-
ables in the surface layer, given by Equations (20)—(22), with those calculated from
the LES data. The non-dimensional gradient functignpsandg,, are derived from
Equations (19), (23), (24), (35), aid= kz for ¢ < 0, by an iterative procedure.

In order to obtain the total (resolved-scale plus subgrid-scale) temperature
variance(6?) in the LES, the subgrid temperature variaf¢ewas given by

— 2 —— 00
0 2 — —1/2 (—u}@ —) , (36)

cpe 0x;

where an overbar denotes a resolved-scale variable, a double prime a subgrid-scale
variable,e is the subgrid TKE, and the length scale set equal to the grid spacing
(Nakanishi, 2000). A constait was taken to be 2.1 as in Moeng and Wyngaard
(1988).

Figure 4 shows plots ofu?)/q?, (6%)/62, and (u6)/u.6, at four height levels,
computed from the LES data. Since the LES results illustrate(#ifatg? at; = 0
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Figure 4.Plots of (a)(u?)/¢2, (b) (62)/62, and (c)(u6)/usbsx as a function of. The dashed line

in (a) represents Equation (20) wifh = 0.235 andC, = 0.65, that in (b) Equation (21) with

By = 240, Bp = 150, andPr = 0.74, and that in (c) Equation (22) witho = 0.665 and

Cg = 0.2, whereg,, and¢;, are derived from Equations (19), (23), and (24), dné given by
Equation (35) andz for ¢ < 0. Others are the same as in Figure 3. For reference, dotted lines show
the corresponding equations with the original closure constants (Equation (9))-arid.

(= 1— 2y, in Equation (20)) is nearly equal to 0.53, we obtgair~ 0.235 (Figure
4a). The results of the M-=Y model with modified closure constants (dashed line)
nearly coincide with those of the LES, where a selected valu& ef 0.65 is the
same as that of Gambo (1978).

Since the magnitude ab?) /62 at¢ = 0 (= B,Pr/By’® in Equation (21) with
¢n = 1,¢, = Pr, andL = kz) is difficult to determine from the LES results,
we choose values dr = 0.74 andB, = 15.0 so that, for the unstable cases, the
results of a modified M-Y model (dashed line) may agree with those of the LES
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(Figure 4b). The resulting value &,/B,; = 0.625 is very close to that of Mellor
and Yamada (1982).

With the closure constants determined above and Equation (25), the magnitude
of () /u,6, at¢ = 0 (= 342(1— Cs+ Pr)/B;’° in Equation (22)) is smaller than
1.2 as long a€’s is positive, and is somewhat smaller than that of the LES results
(Figure 4c). With respect to its magnitude neae 0, the original M=Y model
(dotted line) makes a better prediction mainly because of the smaller valBg of
(see Equation (9)). However, the original M-Y model has a defect{tl#a/ u..0,
increases infinitely with increasing Since Andrén and Moeng (1993) concluded
that shear effects, which are parameterized as the term@itior the pressure-
temperature-gradient covariance, must be included in any m@gét, chosen to
be 0.2 so that the results of a modified M—Y model (dashed line) may not become
worse than those of the original M-Y model.

Finally, C3 is selected to be 0.294 so that derived from Equations (23) and
(24) may approach.4¢ as¢ — +o0 as in Businger et al. (1971). The resulting
approaches.B1; as¢ — +oo0. It is mentioned that the asymptotic linesat4.7¢
is inadequate for large (e.g., Beljaars and Holtslag, 1991). The present model,
however, does not allow us to adopt their proposed asymptoticdipe£ ¢ and
¢n ~ ¢3?), since it requires that, as stability increas¢s, should approachk¢
with a > 1.0 and¢,, should be proportional to.

Although Figure 3 suggests that the turbulent diffusion under unstable condi-
tions is important even in the surface layer, it is neglected in the Level 2 version
(see Section 3.2); nevertheless, the modified M-Y model reproduces the LES
results reasonably well. We believe that, fortunately, the height variation of the non-
dimensional length scalB;L/kz nearly cancels the contribution of the turbulent
diffusion.

In summary, the LES data give a revised set of the closure constants as

(A1, Az, B1, By, C1) = (1.18,0.665, 24.0, 15.0, 0.137), (37)
(C2, C3, C4, Cs) = (0.65,0.294 0.0, 0.2).

Consequently the modified M—Y model predicts a critical flux Richardson number
of 0.279 (Equation (B5) in Appendix B).

4.3. DIAGNOSTIC EQUATION FOR THE LENGTH SCALE

The determination of the master length sdalis one of the most difficult problems

in turbulence closure modelling. Although an attempt has been made to evaluate
using a prognostic equation (e.g., Mellor and Yamada, 1982), such an equation is
still of a qualitative nature with little physical foundation. In fact, if their equation

is incorporated into a Level 4 model (Mellor and Yamada, 1974, 1982) and applied
to the surface layer, one cannot obtain solutions for very unstable and very stable
conditions (Niino, 1990).



IMPROVEMENT OF THE MELLOR-YAMADA MODEL 363

Numerous diagnostic equations fbrhave been proposed in the literature. As
shown by Therry and Lacarrere (1983), however, several diagnostic equations give
L considerably different from each other. This is considered to be due partly to the
variety of turbulence closure modelling, but mainly to the lack of data available for
the formulation for such an equation.

Since the present LES data cover a relatively wide range of stability, a more
general equation fok is expected to be formulated. We propose a new diagnostic
equation forL that consists of three length scalés, Ly, andLg, i.e.,

1 1 1 1
=4+

L Ly Ly Lpg

where Lg is the length scale in the surface layer as obtained in Section’4.1,
the length scale depending upon the turbulent structure of the PBL (Mellor and
Yamada, 1974), and 3 the length scale limited by the buoyancy effect. This ex-
pression is designed in order that the shortest length (or time) scale may dontrol
Ls, L7, andLp are given by

kz/3.7, c>1
Ly = {kz(A+270)7%, 0<¢<1 (39)
kz(1—s2)??, ¢ <O,

/ qzdz
Jo_

Ly = a1 ; (40)
/ qdz
0
azq/N, 00/0z > 0and¢ >0
Ly = { [a2q + azq(qe/LyN)Y?] /N, 0©/0z > 0and; <0 (41)
00, 30 /9z <0,

whereas, ay, az, anday are empirical constants, amd = [(g/@o)(we)gLT]l/3

is a velocity scale similar to the convective velocity.

Unlike L in Equation (35), we adofts = kz/3.7 in the range of > 1, partly
because the adequacy bf is not examined in very stable conditions (see Figure
3) and partly becausk without this limit is found to cause excessive dissipation
of TKE in a test one-dimensional simulation. Alég for ¢ < 0 is assumed to
be given bykz(1 — a2)%? instead ofkz by considering effects of the turbulent
transport throughout the convective PBL, where a power of 0.2 is determined from
the variation ofLg with ¢ at the same height in Figure 3. This functional form
is arbitrary.Ls for ¢ < 0 is also estimated to be a function of however, since
the observed and simulated non-dimensional gradient functions normalized by the
length scale okz lie nearly on a single curve agairis{see Figure 2).

The expressiog /N for Ly is considered to underestimate a length scale in the
upper part of the convective PBL, since it is obtained from the balance between
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the TKE and the potential energy without considering the increase of TKE due
to the turbulent transport and the buoyancy production. According to Moeng and
Sullivan (1994), in the highly convective PBL, the sum of the increase rates of TKE
due to the turbulent transport and the buoyancy production is nearly proportional to
w3/z;. If the time scale is assumed to beL, the increase of TKE is proportional
tow3/z; N. Above the convective PBL, however, it must decrease gradually to zero
with increasing height. Thus we will tentatively replagg/z; N by g?w./z; N,
sinceq? is expected to be nearly uniform owing to the uniform productigiz;
belowz; and decreases gradually to zero abgv&Vheng. andLr are used instead
of w, andz;, respectively, we obtain the expressighy. /LN in Equation (41).
The empirical constants are determined by tuningbtained from the new
equation to that from the LES data & ¢°/Bi¢; see Equation (5)). While noting
az < 1.0, we first adoptr; = 0.23 andw, = 1.0 through the tuning for Cases
1-3. Secondlypz = 5.0 anday = 1000 are determined from the tuning near
the PBL top { = z;) and the surface, respectively, for Cases 4-6. The value of
a1 = 0.23 falls within the range of 0.20-0.25 estimated for a neutral PBL by
Andrén (1991), and is close to 0.2 suggested using a prognostic equatigiifor
by Mellor (personal communication quoted from Moeng and Wyngaard, 1989).
Figure 5 compareg& obtained from the new equation with the LES results.
in the LES becomes very large abaver z;, sincee of the denominator becomes
nearly equal to zero there. For referentesomputed from a diagnostic equation
by Therry and Lacarrére (1983) (Appendix C) is shown by dotted lines. Although
the form of our equation is simpler than that of Therry and Lacarrére’s equation,
L from our equation is in better agreement with the LES results except for Case
1 (Figure 5a). The major factor of the simpler form consistd. invarying with
stability and that of the better agreement liesLip involving the effect of the
increase of TKE in the convective PBL.

5. Verification of the Modified Mellor—Yamada Model

5.1. ¢,, AND ¢,

In order to examine the performance of the M—Y model after the modification of
the closure constants, we will first compare the non-dimensional gradient functions
for momentum and heap,, and¢,, derived from Equations (23) and (24) with the
empirical functions by Businger et al. (1971).

Figure 6 shows,, and¢, before and after that modification and the empirical
functions. In stable conditiong (> 0), both¢,, and¢, before and after the modi-
fication are in good accordance with the empirical functions. In unstable conditions
(¢ < 0), ¢, after the modification agrees very well with the empirical function
(Figure 6b).¢,, after the modification is also improved considerably compared
with ¢,, before the modification (Figure 6a), although it remains slightly smaller
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Figure 5. Vertical profiles ofL for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f)
Case 6. Solid lines represehbbtained from the LES data, dashed lidefom Equations (38)—(41)
withw1 = 0.23,02 = 1.0,3 = 5.0, andwg = 1000, and dotted line& from the equation by Therry

and Lacarere (1983) (Appendix C). The altitude is normalizedibfor Cases 1-3 (a—c) ang for
Cases 4-6 (d—f).

than the empirical function. As will be shown in the following section, it is found
that the improvement af,, and ¢, depends upon the consideration of buoyancy
effects on the pressure covariances.
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Figure 6.Comparison of the predicted (&), and (b)¢; with the empirical functions. Dotted lines
represent the results of the original M—Y model (Equation (9)), dashed lines those of the modified
M-Y model (Equation (37)), and solid lines the empirical functions by Businger et al. (1971).

5.2. Sy AND Sy

Secondly, we will compare the non-dimensional eddy-diffusivity coefficients for
momentum and heasy, = Sy25 + S), andSy = Su2s + Sy, in the modified
M-Y model with those in the LESS;; andSy in the M-=Y model are derived from
Equations (29) and (30) after all the physical quantities, includingre given by
the LES data. Note thdt given by Equations (38)—(41) nearly coincides with the
LES results.S,, andSy in the LES, on the other hand, are calculated from

2 2\1/2
s, — ((uw)? + (vw)?) . (42)
Lq[(0U/32)* + (3V /32)?]
_ o (wo)
S = Lqg (30/dz) “

Figure 7 shows vertical profiles 6f, in the modified M-Y model and the LES.
Here, for the stable cases (Figures 7asSg),in the M=Y model is estimated from
the Level 2.5 model in which the turbulent diffusion of the temperature variance is
neglected §;, = 0). This is because the temperature variance and/or its turbulent
transport in these cases seem to be a little unsteady as will be shown later (Figures
1la-c) and consequentlyj, cannot be estimated properl§,, in the modified
M-Y model agrees fairly well with the LES results except near the centre of the
PBL for Case 4 (Figure 7d), for whicky, in the LES seems to be large compared
with that for Cases 5 and 6 (Figures 7e and f). If one looks at the figure more
carefully, however, one notices th&; near the surface in the LES for the stable
cases is somewhat large (Figures 7a—c). This may be because physical quantities
near the surface vary significantly with height and consequently the evaluation of
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the denominators in Equation (42) becomes inaccurate. Also, for the unstable cases
(Figures 7d-f) Sy, in the modified M—Y model becomes larger than that in the LES

as stability decreases, partly becagsein the M—Y model for < 0 is smaller

than the empirical function (see Figure 6a).

Figure 8 shows vertical profiles &y as in Figure 7. For the stable cases
(Figures 8a—c)Sy in the M-Y model is also estimated from the Level 2.5 model
(S = 0). Sy in the modified M—Y model nearly coincides with the LES results.
For the stable cases (Figures 8a—c), howeSsgein the LES is generally larger than
that in the modified M-Y model, partly becauggin the LES for¢ > 0 is smaller
than the empirical function (see Figure 2b). In the unstable cases (Figure 8¢-f),
above the middle of the PBL is negative, illustrating that the upper part of the PBL
has the structure of the countergradient diffusion. The absolute valfig okar
the centre of the PBL in the modified M-Y model becomes larger than that in the
LES as stability decreases.

In order to demonstrate that the present modification of the closure constants
leads to the improvement of the M—Y model, Figure 9 shows vertical profil8g of
computed from the original M=Y model. Clearly,, in the original M—Y model
(dashed line) is excessively large in the bulk of the convective PBL (Figures 9d—
f). To improve the M-Y model, Kantha and Clayson (1994) changed two closure
constants(C3; and Cs, in Equation (9) to 0.2 and 0.7, respectively. Their modific-
ation, however, makes only a little improvement on the M-Y model (not shown).
Dotted lines represerfty, in the case of”, = 0.65,C3; = 0.2, andCs = 0.7. The
magnitude ofS,, for the unstable cases is reduced to some degree, alttfausr
the stable cases becomes slightly larger than that in the LES (Figures 9a—c).

Thus, the consideration of buoyancy effects on the pressure covariances is likely
to be necessary for the improvement of the M—Y model. Also the adequate expres-
sion for L is indispensable for that improvement; if the diagnostic equatiord for
by Mellor and Yamada (1974) is used for the unstable cases, both the original and
modified M—Y models predict the eddy-diffusivity coefficiebg S,, smaller than
half the LES results (not shown). Note that, in that casgas well asL. becomes
small becausé), also depends upah (see Equations (27)—(31)). Since this small
Lq Sy decreases the production of the TKE, it can become even smaller and is
considered to cause the problems pointed out by Sun and Ogura (1980).

5.3. S, AND Sy

Mellor (1973) parameterized the third moments, e.g., the turbulent transports of
the TKE and the temperature variance, by assuming downgradient diffusion. It
is mentioned, however, that the downgradient-diffusion assumption for them is
inadequate in the convective PBL (e.g., Moeng and Wyngaard, 1989).

Since the parameterization for the third moments is not examined in the present
study, we will only show the non-dimensional eddy-diffusivity coefficients for the
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Figure 7.Comparison ofS;, computed from the modified M-Y model (dashed line) with that from
the LES data (solid line) for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.
The altitude is normalized as in Figure 5.
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Figure 9.Same as Figure 7 except f6f; computed from the original M—Y model (dashed line).
Dotted lines, however, represesyj; in the case o> = 0.65,C3 = 0.2, andCs = 0.7, where the
last two values are the same as those of Kantha and Clayson (1994). Note that the magrsijade of
from the LES data in this figure is smaller than that in Figure 7 because of the smaller vdtye of
and consequently a larger valuelof
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TKE and the temperature varianc®, and Sy, similar to Sy andSy. S, and Sy in
the LES are calculated from

(w(u2 + 02+ wz)/Z) + (wp)
S, = — , 44
! Lq[3(¢%/2)/07] (44
P UL I (45)
© T Lq(0(62)/0z)

where the subgrid turbulent transports are not included.

Figure 10 compares, with S) computed from the LES data using Equation
(42). S, for the unstable cases is considerably larger than the constant value of
0.2 adopted by Mellor and Yamada (1982), except near the surface and the PBL
top (Figures 10d—f), and becomes larger tlignas stability decreases. Since such
large values are considered to be unrealistic (e.g., Moeng and Wyngaard, 1989), it
seems that the difference betwegnand S, should be expressed in terms of the
buoyancy flux as suggested by Therry and Lacarrére (1983).

Figure 11 comparesS, with S),. For the stable cases (Figures 11aSg)in the
lower part of the PBL fluctuates largely, whil in the upper part of the PBL is
as small asy,. Unlike S,, S, for the unstable cases is nearly comparable Wijth
except near/z; = 0.7 (Figures 11d-f). It seems that the turbulent transport of the
temperature variance may be approximated based on the downgradient-diffusion
assumption.

6. Summary and Conclusions

The M-Y turbulence closure model has several deficiencies that are common to
almost all second-order closure models (e.g., Moeng and Wyngaard, 1989). We
attempted to improve two of the deficiencies of the M—Y model.

To obtain a database for the improvement, stably-stratified and convective PBLs
without moisture were simulated by a LES model (Nakanishi, 2000). Although
LES is a well-established tool for the study of turbulent flows, the resulting data
were compared with the empirical functions by Businger et al. (1971). The LES
data reproduce the observed properties of the surface layer very well.

The first deficiency of the M-Y model is the neglect of buoyancy effects on
the pressure covariances. We added the parameterization of its effects to the M-Y
model, and presented a useful expression for the Level 3 model, and re-evaluated
closure constants based on the LES data. The second deficiency is the uncertain
expression for the master length scaleWe proposed a new diagnostic equation
for L based on the LES data. The new equation alléwia the surface layer to
vary with stability, and gived. in the upper part of the convective PBL with little
underestimation.



372 MIKIO NAKANISHI

10

0.8

06

Z/h

0.4 : T+

O-O_I [ I N e [ I N e ‘|I|I_

10 @ T

08

06

2/Z,
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The non-dimensional eddy-diffusivity coefficients for momentum and heat,
computed from the modified M-Y model, agree well with those from the LES
data. Such agreement is not obtained from the original M—Y model. The improve-
ment is achieved by incorporating buoyancy effects into the parameterization for
the pressure covariances and by using an adequate expression, such as our new
diagnostic equation, fak.

The parameterization for the third moments, which is also important for tur-
bulence closure modelling, was not discussed in the present paper. For reference,
however, the non-dimensional eddy-diffusivity coefficients for the TKE and the
temperature variance, andS,, were compared with that for momentuff,. It is
found thatS, is nearly comparable with,, althoughS, needs to be parameterized
by considering buoyancy effects.

The performance of the modified M-Y model is expected to be satisfactory in
a clear PBL. In a real PBL, however, moisture exists, and cloud and fog appear
through its condensation. We have carried out the simulation of a radiation fog
with the LES model (Nakanishi, 2000). We are now examining the performance of
the modified M—Y model against the LES data on the radiation fog.
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Appendix A. Non-Dimensional Gradient Functions by Businger et al. (1971)

Based on the Kansas data, Businger et al. (1971) determined the non-dimensional
gradient functions for momentum and hegt,and¢;, as

_[1+47c, >0
¢m - { (1_ 15{)—1/4’ é- < O, (Al)

Pr+4.7 0
h:{ rAT ‘= (A2)

Pr{1—9Pr/0.742c] Y%, ¢ <0,

where the turbulent Prandtl numbgr is estimated to be 0.74.
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Appendix B. Level 2 Model

In the Level 2 model (Mellor and Yamada, 1974, 1982), turbulent motions are
assumed to be in a local-equilibrium state and all turbulent variables are solved
diagnostically.

The equation for the TKE in a local-equilibrium state (Equation (16)) is written
as

1=B1(GuSu2+ GuSu2) = B1GuSu2 (1 —Rf) (B1)

with similar notations in Equation (27), where Rf is the flux Richardson number.
By eliminating G ;; andG g from Equation (28) using the above equation, the non-
dimensional eddy-diffusivity coefficients for momentum and h&gp, andSy», in

the Level 2 model are obtained as

A1Fy Rfl — Rf
= ———— Sy, B2
oy e R (B2)
Rf, — Rf

Su2 = 3A2(y1 + ¥2) (B3)

1-Rf’
where
Y2 = 2A1(3 - 2C3)/B1 + B2(1— C3)/ By,
Fi = B1(y1 — C1) + 2A1(3— 2C3) + 3A2(1 - C2)(1 — Cs),
F> = Bi(y1 + y2) — 3A1(1 - (), (B4)

Rp1 = Bi(y1 — C1)/ Fu,
Rz = Biy1/ F>,

and Rf is the critical flux Richardson number given by

Rf, = — % (B5)
Y1+ V2

These expressions can be also obtained from Equations (23) andi24ndSy»
are characterized by not depending upon histories of the TKE and the master length
scale, which exist iz, andGy.

The flux Richardson number Rf can be expressed in terms of the gradient
Richardson number, RE —G /Gy = Rf Sy2/Sy2, @s

Rf = R;1 [Ri+ Riz — (R — RizRi + RS)Y?], (B6)
where
1A2F2 1Rf1 2Rf2 - Rfl
il=— & ) i = 9 Ri == - —. B7
YT 2AF 7 2Rn ’ Ri1 B7)
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Appendix C. Diagnostic Equation by Therry and Lacarrére (1983)

Based on the dissipation length scaleobtained from field observation, laboratory
experiment, and simulation, Therry and Lacarrére (1983) proposed a diagnostic
equation forL,:

1 1 Ca 1 Ca Ces
- = (= C1
L. kz H (kz+H>mlm2+Lb’ (1)
where
my=1/(1+ C,3H/kz), (C2)
_ |0 ¢=0
"2 = { (A~ Coul/H), ¢ <0, (€3)
1  [N/@?*/2Y? 090/0z>0
L, {o, 90 /9z < 0. (€4
H is the PBL depth given by
_ ) 03u./f, ¢=0
= {Zi, ¢ <0, (C5)

where f is the vertical component of the Coriolis parameter. The set of the
constants is

(Ce1, Ce2, Cp3, Coa, Co5) = (15.0,5.0,0.005 1.0, 1.5). (Co)
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