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Research Framework

Asset Management in Interconnected Power Systems

Asset 1

Asset 2

Asset 3

1. Predictive Failure Modeling

Sensor driven reliability 
assessments are 

reported in real-time

2. Adaptive Decision Optimization

Fleet-optimal decisions are 
proposed based on reliability 

and service requirementsAutomated 
Decision Support 

System



1. Predictive Failure Modeling

Using Real-Time Sensor Data to Predict the Remaining Life Distribution

[1] Degradation Modeling Methodology
[2] Accelerated Degradation Experiments

Methodology:
Data Mining, Bayesian Statistics, Stochastic Degradation 
Modeling, Accelerated Life Testing

Research Framework



[3] Conventional Generator Maintenance, IEEE 
Transactions on Power Systems
[4] Conventional Generator Operations, IEEE 
Transactions on Power Systems
[5] Opportunistic Wind Farm Operations, , IEEE 
Transactions on Power Systems

Methodology:
Large-Scale Mixed-Integer Optimization, 
Distributed Optimization, Stochastic Optimization

2. Adaptive Decision Optimization

Sensor-Driven Scheduling and Control in Complex Networks

Research Framework
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Maintenance Basics

Maintenance Objectives:  

• Minimizing unexpected failures

• Extending equipment lifetime

• Reducing early and/or unnecessary maintenances

• Alleviating the consequences of interruptions
(IEEE/PES Task Force on Impact of Maintenance Strategy on Reliability)



Literature Review

Approach 1: Opportunistic Periodic Maintenance Policies
Disadvantage: does not use the sensor information

Besnard et. al (2009), Ding et. al (2012),…

Approach 3: Sensor-Driven Maintenance for Single Turbine Systems
Disadvantage: does not consider the complex interdependencies 

between turbines
Byon et. al (2010 A,B), Tian et. al (2011),…

Approach 2: Reliability Based Maintenance (RBM)
Disadvantage: does not use the sensor information

Abiri-Jahromi et. al (2012)



Single Turbine: Degradation Analysis

• Gradual accumulation of damage: degradation process.

• Sensor driven estimate on the state of health: degradation signals.

Vibration Spectra and its Degradation Signal Transformation

Ciarapica et. al (2006), McMillan et. al (2007), Li et. al (2009), Yang et. al (2012)
Commercial Packages: VibraSyst, Siemens, GE



Single Turbine: Degradation Analysis

• Gradual accumulation of damage: degradation process.

• Sensor driven estimate on the state of health: degradation signals.

We focus on using this data to improve:

Remaining life predictions of 
every turbine

Risk assessments of all 
maintenance policies

Optimization of the turbine 
fleet maintenance
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Proposed Framework

Operational Problem Inputs
• Wind Speed

• Electricity Price

Maintenance and Operations Scheduling For Fleets of Generating Units

Predictive Analytics

Maintenance Cost Estimation

Maintenance Operations

real-time sensor observations



Outline of Adaptive Predictive Maintenance

Predictive Analytics
• Updating the degradation parameters
• Reevaluating the remaining life estimates

Dynamic Maintenance Cost
• Deriving the new predictive cost 

New Sensor Observation

Updated Remaining 
Life Distribution
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Adaptive Predictive Maintenance
• Minimizing the maintenance and operational costs by incorporating the sensor information

Updated Predictive Cost
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Degradation Modeling

• We assume that the generator’s time of failure corresponds to the first time its 
degradation signal 𝐷𝑖 𝑡 crosses failure threshold Λi. 

Degradation signal of turbine 
𝑖 at time 𝑡

Deterministic degradation 
characteristic

Stochastic degradation 
characteristic of turbine 𝑖

Parametric degradation function

Inherent stochasticity
of the degradation



Characterizing the Failure Distribution

• If we had perfect information on the degradation parameter 𝜃𝑖



Prior Estimate on the Remaining Life

Next challenge is to use the sensor-data to improve the 
estimates on degradation parameter 𝜃𝑖

Given the prior distribution of parameters 𝜋 𝜃𝑖 :

Remaining Life Distribution Based on Prior Information
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𝑡𝑘
∗

Sensor Driven Bayesian Learning

𝑡𝑖
𝑜

• Given real time sensor data 𝒅𝑖
𝒐 = (𝑑𝑖

1, 𝑑𝑖
2, … , 𝑑𝑖

𝑡𝑜), posterior 
distribution of the degradation parameter 𝜃𝑖 can be determined:

Probability of observing the real time 
sensor data given parameters 𝜃𝑖

Prior distribution of parameter 𝜃𝑖Sensor-updated, posterior distribution
of parameter 𝜃𝑖
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Comparing the Remaining Life Distribution Estimates
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• Given 𝜐(𝜃𝑖), the remaining life of generator 𝑖 can be updated as follows: 

Remaining life of generator 𝑖 at time 𝑡

RLD estimate using Sensor Data

RLD estimate without Sensor Data

Sensor Driven Estimate on the Remaining Life



Sensor Driven Learning – Notes

• Depending on the prior and posterior distributions, one can find a 
closed form solution for this update. Otherwise, we may resort to 
numerical methods for estimation.

• Depending on the form of the degradation model, one can find a 
closed form solution for the remaining life distribution. Otherwise we 
resort to numerical methods.
• e.g. in our studies, we model i) the degradation signal as a Brownian motion 

with positive drift, and ii) failure threshold as a constant value. The remaining 
life distribution in this case follows an Inverse Gaussian distribution.



Sensor Driven Learning – Notes



Outline of Adaptive Maintenance

Predictive Analytics
• Updating the degradation parameters
• Reevaluating the remaining life estimates

Dynamic Maintenance Cost
• Deriving the new predictive cost 

New Sensor Observation

Updated Remaining 
Life Distribution

Adaptive Maintenance
• Minimizing the maintenance and operational costs by incorporating the sensor information

Updated Predictive Cost
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Dynamic Maintenance Cost

Traditional approach for determining maintenance policies based on 
renewal theory.

Dynamic cost of conducting maintenance at time 𝑡:
Sensor acquisition

Sensor-updated estimation of 
the degradation parameter 𝜃𝑖

Cost of unexpected failure

Cost of preventive maintenance

Sensor-updated probability 
of survival for generator 𝑖

Dynamic cost of conducting maintenance at time 𝑡

(Armstrong et. al (1996), Alaa et. al (2008))



Asset Level Predictive Analytics

Degradation Signal
Remaining Life 

Distribution
Dynamic 

Maintenance Cost
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Adaptive Predictive Maintenance
• Minimizing the maintenance and operational costs by incorporating the sensor information

Outline of Adaptive Maintenance

Predictive Analytics
• Updating the degradation parameters
• Reevaluating the remaining life estimates

Dynamic Maintenance Cost
• Deriving the new predictive cost 

New Sensor Observation

Updated Remaining 
Life Distribution

Updated Predictive Cost
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• Significant Cost Reductions from Grouping the Turbine Maintenances

Maintenance cost driven by transport of cranes on onshore sites, and 
transport of workboats, helicopters on offshore sites.

Unique Properties of Wind Farm Maintenance

http://generatingbetter.co.uk/wp-content/uploads/2014/09/leviathan-working-on-sheringham-shoal.jpg



Unique Properties of Wind Farm Maintenance

• Significant Cost Reductions from Grouping the Turbine Maintenances

Maintenance cost driven by transport of cranes on onshore sites, and 
transport of workboats, helicopters on offshore sites.

• Turbine Failures are not as Catastrophic

Emphasis on the profitability of the wind farms 

• Instantaneous Reactive Maintenance not Economical

Adaptive Opportunistic Maintenance
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Adaptive Opportunistic Maintenance - Concept

two crew visits

Operational

Operational

Preventive maintenance for two 
operational turbines with similar RLDs.
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as the crew deployment cost increases…

Operational

Operational

Preventive maintenance for two 
operational turbines with similar RLDs.
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Operational

Operational

Preventive maintenance for two 
operational turbines with similar RLDs.
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operational turbines with short life 
expectancy, and a failed turbine.
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two crew visits

Failed

Operational

No Degradation Signal

Preventive maintenance for an 
operational turbines with short life 
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Adaptive Opportunistic Maintenance

• Decision Variables:
• Fleet Maintenance Schedule

• Optimal preventive and corrective actions
• Generation Schedule

• Optimal dispatch profile

• Objective:
• Maximize Revenue and Maintenance Costs

• Subject to:
• Maintenance Constraints
• Operations Constraints

• Challenge:
• Incorporate the new sensor-driven dynamic cost 

function to the maintenance problem
• Consider the maintenance scheduling of multiple 

windfarm locations

→ New Formulation



Adaptive Opportunistic Maintenance
Dynamic Maintenance 

Costs
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Maintenance constraints:
• Labor and material capacity
• Weather restrictions
• others…

Site visit coupling constraints:
• Crew should visit the site if any of 

the turbines are to be maintained

Dispatch coupling constraints:
• Turbine cannot produce while 

under preventive maintenance
• Failed turbine cannot produce 

before reactive maintenance

Operational revenue Crew deployment cost



Maintenance and Operations Constraints

1. Coupling over generators:
• Maintenance capacity: number of turbines under maintenance is limited
• Accessibility: maintenance crew can access only if the weather conditions permit
• Maintenance site constraint: maintenance crew can visit only one location at a time
• …

2. Coupling over different time periods:
• Travel time: maintenance crew needs a certain time to move between locations
• Operations coupling: turbine production is determined by the time of maintenance

3. For every generators, and every time period



Experiment

• Single Location: 100 Turbine Single Wind Farm

• Multiple Locations: 200 Turbines within 3 Wind Farms 

• 120 day maintenance planning horizon, with 2-day 
maintenance decisions

• 96 day maintenance plan in a rolling horizon fashion

• Degradation database from a real rotating machinery 
application used to mimic turbine degradation, used 
NREL database for wind power input

• As our benchmarks, we use periodic, reactive and non-
opportunistic sensor-driven maintenance policies.

http://www04.abb.com/global/seitp/seitp202.nsf/0/e13cc818bd46db88c1257be9
00470b8e/$file/Thornton_Bank_wind_turbines.jpg



Experimental Results: Benchmarking

Observations: 
• AOM policy always provides significant improvements in profit.
• Sensor-driven policies that do not consider turbine dependencies (typical of degradation 

modeling literature) are not effective, even worse than traditional policies at higher crew 
site visit costs.

Increasing Crew Deployment Cost→



Experimental Results: Crew Deployment Cost

Observations: 
• Increasing the crew deployment cost, dynamically leads to more aggressive grouping, thus:

• increases expenditures, and decreases operational revenue
• increases failure instances, and idle days
• decreases preventive actions 



Experimental Results: Electricity Price

Observations: 
• Increasing the electricity price, leads to more emphasis on availability, thus increases crew 

visits in order to minimize idle days.



Experimental Results: Multiple Locations

Observations: 
• Location 3 has higher crew deployment cost, thus experiences less number preventive 

maintenances, incurs more failures, and longer idle times.
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Adaptive Predictive Maintenance

• Decision Variables:
• Fleet Maintenance Schedule

• Number of maintenances for each generator
• Time of each maintenance

• Generation Schedule
• Unit commitment 
• Generation dispatch

• Objective:
• Minimize Total Operation and Maintenance Costs

• Subject to:
• Maintenance Constraints
• Operations Constraints



Adaptive Predictive Maintenance

Operational costs Maintenance constraints:
• Labor and material capacity
• Maintenance inclusion/exclusion
• others…

Coupling constraints:
• Generator cannot produce while 

under maintenance

Operational constraints:
Unit Commitment

Dynamic Maintenance 
Costs
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Unit Commitment Constraints

Operational Planning Problem of Large Power Systems:

1. Coupling over generators:
• Energy balance equation 
• Transmission flow constraint
• …

2. Coupling over different time periods:
• Ramping constraints
• Minimum up-down 
• …

3. For every generators, and every time period:
• Logical constraints on commitment
• …



Experiment
• IEEE-118 bus problem, 

maintenance of 54 generators

• 110 week maintenance planning 
horizon, with weekly maintenance 
and hourly unit commitment 
decisions

• 48 week maintenance plan is 
simulated in a rolling horizon 
fashion

• Degradation database from a real 
rotating machinery application 
used to mimic generator 
degradation 

• As our benchmarks, we use 
periodic maintenance and reliability 
based maintenance policies.



Experimental Results: Benchmarking

Observations: 
• APM policy improves the reliability (decreases failures by  >84%) of the generator 

fleet and causes a small number of interruptions (decreases outages by >26%). 
• APM policy extends the equipment lifetime (decreases unused life by >68%).
• APM policy decreases the maintenance and operations cost.



Experimental Results: Updating Frequency

Observations: 
• As the maintenance updates become more frequent, APM learns more about 

the underlying degradation processes, and hence improves every aspect of the 
maintenance policy. 
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Conclusions

• We proposed a sensor-driven framework consisting of the 
following modules:

1. Predictive analytics

2. Dynamic maintenance cost analysis

3. Novel optimization models for maintenance and operations 

• We significantly improved the maintenance objectives 
suggested by the IEEE taskforce.



Questions?


