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Research Framework

Asset Management in Interconnected Power Systems
1. Predictive Failure Modeling 2. Adaptive Decision Optimization

Sensor driven reliability
assessments are
reported in real-time

proposed based on reliability

Automated and service requirements

1 1

1 1

: : Fleet-optimal decisions are
1 1

1 1

: Decision Support
|

|

|

|

|

System

A ———

[ o e e




Research Framework

1. Predictive Failure Modeling

Using Real-Time Sensor Data to Predict the Remaining Life Distribution

Gas Turbine

Methodology:
Data Mining, Bayesian Statistics, Stochastic Degradation
Modeling, Accelerated Life Testing

[1] Degradation Modeling Methodology
[2] Accelerated Degradation Experiments




Research Framework

2. Adaptive Decision Optimization

Sensor-Driven Scheduling and Control in Complex Networks

Methodology:
Large-Scale Mixed-Integer Optimization,
Distributed Optimization, Stochastic Optimization

[3] Conventional Generator Maintenance, IEEE
Transactions on Power Systems

[4] Conventional Generator Operations, IEEE
Transactions on Power Systems

I[5] Opportunistic Wind Farm Operations, , I[EEE l
|Transact/ons on Power Systems I
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Maintenance Basics

Maintenance Objectives:

* Minimizing unexpected failures

* Extending equipment lifetime

* Reducing early and/or unnecessary maintenances

* Alleviating the consequences of interruptions
(IEEE/PES Task Force on Impact of Maintenance Strategy on Reliability)




Literature Review

>

Approach 1: Opportunistic Periodic Maintenance Policies
Disadvantage: does not use the sensor information

Besnard et. al (2009), Ding et. al (2012),...

>

Approach 2: Reliability Based Maintenance (RBM)

Disadvantage: does not use the sensor information
Abiri-Jahromi et. al (2012)

>

Approach 3: Sensor-Driven Maintenance for Single Turbine Systems
Disadvantage: does not consider the complex interdependencies

between turbines
Byon et. al (2010 A,B), Tian et. al (2011),..
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Single Turbine: Degradation Analysis

* Gradual accumulation of damage: degradation process.

* Sensor driven estimate on the state of health: degradation signals.
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Single Turbine: Degradation Analysis

* Gradual accumulation of damage: degradation process.
* Sensor driven estimate on the state of health: degradation signals.
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We focus on using this data to improve:

Remaining life predictions of Risk assessments of all Optimization of the turbine
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Proposed Framework

Maintenance Operations

1S

| <
C )
T r,

real-time sensor observations \1,

4 )

Predictive Analytics

¢

Maintenance Cost Estimation
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Outline of Adaptive Predictive Maintenance

New Sensor Observation

l

Predictive Analytics
* Updating the degradation parameters
* Reevaluating the remaining life estimates

Updated Remaining
Life Distribution
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Dynamic Maintenance Cost
e Deriving the new predictive cost

! Updated Predictive Cost Wi

Adaptive Predictive Maintenance
* Minimizing the maintenance and operational costs by incorporating the sensor information
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Degradation Modeling

Deterministic degradation
Degradation signal of turbine characteristic

[attimet Stochastic degradation
l characteristic of turbine i
}
' — At _ (4. ) Inherent stochasticity
D%(t) o (;bz(t’ R, 9'3’) + E@(t? O_) ) of the degradation

Parametric degradation function

* We assume that the generator’s time of failure corresponds to the first time its
degradation signal D;(t) crosses failure threshold A;.

7, =min{t > 0|D;(t) > A;}
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Characterizing the Failure Distribution

* |f we had perfect information on the degradation parameter 6;

P(1; > t|0;) = P( sup D;(s) < A;|0;)
0<s<t

= P( sup {o;(s:k,0;) +¢€;(s:0)}F < A|0;)
0<s<t
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Prior Estimate on the Remaining Life

Given the prior distribution of parameters (6;):

P(r; > t) = /P(DiugtD( s) < A;|0;)m;(0;)d0;

— /P( sup {¢i(s;k,0;) + € (s;0)} < A; 95) m(60;)db;

0<s<t

Remaining Life Distribution Based on Prior Information

Probability of Failure
|

/4:,:-’-'*‘ s
£P\E/8%

Next challenge is to use the sensor-data to improve the
estimates on degradation parameter 6; Ge%gsgg




Sensor Driven Bayesian Learning

Degradation Signal

Degradation Level
\ _
| |

| | | | |

o) Time
t;

» Given real time sensor data d? = (d,d?}, ..., dfo), posterior
distribution of the degradatlon parameter 8; can be determined:

Probability of observing the real time
sensor data given parameters 6;

}
v(0;) = P(0;|d7) = P(d;|0;)m;(0;)

T T

Sensor-updated, posterior distribution Prior distribution of parameter 6;
of parameter 6;
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Sensor Driven Estimate on the Remaining Life

* Given v(6;), the remaining life of generator i can be updated as follows:

Probability of Failure

P(Rj. >t) = /P ( sup  D;(s) < f'il-|6'?> v(6;)db;

tr}ESEtx':+t

|

Remaining life of generator i at time ¢t

Comparing the Remaining Life Distribution Estimates

I I I I I I I

RLD estimate using Sensor Data

A

,f‘\*(\— RLD estimate without Sensor Data

Time
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Sensor Driven Learning — Notes

* Depending on the prior and posterior distributions, one can find a
closed form solution for this update. Otherwise, we may resort to
numerical methods for estimation.

* Depending on the form of the degradation model, one can find a
closed form solution for the remaining life distribution. Otherwise we
resort to numerical methods.

e e.g. in our studies, we model i) the degradation signal as a Brownian motion

with positive drift, and ii) failure threshold as a constant value. The remaining
life distribution in this case follows an Inverse Gaussian distribution.
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Sensor Driven Learning — Notes

The objective 1s to predict the distribution of the remaining
life, namely [7} . given the posterior distribution u(6;). The
procedure can be outlined as follows:

Step 1.
Step 2.

Step 3.

Select a sufficiently large number of realizations M .
Simulate M realizations of 6; from the distribution
u(6;). Denote by @, ,, the nt" realization of ;. For all n.
condition on @, ,, to simulate the stochastic degradation
function Dﬂéi_n(tj} for all ¢ > t,, until the simulated
signal reaches the failure threshold A;. Register this time
t as the time of failure for the n'" simulation, and let
this realization of remaining life be 7; .

Use the realizations 7; _ from all the simulations to

o1

estimate the distribution of Rj .




Outline of Adaptive Maintenance

New Sensor Observation

l

Predictive Analytics
* Updating the degradation parameters
* Reevaluating the remaining life estimates
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Updated Remaining
Life Distribution

Dynamic Maintenance Cost
* Deriving the new predictive cost

Updated Predictive Cost

Yvy

Adaptive Maintenance
* Minimizing the maintenance and operational costs by incorporating the sensor information
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Dynamic Maintenance Cost

Traditional approach for determining maintenance policies based on
renewal theory.

Dynamic cost of conducting maintenance at time t:

: . Sensor acquisition
Cost of preventive maintenance 1

Cost of unexpected failure Sensor-updated estimation of
| the degradation parameter 6;

Lo
y C}Eﬁp( () ) + leIP( T):< Sensor-updated probability
W — [ T -

L _ —=_'/ of survival for generator i

Dynamic cost of conducting maintenance at time ¢t
TR

Georgia ) B
(Armstrong et. al (1996), Alaa et. al (2008)) Tech S’




Asset Level Predictive Analytics
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Outline of Adaptive Maintenance

New Sensor Observation

l

Predictive Analytics
* Updating the degradation parameters
* Reevaluating the remaining life estimates

Updated Remaining
Life Distribution
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Dynamic Maintenance Cost
e Deriving the new predictive cost

Updated Predictive Cost

Adaptive Predictive Maintenance
Minimizing the maintenance and operational costs by incorporating the sensor information




Unique Properties of Wind Farm Maintenance

e Significant Cost Reductions from Grouping the Turbine Maintenances

Maintenance cost driven by transport of cranes on onshore sites, and
transport of workboats, helicopters on offshore sites.

Georgia '31
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Unique Properties of Wind Farm Maintenance

e Significant Cost Reductions from Grouping the Turbine Maintenances

Maintenance cost driven by transport of cranes on onshore sites, and
transport of workboats, helicopters on offshore sites.

 Turbine Failures are not as Catastrophic

Emphasis on the profitability of the wind farms
* Instantaneous Reactive Maintenance not Economical

Adaptive Opportunistic Maintenance

Georgia /§ .\‘-i-
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Adaptive Opportunistic Maintenance - Concept

Preventive maintenance for two
operational turbines with similar RLDs.

Wind Power
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Adaptive Opportunistic Maintenance - Concept

Preventive maintenance for two
operational turbines with similar RLDs.
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Adaptive Opportunistic Maintenance - Concept

Preventive maintenance for two
operational turbines with similar RLDs.

Wind Power
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Adaptive Opportunistic Maintenance - Concept

Preventive maintenance for an
operational turbines with short life
expectancy, and a failed turbine.
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Adaptive Opportunistic Maintenance - Concept

Preventive maintenance for an
operational turbines with short life W

expectancy, and a failed turbine. —
as the crew deployment cost increases...

Wind Power

Failure
Probability
Cost/Time
\
\
/
/
\J

\ ) . . . . > / 1
- Operating Time Operating Time ; |
/ |
Operational I/ ll
d !
I /
| /
| /
. . . /
o begradstioniene I
. \ -
Failed S -7

Georgia (%

Tech



Adaptive Opportunistic Maintenance - Concept

Preventive maintenance for an
operational turbines with short life
expectancy, and a failed turbine.

Wind Power
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Adaptive Opportunistic Maintenance - Concept

Preventive maintenance for an
operational turbines with short life
expectancy, and a failed turbine.

Wind Power
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Adaptive Opportunistic Maintenance

* Decision Variables:
* Fleet Maintenance Schedule
* Optimal preventive and corrective actions
* Generation Schedule « Challenge:

* Optimal dispatch profile * Incorporate the new sensor-driven dynamic cost
function to the maintenance problem
* Consider the maintenance scheduling of multiple

* Objective: windfarm locations
* Maximize Revenue and Maintenance Costs

- New Formulation

e Subject to:
* Maintenance Constraints
* Operations Constraints

Georgia (),
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Adaptive Opportunistic Maintenance

Dynamic Maintenance

Cost/Time

Maintenance constraints:

Operatlng TI . .
me e Labor and material capacity

Operational revenue Crew deployment cost « Weather restrictions
\ / e others...
max bTy —c'z—v'k

zZ,K,Y Site visit coupling constraints:

S.L. Az <h 4  e Crew should visit the site if any of
Rz + Ex < the turbines are to be maintained

r
Pz + By <

p Dispatch coupling constraints:
P \ e Turbine cannot produce while
under preventive maintenance

* Failed turbine cannot produce
before reactive maintenance

Georgia ({5
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Maintenance and Operations Constraints

1. Coupling over generators:
 Maintenance capacity: number of turbines under maintenance is limited
* Accessibility: maintenance crew can access only if the weather conditions permit
 Maintenance site constraint: maintenance crew can visit only one location at a time

2. Coupling over different time periods:
 Travel time: maintenance crew needs a certain time to move between locations
 QOperations coupling: turbine production is determined by the time of maintenance

3. For every generators, and every time period

= NS
ke 0



Experiment

* Single Location: 100 Turbine Single Wind Farm
Multiple Locations: 200 Turbines within 3 Wind Farms

120 day maintenance planning horizon, with 2-day
maintenance decisions

96 day maintenance plan in a rolling horizon fashion

Degradation database from a real rotating machinery
application used to mimic turbine degradation, used
NREL database for wind power input

* As our benchmarks, we use periodic, reactive and NON- " hupy/wwwos.bb.com/giobaseitp/seitp202. w10/ 13ccB18bc64bB81257be0

. . . . o« . 00470b8e/Sfile/Thornton_Bank_wind_turbines.jpg s
opportunistic sensor-driven maintenance poI|C|es. Georg|a
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Experimental Results: Benchmarking

25

Impact of Crew Deployment Cost on Net Profit

10+

Net Profit ($M)

—=— AOM
ol —=— ANM

0 Lll EIE 1|2 1|6 2IO 2I4 2|8
Observations: Increasing Crew Deployment Cost—>
 AOM policy always provides significant improvements in profit.

* Sensor-driven policies that do not consider turbine dependencies (typical of degradation

modeling literature) are not effective, even worse than traditional policies at higher crew
site visit costs.

P
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Experimental Results: Crew

Deployment Cost

" | cPi= 0 4 8 12 16 20 24 28
Net Profit _ _ _ _ _ S2014M _$2028M_ $1950M _ SIRE2 M S1815M _ S17.59 M _SI1T.08 M _ $16.56 M.
Operational Revenue $23.63 M~ $2360 M $2353 M $2342M  S2330M° S2304M  S2315M 82305 M
_ Expenditures _ _ _ _ SI4OM _S3M__ 403M _S460M_ S515M _SSS5M_ SA0TM 3650 M
Turbine Maintenance . S2.40 M “sI50M ™ S280M TsT0IMT HIAT TSIaTMT TR3S0M T s3sTM
Crew Deployment SOM  $0T3M $S1L.22M SI58M $186 M S208M  S25TM $297 M
_# Preventive Actions_ _ _ 1855 _ _I7L8_ _ 1717 _ _1584_ _ 1456 _ _ 136 _ 1366 _ _ 1341
# Turbine Failures 15.9 20.3 27.1 5.8 59 53.2 334 S48 |
| # Crew Visits 83.5 18.2 15.3 13.2 116 10.4 107 106 |
L #MdleDays 1076 1634 _ 2444 391 Se48 _ TIRO0 _ 7628 8864

Observations:

* Increasing the crew deployment cost, dynamically leads to more aggressive grouping, thus:
* increases expenditures, and decreases operational revenue

* increases failure instances, and idle days
* decreases preventive actions




Experimental Results: Electricity Price

IMPACT OF ELECTRICITY PRICE ON MAINTENANCE SCHEDULE

Electiricty Price (kWh)  $0.0625 $0.1250 $0.1875 $0.2500 $0.3125 $0.3125 $0.4375 $0.5000

Net Profit $7.00 M $18.81 M $30.47T M S42.18 M $5391 M S65.68 M £77.46 M $890.15 M
Expenditures $4.60 M $4.00 M $4.69 M $4.72 M $4.74 M $4.77T M $4.77 M $4.82 M
_# Turbine Failures _ _ 374 362 353 _ 364 347 345 331 342
[ # Idle Days 433.2 407.2 368.8 358.4 346.8 315.0 300.8 284.3 I
Observations:

* Increasing the electricity price, leads to more emphasis on availability, thus increases crew
visits in order to minimize idle days.




Experimental Results: Multiple Locations

MULTIPLE LOCATIONS PERFORMANCE OF AOM

et per=1"0 " 4 8 4 12 ] 16

Location 1: 100 Tm‘bi’les, Nomijnal Crew Deploymelt Cost [

# Preventive Actions | 180.0 170.8 167.9 I 137.8 [ 131.9
# Turbine Failures I 19.9 I 27.6 32.5 51.9 56.4
# Crew Visits 472 1 156 130 1 104l o3
# Idle Days I 161.2 | 290.6 389.4 | 790.6 | 8444

Location 2: 50 Tm‘biml?s, Nomiilal Crew Deploymenl Cost I
# Preventive Actions | 87.0 I 80.2 60.7 I S51.1 | 454

# Turbine Failures | 10.0 18.1 31.8 36.7 I 39.4
# Crew Visits p 320 Be 76 165 5.8
# Idle Days 111.2 | 262.0 582.0 | 8474 1 1002.6

[ |
Location 3: 50 Tm‘bin%s, Expe;ﬂ;ive (10x) Crew Deb!oymen, Cost
# Preventive Actions 88.4 I 39.2 33.1 ) 217 | 212
# Turbine Failures | 12.2 45.5 49.7 I 56.4 I 58.9
# Crew Visits | 277 1 oas 4.1 2.0 1
# Idle Days 149.4 | 15464  1906.0 127492 I 3045.2

O

Observations:
* Location 3 has higher crew deployment cost, thus experiences less number preventive
maintenances, incurs more failures, and longer idle times.
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Adaptive Predictive Maintenance

* Decision Variables:
* Fleet Maintenance Schedule
 Number of maintenances for each generator
 Time of each maintenance
e Generation Schedule
* Unit commitment
* Generation dispatch

* Objective:
* Minimize Total Operation and Maintenance Costs

e Subject to:
* Maintenance Constraints
* Operations Constraints




Adaptive Predictive Maintenance

Dynamic Maintenance

Cost/Time

Maintenance constraints:
e Labor and material capacity
* Maintenance inclusion/exclusion

minimize ¢ 2
e others...

z.v,xz,y

| N
: . -{_: . .
subject to Az +Kv — 9‘  Coupling constraints:
Bvy +Ex < h  Generator cannot produce while

under maintenance

+Fx +Gy </
{z,v} € F™, & € {0,1}NCNT o ¢ ]I««E.[*'“”rGJ”""'S)**'""’;\ Operational constraints:

F™ ={z,] zeik €{0, 1}, viix, € 0,1} VE €T, Vi€ Unit Commitment
G,Vke M, =z, VieGVke{2,...,NM:7}}.




Unit Commitment Constraints

Operational Planning Problem of Large Power Systems:

1.

Coupling over generators:
 Energy balance equation
e Transmission flow constraint

Coupling over different time periods:
* Ramping constraints
e  Minimum up-down

For every generators, and every time period:
* Logical constraints on commitment

Georgia/ - \f‘?
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Experiment

IEEE-118 bus problem,
maintenance of 54 generators

110 week maintenance planning
horizon, with weekly maintenance
and hourly unit commitment
decisions

48 week maintenance plan is
simulated in a rolling horizon
fashion

Degradation database from a real
rotating machinery application
used to mimic generator
degradation

As our benchmarks, we use
BerIOdIC maintenance and reliability
ased maintenance policies.




Experimental Results: Benchmarking

BENCHMARK FOR APM

= apm |
Periodic RBM I APM
# Preventive 24.0 25.3 25.7|
# Failures 13.7 2.2 I.¥)I
# Total Outages 37.7 37.5 1 27.6
Unused Life (wks) 950.1 1012.9 I 295.6'
Maintenance Cost $15.76 M $14.82 M I $6.66 MI

Operations Cost $191.24 M $186.54 M $185.08 MI

Total Cost $207.00 M $201.36 M "S$191,74 MI

Observations:
 APM policy improves the reliability (decreases failures by >84%) of the generator

fleet and causes a small number of interruptions (decreases outages by >26%).
 APM policy extends the equipment lifetime (decreases unused life by >68%).
 APM policy decreases the maintenance and operations cost.

Georgia {5
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Experimental Results: Updating Frequency

IMPACT OF THE FREEZE TIME ON APMI

Tp =8 TR =6 TR =4 TR = 2
# Preventive 26.6 27.2 26.9 26.8
# Failures 1.5 .1 0.7 0
# Total Outages 28.1 28.3 27.6 26.8
Unused Life (wks) 309.5 306.9 255.2 187.7

Maintenance Cost $6.52 M $6.32 M  §$594 M $5.36 M

Observations:

* As the maintenance updates become more frequent, APM learns more about
the underlying degradation processes, and hence improves every aspect of the
maintenance policy.

Georgia . \f‘?
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Conclusions

* We proposed a sensor-driven framework consisting of the
following modules:
1. Predictive analytics
2. Dynamic maintenance cost analysis
3. Novel optimization models for maintenance and operations

* We significantly improved the maintenance objectives
suggested by the IEEE taskforce.
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