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ABSTRACT

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to

explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble

consisting of WRF model simulations with different planetary boundary layer (PBL) schemes showed little

spread among the individual ensemble members for forecasting wind speed. A second configuration using

three random perturbations of the Global Forecast System model produced more spread in the wind speed

forecasts, but the ensemble mean possessed a higher mean absolute error (MAE). A third ensemble of dif-

ferent initialization times showed larger model spread, but model MAE was not compromised. In addition,

postprocessing techniques such as training of the model for the day 2 forecast based on day 1 results and bias

correction based on observed wind direction are examined. Ramp event forecasting was also explored. An

event was considered to be a ramp event if the change in wind power was 50% or more of total capacity in

either 4 or 2 h or less. This was approximated using a typical wind turbine power curve such that any wind

speed increase or decrease of more than 3 m s21 within the 6–12 m s21 window (where power production

varies greatly) in 4 h or less would be considered a ramp.ModelMAE, climatology of ramp events, and causes

were examined. All PBL schemes examined predicted fewer ramp events compared to the observations, and

model forecasts for ramps in general were poor.

1. Introduction

In recent years, wind energy production has under-

gone rapid growth, and the U.S. Department of Energy

goal of having 20%of the nation’s electrical energy from

wind by 2030 will require continued growth (Department

of Energy 2008). Wind, unlike other sources of energy,

varies substantially over both space and time. Therefore,

the production rates of wind energy fluctuatemore strongly

than those of other traditional fossil fuel sources of en-

ergy generation. To optimize wind for power generation,

accurate forecasts are needed.

Unfortunately, there have been few evaluations of

model forecasts of winds at 80 m, a height where the

influence of turbulent fluxes of momentum, heat, and

moisture from the earth’s surface can vary greatly depend-

ing on the time of day, season, and vertical temperature

stratification of the atmosphere. Meteorologists tradi-

tionally have focused wind forecasts at the 10-m level,

a height at which official wind observations are routinely

taken and a level at which winds are strongly influenced

by surface friction. Prior wind forecasting research in the

western United States has focused on flow in complex

terrain (e.g., Wood 2000; Ayotte et al. 2001) and is

therefore not applicable in Iowa where boundary layer

stratification, low-level jets (LLJs), and changing surface

conditions are likely to be the dominant factors pro-

viding uncertainty in short-term forecasts at 80 m.Other

modeling studies have taken a more statistical approach

to predicting wind speed at different levels (Huang and

Chalabi 1996); however, none have been reported for

the state of Iowa, despite it being the statewith the largest

percentage of total power per capita coming from wind

energy in 2010 (Department of Energy 2010). Even fewer

studies have examined the forecasting of ramp events,

defined as rapid changes in wind speed that lead to ex-

treme changes in wind power output. Large ramp events

causing a 50% or greater change in the capacity of the
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wind speed were found to occur less than 7% of the

time within 4 h in a United Kingdom wind farm study

(Greaves et al. 2009) and less than 4% of the time within

2 h in a California wind farm study (Zack 2007). Al-

though rare, ramp events occurring between the cut-in

speed (wind speed when turbine begins to generate

power) and the rated wind speed (wind speed when the

turbine begins to generate its designated rated power;

see Fig. 3 for an example) are extremely costly to energy

companies because they may cause blackouts and over-

load the grid (Francis 2008). Along with being rare, ramp

events are also difficult to forecast. It was found that ramp

events were captured less than 36% of the time by a pri-

vate forecast company forecasting for six wind farms in

the United States (Greaves et al. 2009).

In the present study, the ability of version 3.1.1 of the

Weather Research and Forecasting Model (WRF) to ac-

curately reproduce 80-m wind speeds and ramp events

was evaluated by comparing WRF simulations using six

different planetary boundary layer (PBL) schemes to

observations of 80-m wind speed gathered at the Pom-

eroy, Iowa wind farm site. The sensitivities of the two

most widely used PBL schemes—the Yonsei University

scheme (YSU) and the Mellor–Yamada–Janji�c scheme

(MYJ)—along with the quasi-normal scale elimination

PBL scheme (QNSE), the Mellor–Yamada Nakanishi

andNiino level-2.5 PBL scheme (MYNN2.5), theMYNN

level 3.0 PBL scheme (MYNN 3.0), and the Pleim PBL

scheme [also called the asymmetric convective model

[ACM2)] are examined. A brief review of the six dif-

ferent schemes can be found in the appendix.

2. Model configuration and data

For most of the simulations examined in the present

study, a single domain with 10-km horizontal grid spacing

was used, although some tests were performed embed-

ding a nested 4-kmgrid-spacing domainwithin the coarser

domain (Fig. 1). Both domains had 47 vertical levels, with

16 levels in the lowest 1300 m and an average vertical

spacing of around 15 m in the lowest 100 m. The lowest

half-sigma levels (heights) on which velocity data were

present were 1.0 (surface), 0.9995 (10 m), 0.998 (25 m),

0.996 (40 m), 0.994 (56 m), 0.992 (72 m), 0.990 (88 m),

0.988 (108 m), 0.985 (137 m), 0.9805 (180 m), 0.974

(244 m), 0.962 (377 m), 0.944 (546 m), 0.9215 (761 m),

0.8945 (1016 m), and 0.8645 (1300 m). The physical

schemes used include Ferriermicrophysics (Ferrier et al.

2002), the Rapid Radiation Transfer Model (RRTM;

Mlawer et al. 1997) for longwave radiation, and the

Dudhia scheme (Dudhia 1989) for shortwave radiation.

The Noah land surface scheme (Ek et al. 2003) was used

for all of the model runs except for the one using the

revisedAsymmetric ConvectiveModel (ACM2) scheme,

which employed the Pleim–Xiu scheme (Pleim and Xiu

1995; Xiu and Pleim 2001) since the Noah scheme was

not applicable with the ACM2 PBL scheme in the ver-

sion of WRF used. A cumulus scheme was not used for

the 4-km runs, while the 10-km runs used the Kain–

Fritsch model (Kain 2004). Six different PBL and sur-

face layer schemes were evaluated in this study. TheMYJ

PBL scheme simulation used the Janji�c EtaModelMonin–

Obukhov surface layer scheme, the MYNN 2.5 and

MYNN 3.0 PBL schemes used the MYNN surface layer

scheme, the ACM2 PBL scheme used the Pleim–Xiu

surface layer scheme, the QNSE PBL scheme used the

QNSE surface layer scheme, and the YSU PBL scheme

used the Monin–Obukhov (Hong and Pan 1996) surface

layer scheme.

The 54-h model runs were initiated at 1800 UTC

[1200 local standard time (LST)], 0000 UTC (1800

LST), and 0600 UTC (0000 LST) using both 18 hori-

zontal grid spacing Global Forecast System (GFS) output,

and 12-km horizontal grid-spacing North American

Model (NAM) output for initial and lateral boundary

conditions (ILBCs). For each 2-day period, 12 forecasts

were made, one for each PBL scheme and each ILBC

(Table 1). Because energy companies often use different

techniques for nowcasting of winds in the very short

term compared to forecasting during the 1–2-day period,

we have chosen to consider the first 6 h of each model

run as a spinup period, and have not included this period

in the evaluations of error. It should be noted that mean

absolute errors (MAEs) in model runs using four of the

six PBL schemes tested were somewhat higher during

the first 6 h than over the following 48, but differences

were usually less than 5%. In addition, a case study was

performed where instantaneous wind output was com-

pared to hourly averaged model wind output, and no

significant differences were noted; therefore, hourly

FIG. 1. The 10- and 4-km model domains used in this study.
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averaged model output was used in this study. Ob-

served data for comparison with model results were

taken from an 80-m meteorological tower on the

southwest side of the Pomeroy wind farm (Fig. 2) at 10-

min increments and averaged over 1-h periods centered

on each hour to measure the true sustained wind speed.

The 80-m wind speeds were evaluated from June 2008

through September 2010, excluding periods when data

were missing, while 58 cases spanning 116 days from

June 2008 through June 2009 were evaluated in the

wind ramp portion of this paper.

3. Methodology

Two forecast evaluations were performed. The first

used MAE and bias to evaluate wind speed forecasts at

80-m elevation. For this examination, an operational

ensemblewas developed based on theMAEof numerous

member configurations examined in three sets of tests.

The first set of tests, prerun modification, explored dif-

ferent time initializations, grid spacing, and perturbations

of the GFS ILBCs. The second set of tests, postprocess-

ing, focused on three techniques, the neighborhood ap-

proach, training of the model, and bias correction. In the

neighborhood approach, forecast values at grid points

around the validation tower were averaged in lieu of

using the grid point closest to the tower. The neighbor-

hood approach has been successfully used to improve

precipitation forecasting (Theis et al. 2005; Ebert 2009),

although results have not been reported when applied to

wind speed forecasting. The second technique examined

training of the model based on model MAEs in the first

24-h period. The three members with the lowest MAE

during the first 24-h periodwere used to form an ensemble

to forecast the 24–48-h period, referred to hereafter as

day 2. The third technique focused on bias corrections

based on (i) wind speed, (ii) wind direction, (iii) wind

speed and direction, and (iv) the diurnal cycle. From

the results of both prerun and postprocessing tests, a

final ensemble to be used operationally was developed,

hereafter known as final OP. The Wilcoxon signed-

rank test was used to determine if the improvements in

the final OP ensemble were significant. The Wilcoxon

signed-rank test was chosen as this test does not depend

TABLE 1. Parameterization combinations used to create ensemble

members.

Member

No.

PBL

scheme

Land

surface

scheme

Land

layer

scheme

Initial

boundary

conditions

1 YSU Noah Monin–Obukhov GFS

2 MYJ Noah Janji�c Eta Model

Monin–Obukhov

GFS

3 QNSE Noah QNSE GFS

4 MYNN 2.5 Noah MYNN GFS

5 MYNN 3.0 Noah MYNN GFS

6 ACM2 Pleim–Xiu Pleim–Xiu GFS

7 YSU Noah Monin–Obukhov NAM

8 MYJ Noah Janji�c Eta

Model

Monin–Obukhov

NAM

9 QNSE Noah QNSE NAM

10 MYNN 2.5 Noah MYNN NAM

11 MYNN 3.0 Noah MYNN NAM

12 ACM2 Pleim–Xiu Pleim–Xiu NAM

FIG. 2. (left) The 10-km domain with (right) outline of the Pomeroy wind farm where the individual wind turbines are the black dots and

the 80-m meteorological tower (observed data location) is denoted with the 3.
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on the distribution of the data and is resistant to outliers

(Wilks 2006, 160–162). Although we focus on MAE in

the results that follow, it is important to note that the use

of root-mean-square error (RMSE) might lead to dif-

ferent results as larger errors would be penalized more.

The second test of forecast accuracy focused on ramp

events at 80 m. In this paper, an event was considered to

be a ramp if the change in wind power over 4 h or less

was 50% or more of total capacity (Greaves et al. 2009).

We also looked at results if this window was halved to

2 h. The change in power was approximated using a typ-

ical wind turbine power curve (Fig. 3). Contained by

6–12 m s21 (an area where power production varies

greatly), anywind speed increase or decrease ofmore than

3 m s21 in 4 h or less was considered a ramp (similar to

Greaves et al. 2009). Defining the start and end of a ramp

event was somewhat subjective. The start of a ramp

event was defined as a sharp change in the wind speed

while the end was marked by a minimal change in the

wind speed (Fig. 4). Ramps were classified into two

categories: ramp-ups (increase in speed within 4 or 2 h)

and ramp-downs (decrease in speed within 4 or 2 h),

similar to the technique used by Freedman et al. (2008)

for surface data in a west Texas study. Wind observa-

tions were put through extensive quality control, and

cases were chosen from the subset of days when reliable

data existed. The wind data archive contained wind

speed values every 10 min, and observed ramps were

determined using both the 10-min data and top-of-the-

hour data. The results to follow focus on the hourly

data, since the large set of model output only had a

temporal frequency of 1 h. Model accuracy was eval-

uated in three areas: number of ramp events forecasted,

frequency of events, and model error. MAE, proba-

bility of detection (POD), false alarm rate (FAR), and

threat score (TS) were calculated to determine model

accuracy using the following equations:

POD5
Total number of correct event forecasts (Hits)

Total number of events observed
, (1)

FAR5
Total number of false alarms

Total number of events forecasted
, and (2)

TS5
Total number of correct event forecasts (Hits)

Total number of events forecasted1Number of misses
. (3)

4. Evaluation of 80-m wind forecasts

To compare the 6 different PBL schemes, 32 cases

(8 from each season; winter, spring, summer, and fall)

were chosen at random (using a random number gen-

erator) during periods having high quality observed

data. We created an ensemble from WRF model runs

with different PBL schemes at the same initialization

time, based on results of Harrison et al. (1999) and

Stensrud et al. (2000), who found that varying the model

physics was a powerful method for creating a forecast

ensemble. However, in our study changing the PBL

schemes produced little ensemblemember spread among

all six PBL schemes using the same initialization time

FIG. 3. Power curve for the 1.5-MW wind turbines used at the

Pomeroy wind farm. Cut-in speed is around 3.5 m s21 while the

rated wind speed is around 12 m s21 (General Electric Company

2005).

FIG. 4. Example of a ramp-up event. Start is assumed to be at

0100 UTC when sharp change in wind speed begins and ends when

the change in wind speed becomes minimal at 0400 UTC.
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(Table 2). Small spread is good if all model versions

are predicting speeds correctly; however, more often

it results in all models yielding incorrect forecasts

(Houtekamer 1993; Whitaker and Loughe 1998). There-

fore, three techniques were investigated to improve

model scheme spread and MAE over 10 cases during

January 2010, for which GFS perturbation data were

available. It should be noted that extensive snow cover

was present at the site during January 2010, and the

substantial impacts snow cover has on near-surface

processes could lead to different model performance

during this period than at other times of the year. For the

prerun modifications, only the YSU andMYNN 3.0 PBL

schemes were used to reduce computational expenses.

These schemes were selected because they often led to

relatively different results.

a. Prerun modification

The first attempt to improve model MAE used dif-

ferent perturbations of the initial and lateral boundary

conditions for the GFS model. As of 20 May 2006, GFS

perturbations were developed using an ensemble trans-

form (ET) technique (Wei et al. 2006). ET replaced the

breeding method and eliminated paired perturbations,

making all perturbations random to each other. There-

fore, in this study we selected three perturbation mem-

bers (2, 4, and 15) to compare against the three initialization

times tested later. The perturbations pickedwere run for

10 cases in January 2010 using the YSU and MYNN 3.0

PBL schemes. The results of this trial increased themodel

spread; however, model MAE also increased (Table 3)

from the six PBL schemes tested at 0000 UTC (Table 2).

The second approach for improving model MAE

changed the grid spacing. A two-member ensemble us-

ing the 10-km grid and the YSU and MYNN 3.0 PBL

schemes was created and evaluated against a two-member

ensemble using a 4-km grid and the YSU and MYNN 3.0

PBL schemes over a 10-day period during January 2010.

Both the YSU and MYNN 3.0 simulations, and the en-

semble mean, showed lower MAEs with 10-km grid

spacing compared to 4 km (Table 4), although the

Wilcoxon signed-rank test showed the results were not

highly significant. Another goal of this study was to

design an ensemble that could be used by wind energy

companies. With computing power limited in most

private companies, running 10-kmmodel simulations is

much more feasible than running 4-km cases. There-

fore, because the MAE of the 4-km runs was not better

than that of the 10-km runs, we focused the remainder

of our study on simulations using 10-km grid spacing.

The third approach to improving the model MAE

changed the time of initialization. The motivation for

testing different time initializations or time-lagged en-

sembles came from the success and usefulness achieved

in many other previous short- to medium-range fore-

casting studies (Hoffman and Kalnay 1983; Dalcher

et al. 1988; Walser et al. 2004; Lu et al. 2007). In our

study, WRF simulations using the YSU and MYNN 3.0

PBL schemes were initialized at 1800 UTC (1200 LST),

0000 UTC (1800 LST), and 0600 UTC (0000 LST) over a

10-day period in January 2010. The 0000UTC (1800LST)

and 1800 UTC (1200 LST) time initializations showed

the lowest MAEs while the 0600 UTC (0000 LST) ini-

tialization, the initialization closest to the forecast pe-

riod, showed the highest MAE (Table 5), although these

results were not highly significant. To better determine

when 0600 UTC (0000 LST) initialization run errors

were largest, a 42-h time series of wind speed, averaged

over 10 different cases in January 2010, was compared to

observational data in Fig. 5a. The YSU scheme largely

underpredicted the wind speed from forecast hour 18

to 32 (mostly nighttime) (Fig. 5a), resulting in a high

MAE (Fig. 5b) during this period. However, compared

to the perturbation ensemble, the time initialization

TABLE 2. MAE (m s21) associated with six PBL schemes using

the 0000 UTC time initialization and the GFS ILBCs from 10 cases

during January 2010. The six-member ensemble average and the

standard deviation (measure of model spread) are also listed.

PBL scheme MAE Std dev

MYJ 1.38 —

MYNN 2.5 1.43 —

MYNN 3.0 1.38 —

Pleim 1.29 —

QNSE 1.39 —

YSU 1.31 —

Ensemble 1.26 0.66

TABLE 3. MAE (m s21) associated with 3 different GFS per-

turbations using the YSU and MYNN3.0 PBL schemes from 10

cases during January 2010. The two-member ensemble average and

the standard deviation (measure of model spread) are also listed.

Perturbation No. 2 4 15 Std dev

MYNN 3.0 MAE 1.88 1.73 1.80 —

YSU MAE 1.60 1.59 1.72 —

Ensemble MAE 1.58 1.53 1.62 0.98

TABLE 4. MAE (m s21) associated with the wind speed at 80 m

from 2 different grid spacings (4 and 10 km) from 10 cases during

January 2010. The two-member ensemble average is also listed.

Grid spacing

(km)

MYNN 3.0

MAE YSU MAE Ensemble MAE

10 1.37 1.29 1.18

4 1.70 1.33 1.27
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ensemble showed higher model spread with a highly

significant lowerMAE. Therefore, our finalOP ensemble

was designed to include both different PBL schemes and

0000 UTC (1800 LST) and 1800 UTC (1200 LST) time

initializations.

b. Postprocessing

We investigated three postprocessing techniques,

which included training of the model, the neighborhood

approach, and bias correction of the wind speed. The

first postprocessing technique trained the model based

on day 1 results. In this method, day 1 forecasts (hours

6–30) were analyzed and the three most accurate PBL

schemes (lowest MAEs) were chosen and a selected en-

semble was developed to forecast day 2 wind speeds. The

three least accurate PBL schemes (highest MAEs) were

chosen as members of the nonselected ensemble (Table

6). The most accurate day 1 forecasts were not found to

always result in the most accurate day 2 forecasts. From

the 15 cases studied, the nonselected ensemble showed

the lowest MAE 4 out of the 15 times (27%), the

selected ensemble showed the lowest MAE 5 out of the

15 times (33%), and the ensemble incorporating all

six model members showed the lowest MAE 6 out of

the 15 times (40%). Therefore, the training approach

was not a reliable method for predicting wind speed as

conditions change too much from day to day, a result

similar to that found in Briggs and Ruppert (2004) and

Hall et al. (2010).

TABLE 5. MAE (m s21) associated with the wind speed at 80 m

from three different initialization times from 10 cases during

January 2010. The two-member ensemble average and the stan-

dard deviation (measure of model spread) are also listed.

Time initialization (UTC) 1800 0000 0600 Std dev

MYNN 3.0 MAE 1.42 1.37 1.38 —

YSU MAE 1.32 1.29 1.61 —

Ensemble MAE 1.23 1.18 1.28 1.09

FIG. 5. A 48-h time series (first 6 h not shown due to model ‘‘start up’’) of (a) wind speed and

(b) MAE, averaged over 10 different cases during January 2010. Model runs using 0600 UTC

(0000 LST) time initializations and MYNN3.0 (light gray) and YSU (dark gray) PBL schemes

with GFS initial and lateral boundary data. Observations in (a) are shown with the dotted line.
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The second postprocessing technique used the neigh-

borhood approach. Instead of basing a forecast for a lo-

cation on the winds predicted at the model grid point

closest to that location, in the neighborhood approach,

a set of grid points around the location of interest was

averaged. The results of this test varied for different

PBL schemes. The YSU scheme, a nonlocal and first-

order closure scheme, became more accurate when a

large set of grid points around the location of interest

was averaged while the MYNN 3.0 scheme, a local and

second-order closure scheme, became less accurate when

a large set of grid points around the location of interest

was averaged (Table 7). The reason for this may be due

to the larger variation in the surface layer length scale

in the MYNN PBL scheme, which is a function of the

stability parameter (z/L). If z/L varies significantly from

grid point to grid point, the turbulent mixing will be

more variable in the horizontal, making neighborhood

grid points more independent. Ensemble results from

the neighborhood approach show lower MAEs when an

average was taken from a box consisting of 173 17 grid

points; ensemble MAEs did not improve when averag-

ing over larger areas (Table 7). However, the improve-

ment was very small and not statistically significant. The

improvement was also not as large as that resulting from

the other methods tested.

The third postprocessing technique used biases ob-

served in the PBL schemes to adjust the forecasts. A bias

in the model was computed by analyzing 30 random

cases (0000 UCT model initializations) from all seasons

between June 2008 and June 2009 (Fig. 6) as a training

set. Ideally, biases should be computed for each season

since land surface characteristics, among other parameters,

can differ greatly between seasons and potentially can

lead to different model biases, but our sample size was

too small to allow that. However, future studies should

compare seasonal biases associated with wind speed.

In this training set of cases, all PBL schemes except

the YSU exhibited a diurnal cycle in the bias. A negative

bias, or underprediction of the wind speed, occurred be-

tween 1200 and 2000 UTC (0600 and 1400 LST), while

a positive bias (overprediction) occurred from 2000 to

1200 UTC the next day (1400 to 0600 LST). The same

pattern existed in day 2 of the 54-h forecast and was

present in runs using both the GFS and NAM ILBCs.

A similar result, although for surface wind speed, was

found by Zhang and Zheng (2004). These consistent di-

urnal trends in model error allowed for bias correction of

the forecasts.

Four bias-correction approaches were examined: one

based on the diurnal cycle of wind speeds, one using wind

speed alongwith direction, one based onwind speed only,

and the final one using wind direction only. The diurnal

cycle bias was computed as the mean bias of the wind

speed as a function of the hour of the day. The wind-

speed-only bias correction was computed as the mean

bias of the wind speed as a function of the wind speed

range (i.e., 3–6 m s21). The direction-only bias was com-

puted in a similar way, only using a range of degrees

instead of wind speed. And last, the wind-speed-and-

direction bias was computed as the mean bias of the

wind speed as a function of both the wind speed range

and direction range. Please note that each of the bias

TABLE 6.MAE (m s21) calculated for the first 24-h period. The 3 PBL schemes with the lowestMAEswere chosen, making up the day 2

selected ensemble. Times selected indicates the number of times a model was chosen as a member of the day 2 selected ensemble. The

nonselected ensemble incorporated the least accurate models for the first 24-h period. Day 2 all-member ensemble incorporated all six

model members.

Model Number Day 1 MAE (m s21) Times selected

00 UTC MYJ GFS with a 10-km grid spacing 2.51 5

00 UTC MYJ NAM with a 10-km grid spacing 2.61 6

00 UTC Pleim NAM with a 10-km grid spacing 2.58 4

00 UTC Pleim GFS with a 10-km grid spacing 2.36 9

00 UTC YSU NAM with a 10-km grid spacing 2.32 11

00 UTC YSU GFS with a 10-km grid spacing 2.37 10

Ensemble Mean 1.97

Day 2 selected ensemble best MAE Day 2 non-selected ensemble best MAE Day 2 All-Member Ensemble best MAE

5/15 4/15 6/15

TABLE 7. MAE (m s21) for wind speed at 80 m associated with the

neighborhood approach.

Grid

averaging MYNN3.0 MAE YSU MAE

Ensemble

MAE

Point 1.37 1.29 1.18

3 3 3 1.36 1.28 1.17

5 3 5 1.36 1.25 1.16

11 3 11 1.38 1.18 1.14

17 3 17 1.39 1.16 1.13

21 3 21 1.40 1.17 1.14
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corrections above was applied hourly to the test set dis-

cussed below.

Based on the 4 bias correction approaches above, a

test set using only the 0000 UTC (1800 LST) time ini-

tializations with GFS ILBCs over a 32-day period from

11 October to 11 November 2008 (Table 8) was used to

determine which bias correction approach resulted in

the lowest MAE. Please note that due to the expense

associated with an ensemble of computational runs, only

the 0000 UTC (1800 LST) time initialization, using GFS

ILBCs, was evaluated in in this test. Forecasts using the

wind speed bias correction showed the lowest MAE,

and therefore this bias correction was selected to be used

to improve the wind speed forecast in the final OP

ensemble.

To determine the six members that would make up

the final OP ensemble, a 15-day test period from 14 to 28

August 2009 was evaluated. New wind speed bias cor-

rections appropriate for thismix of 0000UTC (1800 LST)

and 1800 UTC (1200 LST) time initializations and GFS

and NAM ILBCs were determined using a training set

of 30 cases over all four seasons, and these corrections

were applied to this 15-day test period (Table 9). Please

note that this test was done to confirm which combina-

tion of the 0000UTC (1800 LST)–1800UTC (1200 LST)

time initializations and GFS–NAM ILBCs would result

in the lowest MAEs. From a possible 24 different com-

binations, a six-member ensemble was created. The six

members found to have the lowest MAEs after the com-

pletion of the two tests mentioned above included the

FIG. 6. Average PBL biases by hour using the 0000UTC (1800 LST) initialization (first 6 h not

shown due tomodel start up). Each line represents a different PBL scheme;MYJ (gray), MYNN

2.5 (red), MYNN 3.0 (blue), Pleim or ACM2 (green), QNSE (aqua), and YSU (magenta).

TABLE 8. MAEs (m s21) associated with different bias corrections developed for each PBL scheme for the 0000 UTC GFS ILBCs. This

case study was done from 11 Oct 2008 to 11 Nov 2008.

Bias corrections MYJ MYNN 2.5 MYNN 3.0 Pleim QNSE YSU Ensemble

No bias 2.34 2.49 2.41 2.36 2.45 2.28 2.27

Diurnal cycle 2.29 2.33 2.28 2.27 2.30 2.21 2.18

Wind direction 2.27 2.27 2.26 2.29 2.28 2.24 2.17

Wind speed and direction 2.15 2.16 2.14 2.17 2.17 2.10 2.05

Wind speed 2.05 2.04 2.01 2.09 2.07 1.99 1.97

Best 0.29 0.45 0.40 0.27 0.38 0.29 0.30

Improvement — Wind speed Wind speed Wind speed — — —

Wind speed Wind speed Wind speed Wind

Speed

Improvement (%) 14.1 22.1 20.0 13.0 18.4 14.6 15.2
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1800UTCPleimGFS, 1800UTCPleimNAM, 0000UTC

PleimGFS, 0000 UTCYSUNAM, 0000 UTCYSUGFS,

and 0000 UTC MYJ GFS (Table 10). All six members

used 10-km grid spacing. From these six members, the

final OP ensemble was created. Most of the time, sim-

ulations using GFS ILBCs showed lower MAEs than

those using NAM, so four out of the six members of the

final OP used the GFS ILBCs. Five out of the six mem-

bers that formed the ensemble used either the Pleim or

YSUPBL scheme.As noted previously, the YSU and the

Pleim PBL schemes use first-order closure and nonlocal

mixing, while the other four PBL schemes tested use

TKE closures and involve local mixing. Therefore, from

our results, it appears that nonlocal PBL schemes pro-

vide the lowest MAEs for 80-m wind speed forecasts in

northwest Iowa.

To evaluate the final OP ensemble, a deterministic

forecast—the 0000 UTC YSU GFS; the PBL scheme

that showed the lowest MAE—as well as four other six-

member ensembles, were compared. The standard de-

viation was also calculated to determine model spread

and compared to the final OP ensemble. To test the final

OP ensemble, 25 random cases from the summer and fall

of 2010 were used. The six-member final OP ensemble

model had the lowest MAEs of any of the other six-

member ensembles tested, both before and after the

wind speed bias correction (Table 11). Based on these

results, significance testing was done using theWilcoxon

signed-rank test. When comparing the non-bias-corrected

final OP ensemble to the other non-bias-corrected six-

member ensembles and the deterministic forecast, the

improvement in MAE of the final OP ensemble was sig-

nificant, with p values all less than 0.08. This indicates that

an ensemble consisting of different time initializations

and the YSU, MYJ, and Pleim PBL schemes was more

accurate than an ensemble constructed of all six PBL

schemes. Finally, comparing the bias-corrected final OP

ensemble model to the non-bias-corrected six-member

ensembles and the deterministic forecast, the improve-

ment in MAE of the bias-corrected final OP ensemble

was highly significant, with all p values less than 0.004.

This demonstrates that the final OP ensemble designed

in this paper shows a significant degree of improvement

in wind speed forecasting over the other approaches

tested. The standard deviation of the final OP ensemble

was also larger than that of any of the other ensembles,

indicating a larger spread in the final OP ensemble,

which should be helpful in capturing outlier events. In

a perfectly calibrated ensemble, increased spread also

would identify episodes of higher forecast uncertainty.

However, the relationship between the spread and the

RMSE is not linear in our ensemble (figure not shown),

so that despite having larger spread than the other en-

sembles tested, the OP ensemble would not necessarily

perform as well at forecasting the forecast skill as a per-

fectly calibrated ensemble would.

Although a 0.15 m s21 improvement in MAE in some

circumstances is small, in the area of wind energy, this

may be a substantial improvement. In a 2008 Depart-

ment of Energy (DOE) publication, it was stated that,

‘‘given that a 1% error in wind speed estimates for a

100-MW wind generation facility can lead to losses

approaching $12 000 000 over the lifetime of that plant,

a better understanding of the physical and dynamic pro-

cesses across the range of scales that create a particular

wind climate is needed’’ (Schreck et al. 2008, 81–82). The

ensemble developed in this paper shows a 10% improve-

ment in wind speed prediction, which, considering

TABLE 9. MAE (m s21) associated with different PBL schemes using the wind speed bias correction. The lowest MAE was produced by

the YSU and Pleim schemes. The case study was done during 14–28 Aug 2009.

MYJ MYNN 2.5 MYNN 3.0 Pleim QNSE YSU Ensemble

GFS 0000 UTC 1.59 1.66 1.66 1.52 1.65 1.57 1.48

GFS 1800 UTC 1.68 1.81 1.72 1.61 1.77 1.63 1.58

NAM 0000 UTC 1.67 1.71 1.69 1.63 1.71 1.57 1.56

NAM 1800 UTC 1.66 1.75 1.74 1.60 1.70 1.63 1.57

TABLE 10. Parameterization combinations used in the final OP ensemble to forecast wind speed at 80 m.

Member No. PBL scheme

Time initialization

(UTC) Land surface scheme Land layer scheme

Initial boundary

conditions

1 ACM2 1800 Pleim–Xiu Pleim–Xiu GFS

2 ACM2 1800 Pleim–Xiu Pleim–Xiu NAM

3 ACM2 0000 Pleim–Xiu Pleim–Xiu GFS

4 YSU 0000 Noah Monin–Obukhov NAM

5 YSU 0000 Noah Monin–Obukhov GFS

6 MYJ 0000 Noah Janji�c Eta Monin–Obukhov GFS
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average wind speeds on the order of 10 m s21, would

imply a change in errors of roughly 1% and thus a de-

crease in losses by $12 000 000 over the lifetime of the

facility. The improvement would likely be larger if sea-

sonally varying bias corrections were used, and if the

improvements in speed forecasts are largest within the

portion of the power curve where power generation is

most sensitive to the wind speed.

5. Evaluation of ramp event forecasts

Among the biggest challenges facing the wind in-

dustry are sharp and sudden increases or decreases in

the wind speed. Called ramp events, these periods have

major effects on wind power production. In Figs. 7 and 8,

we examined a yearly climatology of 2- and 4-h ramp-up

and ramp-down events at the Pomeroy meteorological

tower. We observed a strong bimodal peak cycle with

maxima in December and June and a smooth decrease

between these peaks with minima in February–March

and August for both ramp-up and ramp-down events

(Fig. 7). Ramp-up events showed a frequency of over

1.35 day21 on average during December and June and

a minimum of 0.9 day21 on average during February

and August. Ramp-down events showed a frequency of

over 1.4 day21 on average during December and June

and a minimum of 0.8 day21 on average during March

and August. Regarding 4-h events versus 2-h events, the

trends were very similar. However, the colder portion

of the year had more longer-period ramp-ups than the

warmer part, as there was a larger decrease in the 2-h

event rates compared to 4-h events during this time.

During the warmer part of the year, most ramp-ups

happen quickly, whereas a larger fraction of winter ramp-

ups take longer than 2 h to occur. This is likely due to

increased convective activity over Iowa during the sum-

mermonths, resulting in very quick ramp-up events. Such

trends were not obvious for ramp-downs, however.

In addition, we examined the hourly climatology of

ramp events (Fig. 8) and found that ramp-up events are

most common during 0000–0300UTC (1801–2100 LST),

which is likely associated with the decoupling of the

surface layer as the ground begins to cool, an event that

has been used to explain the formation of the LLJ.Ramp-

down events are most common during 1200–1500 UTC

(0600–0900 LST), which is likely due to the coupling of

the surface layer as the ground begins to warm, a time

when LLJs are typically ending. The general diurnal

trends do not differ as the ramp definition is changed

from 4 to 2 h. The primary change, as expected, is a small,

roughly 10%–20%, decrease in the total number of ramps

when using the smaller time window. There is no con-

sensus yet as to what time interval should define a ramp;

however, it is encouraging that a change between 2 and

4 h does not lead to big differences in the results.

Because ramp events have a high level of impact on

the wind energy industry, we examined in more detail

the ability of the WRF to forecast these events. Please

note that this comparison of ramp events with the

WRF was done over a subset of the yearly climatology

used previously, not the entire dataset. Table 12 shows

the number of ramp-up, ramp-down, and total ramp

events for both the day 1 (6–30 h after model start up)

and day 2 (30–54 h after model start up) periods. All

PBL schemes on day 2 and all PBL schemes except for

the MYNN 2.5 scheme on day 1 forecasted a signifi-

cantly lower number of ramp events than observed, ac-

cording to the Wilcoxon signed-rank test. This suggests

that the forecast models may be showing more gradual

transitions during events, such that thewind speed changes

do not meet the definition of a ramp.During days 1 and 2,

the YSU scheme forecasted the fewest number of total

ramp events, less than half of the number observed. This

underprediction of the model was echoed in a study by

Bradford et al. (2010), in which a privatized version of

the 3-kmWRF significantly underestimated the number

of surface ramp events over an area of northern Texas,

western Oklahoma, and southern Kansas.

It was initially assumed that most ramp events would

be associated with either frontal passage or the presence

of thunderstorms in this data subset, but these phenom-

ena accounted for only 16% and 12%, respectively, of all

4-h ramps (Fig. 9). Although some events did occur during

these weather phenomena, 28% of the events happened

without an obvious trigger being present during 4-h

TABLE 11. MAEs (m s21) of final OP ensemble after wind speed

bias correction compared to other six-member ensembles tested

for 25 cases during the summer and fall of 2010. The deterministic

forecast is the best individual model found from the period studied.

Standard deviation (measure ofmodel spread) for each ensemble is

also calculated. The boldface value indicates a high level of sta-

tistical improvement from the non-bias-corrected,0.1 determined

from a Wilcoxon signed-rank test. The italicized value indicates

a high level of statistical improvement from the non-bias-corrected

six-member ensembles–deterministic forecast to the bias-corrected

finalOP ensemble, with p values,0.1 determined from aWilcoxon

signed-rank test.

Ensemble

MAE after

bias correction

MAE prior to

bias correction

Std dev

after

correction

GFS 0000 UTC 1.67 1.99 0.74

GFS 1800 UTC 1.66 2.05 0.80

NAM 0000 UTC 1.68 1.91 0.67

NAM 1800 UTC 1.70 1.93 0.73

Deterministic

forecast

1.70 1.77 —

Final OP ensemble 1.52 1.67 0.98
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ramps. During 29% of all 4-h ramp events, an LLJ ex-

isted, and it is possible that mechanical mixing brought

stronger winds downduring short periods. In other events,

the only weather condition noted that seemed as though

it could play a role in rapid changes in wind speed was

the presence of rather steep lapse rates near the surface,

which could support propagating gravity waves of grow-

ing amplitude that become nonlinear, break, and create

a high-wind episode at low levels. Fifteen percent of all

ramp-up events occurred during the mid- or late morn-

ing when one might expect winds to increase quickly

near the ground as the PBL grows, and a few ramp-down

events happened toward evening when the collapse of

the PBL might explain the decrease. But these events

that appeared to be linked to diurnal changes in the PBL

did not dominate the sample.

Halving the time window of the ramp criteria to 2 h

resulted in a slightly higher fraction of ramp events be-

ing caused by frontal passages and thunderstorms, with

each of these phenomena accounting for 17%of all ramps.

Still, a large percentage of events (24%) happened with-

out an obvious trigger being present, and 32% of the

cases occurred while an LLJ was present. Ten percent of

the events were likely caused by the growth of the PBL.

Future work should examine in more detail possible

causes of ramp events like these, but enhanced obser-

vational facilities might be necessary to explain the rel-

atively large fraction of events for which no cause can be

identified from the standard observational network.

Using the midpoint of each modeled ramp event,

frequency of occurrence as a function of hour (within 3-h

bins) was compared to observations for both ramp-up

and ramp-down events (Fig. 10). Model ramp-up events

occurredmost frequently between 2200 UTC (1600 LST)

and 0100UTC (1900 LST) (late afternoon) in all schemes

except YSU, while observed ramp-up events occurred

most frequently around 0100UTC (1900 LST). This sharp

increase around 0100 UTC (1900 LST), as seen in the

observed data for this period, is similar to the yearly

climatology data. Again, this increase is likely associated

FIG. 7. Monthly climatology of (a) ramp-up and (b) ramp-down events per day over a 4-h

(black) and 2-h (gray) window.

222 WEATHER AND FORECAST ING VOLUME 28



with the decoupling of the surface layer as the ground

begins to cool, an event that has been used to explain the

formation of the LLJ. It is of note that the development

of an LLJ may be a layered substructure phenomenon,

especially when a pronounced residual PBL persists

above the LLJ.Much of emphasis so far in this paper has

been put on the advantages of nonlocal schemes, but for

this phenomenon, the YSU seems to have the most trou-

ble, while the local mixing schemes predict the 0100 UTC

maximum well. This is likely because layered substruc-

tures are more dependent upon local calculations. In

this subsample of mostly fall cases, a secondary ramp-up

peak, occurring around 1600 UTC (1000 LST), is more

pronounced than in the yearly climatological data. This

ramp-up event may be due to the growth of the boundary

layer in themorning hours, whichwould be a periodwhen

higher-momentum air would begin mixing downward.

During rare situations, if the hub height was located

within the high-friction surface layer in the earlymorning,

then the growth of the PBL should allow for potentially

rapid increases in wind speed, assuming the LLJ peaks in

intensity above turbine height. Future work should ex-

amine inmore detail the frequency of occurrence of LLJs

with peak speeds at or below hub height. However, a

more likely explanation is that penetrating plumes are en-

training higher-momentum air into the PBL (in non-LLJ

conditions), and causing this ramp-up. Only the YSU

scheme predicted this secondary maximum at this time

of day, which suggests that its explicit entrainment is

performing reasonably well. No other scheme indicated

a secondary maximum during this mid- to late morning

period. Thus, from a timing standpoint, the YSU scheme

stands out as being substantially different from the other

five schemes during ramp-up events.

FIG. 8. Diurnal trend climatology of ramp-up (black) and ramp-down (gray) events (total

number over a 1-yr period centeredwithin 3-h bins) using (a) 4- and (b) 2-h definitions of ramps.
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For ramp-down events, a temporal trend in the ob-

served data was less clear. Slight maxima in both the

observations and in all of the PBL schemes except the

YSU were observed around 0400 UTC (2200 LST) and

1300 UTC (0700 LST), although they were not as well

defined as the ramp-upmaxima. The sharp peak between

1200 and 1500 UTC (0600 and 0900 LST) in the yearly

climatological data is still noticeable; however, it is less

pronounced in the mostly fall dataset. Minima were

observed around 0700 UTC (0100 LST) and 1900 UTC

(1300 LST). The MYNN 2.5 and 3.0 PBL schemes cap-

tured the 1900 UTC (1300 LST) minimum, but none

captured the one occurring at 0700UTC (0100LST).Once

again, the YSU scheme’s behavior was distinctly different

from the others with its peak at 0100 UTC (1900 LST),

a time when other schemes showed a distinct minimum.

To quantify timing error, MAE and bias were used to

compare the different PBL schemes (Table 12). Note

that MAE and bias values can only be determined for

forecasted events, as there is no way to put a timing error

on an event that was never forecasted. However, POD,

FAR, and TS can be computed for both forecasted and

missed model ramp events. As a result, a PBL scheme

can have a smallMAE and bias, but also a small POD. In

all cases during this study, MAEwas much larger than the

bias, indicating that the PBL schemes were inconsistent

with the timing of the ramp events. Ramp-up events had

a higher MAE compared to ramp-down events in all PBL

schemes, implying ramp-down events had better timing

predictions than ramp-up events, although due to the

subjective nature of defining the start of ramp events,

caution must be used in interpreting these results.

Model error also was analyzed based on hits, misses,

and false alarms. A hit was defined as a model ramp

event occurring within 66 h of an observed ramp event

of the same type (observed ramp-up to modeled ramp-

up). Most ramp-up hits, false alarms, and ramp-up events

forecasted were associated with the MYNN 2.5 PBL

scheme (Table 12). The high number of hits was due to

the fact that this scheme forecasted the most events, and

it was not associated with high model accuracy. For the

ramp-down events, the QNSE scheme had the most

forecasted ramp-down events, hits, and false alarms

(tie), and, again, the high number of hits was due to the

high number of events forecasted andwas not associated

with high model accuracy.

Therefore, to assess the ability of the various model

runs, POD, FAR, and TS were calculated. Values of

POD, FAR, and TS range from 0 to 1 with the more

accurate models having a POD and TS near 1, and an

FAR near zero. For all PBL schemes except YSU and

Pleim, ramp-up events had higher POD scores, implying

that models predict ramp-up events more accurately

compared to ramp-down events. The MYNN 2.5 PBL

scheme showed the best POD, detecting ramp-up events

nearly 50% of the time. As expected, day 1 ramp events

had higher PODs in all PBL schemes except the Pleim

scheme, as forecast accuracy typically decreases with

increasing lead time. Except for the YSU and Pleim

schemes, a higher FAR was associated with ramp-down

events compared to ramp-up events, implying models

tend to forecast ramp-down events more often when

observed ramp-down events are not present. The

MYNN 2.5 PBL scheme showed the worst FAR, 0.50 or

more on both days. Finally, in all schemes but the YSU

and Pleim, the TS was higher for ramp-up events than

for ramp-down events, confirming more accurate pre-

dictions of ramp-up events than ramp-down events. The

scheme with the best detection (highest TS) for ramp-up

events was the MYNN 2.5 PBL scheme, while the Pleim

PBL scheme had the best detection for ramp-down events.

6. Summary and conclusions

Understanding the biases and strengths of different

PBL schemes will help to improve wind speed forecasts

FIG. 9. Percentage of ramp events by most likely cause over a 4- (black) or a 2-h (gray) window.
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at 80 m. In an examination of ensemble designs, it was

found that perturbations of the GFS ILBCs resulted in

larger model spread than that achieved with the use of

six PBL schemes; however, the MAE of the ensemble

mean was higher with the GFS perturbations. Simula-

tions using the GFS ILBCs also showed lowerMAE than

those using the NAM. Finally, ensembles using different

time initializations gave larger spread and lower MAE

than the GFS perturbations tested.

The first postprocessing technique examined, training

the model based on day 1 results, was found to yield a

forecast with high MAE as conditions apparently change

too much from day to day. The second technique tested,

the neighborhood approach, increased the accuracy of

themodels, although not significantly. The postprocessing

technique that was most successful was bias correction.

Many different bias corrections were tested; however, the

wind speed bias correction yielded the best results. From

these results, a six-member operational ensemble was

developed that significantly outperformed other ensem-

bles tested. Of the six members, the nonlocal mixing

schemes of the Pleim and YSU formed five out of the six

members, indicating, at least for this study, that nonlocal

schemes did better than local schemes when predicting

80-m wind speed.

Many impediments preclude accurate forecasts of wind

conditions at 80 m. We know at the surface winds de-

crease at night due to the decoupling of the surface layer,

and increase during the day as the boundary layer grows

and higher momentum air from above mixes down. How-

ever, with very few observations at 80 m, we have yet to

develop a robustmethod for forecasting the time evolution

of wind speed between the middle PBL and the surface.

As a result, unforecasted ramp events, sharp increases or

decreases in wind speed over a small time period, re-

duce the reliability of wind as a source of power.

FIG. 10. Number of (a) ramp-up and (b) ramp-down events centered within 3-h bins using the

midpoint time of the ramp events. Model runs are indicated with grayscale bar on right, with

black line representing observed events.
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For ramp events at 80 m, we found that all six PBL

schemes tested underestimated the number of ramp-up

and ramp-down events. Regarding frequency of occur-

rence, modeled ramp-up events occurred most often be-

tween 2200 UTC (1600 LST) and 0100 UTC (1900 LST),

which closely matched observed ramp-up events [most

frequent around 0100 UTC (1900 LST)]. The sharp

increase in observed ramp-up events around 0100 UTC

(1900 LST) may be associated with the decoupling of

the surface layer as the ground began to cool, leading

to the formation of the LLJ. In all ramp events, MAE

was larger than the bias, indicating that the PBL

schemes were inconsistent with the timing of the ramp

events. For ramp-up events, all local mixing schemes had

higher POD, lower FAR, and higher TS than the non-

local schemes, implying that the local mixing schemes ex-

hibit greater ability in simulating internal structures like

LLJ development. This prompts us to draw two conclu-

sions: first, vastly more observations of wind and temper-

ature in the lowest 500 m of the PBL are needed under all

conditions to establish a climatology for this region and,

second, guided by these observations we need to re-

examine the representations (local, nonlocal, turbulence

order) of turbulent processes of PBL schemes used to

represent mixing processes in this layer.
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APPENDIX

Description of PBL Schemes

PBL schemes were developed to help resolve the

turbulent fluxes of heat, moisture, andmomentum in the

boundary layer. However, due to the complex nature of

turbulence, closure has remained a problem. Two solu-

tions to the problem of closure, local and nonlocal, will

be discussed below. The first type, local closure, estimates

unknown fluxes using known values and/or gradients at

the same point. The second type, nonlocal closure, es-

timates unknown fluxes using known values and/or gra-

dients atmany points in space (Stull 1988, 197–242; Bélair

et al. 1999). Of the PBL schemes tested, the ACM2 and

YSU schemes are nonlocal while the MYJ, QNSE, and

MYNN 2.5 methods are local closure schemes. Although

TABLE 12. Number of ramp events during day 1 (6–30 h after model start up) and day 2 (30–54 h after model start up) and model error

associated with ramp events for each PBL scheme. POD, FAR, and TS values were calculated. The bias and MAE show the timing error

associated with each PBL scheme. A hit means the model correctly predicted the ramp event within 66 h. Boldface values indicate best

POD, FAR, and TS scores while italicized values indicate worst POD, FAR, and TS scores.

PBL scheme Ramp type

Obs total

events

Model total

events Hits

False

Alarm Miss MAE (h) Bias (h) POD FAR TS

MYJ Up (day 1) 35 23 17 6 18 3.47 21.24 0.49 0.26 0.41

Up (day 2) 37 17 13 4 24 1.85 21.23 0.35 0.32 0.32

Down (day 1) 31 20 8 12 23 1.88 0.63 0.26 0.60 0.19

Down (day 2) 35 19 12 7 23 1.42 20.42 0.34 0.37 0.29

MYNN 2.5 Up (day 1) 35 29 19 10 16 2.68 21.74 0.54 0.34 0.42
Up (day 2) 37 25 15 10 22 2.33 21.20 0.41 0.40 0.32

Down (day 1) 31 28 11 17 20 1.64 20.73 0.35 0.61 0.23

Down (day 2) 35 22 11 11 24 1.55 20.27 0.31 0.50 0.24

MYNN 3.0 Up (day 1) 35 27 17 10 18 2.88 21.71 0.49 0.37 0.38

Up (day 2) 37 24 16 8 21 2.75 21.13 0.43 0.33 0.36

Down (day 1) 31 21 9 12 22 1.89 20.56 0.29 0.57 0.21

Down (day 2) 35 16 8 8 27 1.50 0.25 0.23 0.50 0.19

Pleim Up (day 1) 35 19 10 9 25 3.10 21.30 0.29 0.47 0.23

Up (day 2) 37 17 12 5 25 2.33 21.83 0.32 0.29 0.29

Down (day 1) 31 14 9 5 22 2.22 0.44 0.29 0.36 0.25

Down (day 2) 35 20 12 8 23 2.00 0.50 0.34 0.40 0.28
QNSE Up (day 1) 35 26 18 8 17 3.56 22.56 0.51 0.31 0.42

Up (day 2) 37 26 15 11 22 1.73 21.20 0.41 0.42 0.31

Down (day 1) 31 28 11 17 20 1.27 21.00 0.35 0.61 0.23

Down (day 2) 35 23 12 11 23 1.33 20.22 0.34 0.48 0.26

YSU Up (day 1) 35 16 8 8 27 3.25 20.25 0.23 0.50 0.19

Up (day 2) 37 11 8 3 29 2.50 0.25 0.22 0.27 0.20

Down (day 1) 31 13 9 4 22 1.33 20.22 0.29 0.31 0.26

Down (day 2) 35 11 9 2 26 1.33 20.89 0.26 0.18 0.24
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the calculations are computed locally with theMYNN3.0

scheme, the higher-order terms (i.e., temperature variance)

have a countergradient term, which helps to parameterize

the effects of nonlocal mixing (Stensrud 2007, 169–171;

Nakanishi and Niino 2009). A brief description of the six

PBL schemes used in this study follows. Further details

can be found in Janji�c (1990, 1994) for MYJ, Hong et al.

(2006) for YSU, Pleim (2007a,b) for ACM2, Sukoriansky

et al. (2005) for QNSE, and Nakanishi and Niino (2009)

for MYNN.

The MYJ PBL scheme is one of four different local

closure schemes evaluated in this study. The MYJ PBL

scheme is a local turbulent kinetic energy (TKE), 1.5-

order (2.5-level) closure scheme.Being a 1.5-order closure

scheme, it requires one additional prognostic equation

to solve for the turbulent quantities (Janji�c 1990, 1994;

Shin andHong 2011; Hu et al. 2010). TheMYNN2.5 and

3.0 PBL schemes are higher-level schemes that were

based on theMYJ approach. TheMYNN 2.5 scheme is

a local TKE, 1.5-order (2.5-level) closure schemewhile the

MYNN 3.0 is a local TKE, 2.0-order (3.0-level) closure

scheme. Both the MYJ and MYNN schemes apply the

local mixing from the lowest to highest vertical level.

The major difference between the MYJ and MYNN 2.5

and 3.0 schemes is the TKE equation and, more specif-

ically, the master mixing length (lm). The TKE equation

is defined as

d(q2/2)

dt
2

›

›z

�
lmqSq

›

›z

�
q2
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��
5 Ps1Pb1 « ,

where the first term is the total derivative of q, which is

2 times the TKE; the second term is the vertical re-

distribution of q; Ps is the production of q by shear; Pb is

the production of q by buoyancy; and « is the dissipation

term. For the MYJ scheme, the master mixing length is

defined as

lm 5 lo
kz

kz1 lo
,

where lo is dependent on height and k is the von Kármán

constant. The master mixing length for the MYNN PBL

schemes is a function of three independent length scales:

1

lm
5

1

ls
1

1

lt
1

1

lb
,

where ls is the surface layer length, lt is the turbulent

layer length, and lb is the buoyancy length (Olson and

Brown 2009; Nakanishi and Niino 2009).

TheQNSE scheme is a local TKE, 1.5-order (2.5-level)

closure scheme that is similar to theMYJ scheme during

neutral and unstable conditions. The QNSE scheme

differs from the MYJ scheme during stable conditions,

when spectral theory is used to develop eddy diffusivity

profiles. This results in waves and turbulent eddies be-

ing treated as one entity. Like the MYJ and MYNN

schemes, the QNSE scheme applies local mixing from

the lowest to highest vertical levels (Sukoriansky et al.

2005; Shin and Hong 2011).

The last two PBL schemes investigated in this study

were the YSU and ACM2. These schemes are both first-

order (requiring no additional prognostic equations),

nonlocal approaches. The ACM2 scheme is a combina-

tion of a simple transilient model (original Blackadar

scheme) and an eddy diffusionmodel. TheACM2 scheme

is able to switch between stable conditions (eddy diffu-

sion) and unstable conditions (local and nonlocal trans-

port). During stable or neutral conditions, the scheme

uses local closure instead of nonlocal transport (Hu et al.

2010; Pleim 2007a,b; Shin and Hong 2011). On the other

hand, the YSU scheme is a bulk scheme that expresses

nonlocal mixing by convective large eddies. Nonlocal

mixing is achieved by adding a nonlocal gradient ad-

justment term (countergradient term) to the local gra-

dient. At the top of the PBL, the YSU scheme uses

explicit treatment of the entrainment layer, which is

proportional to the surface layer flux (Hong et al. 2006;

Shin and Hong 2011; Hu et al. 2010).
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