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Abstract

Reliability field data such as that obtained from warranty claims and maintenance

records have been used traditionally for such purposes as generating predictions for

warranty costs and optimizing the cost of system operation and maintenance. In the

current (and future) generation of many products, the nature of field reliability data is

changing dramatically. In particular, products can be outfitted with sensors that can

be used to capture information about how and when and under what environmental

and operating conditions products are being used. Today some of that information

is being used to monitor system health and interest is building to develop prognostic

information systems. There are, however, many other potential applications for using

such data. In this paper we review some applications where field reliability data are

used and explore some of the opportunities to use modern reliability data to provide

stronger statistical methods to operate and predict the performance of systems in the

field. We also provide some examples of recent technical developments designed to be

used in such applications and outline remaining challenges.

Key Words: Condition-based maintenance, Dynamic covariates, Early warning, Ma-

terials state awareness, Prognostics, System health management, Warranty prediction
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1 The Next Generation of Reliability Data

1.1 Background

Due to changes in technology, the next generation of reliability field data will be much

richer in information. Today it is possible to install sensors and smart chips in a product

to measure variables such as use rate, system load, and various environmental variables. In

addition to the time series use rate/environmental data, we also can expect to see further

developments in sensors that will provide information about component or system physical,

chemical, or performance degradation or other indicators of imminent failure. We will refer

to such data as System Operating/Environmental (or SOE) data. Additionally, many of

these products/systems contain communications capabilities (e.g., an IP address and direct

Internet or wireless connections to the Internet) that allow data to be uploaded automatically

or on demand. For many products all SOE information is kept in a data center. If there is

no communications capability within a product, some SOE information is stored on board

and can be retrieved during maintenance operations.

1.2 Examples of systems providing big data

Some examples of particular systems and products providing SOE data include the following.

Locomotive engines

Modern locomotive engines contain sensors that measure operational variables such as

oil pressure, oil temperature and engine coolant temperature over time. This infor-

mation is used to control an engine during normal operation. These time series data

can also be used to warn of operating conditions that could cause serious damage to

the system (e.g., loss of oil pressure). Section 9.9 of Hahn and Doganaksoy (2008)

describe an application in which an algorithm was developed to a particular engine

subsystem that had failed, based on signatures in the multivariate time series data. In

addition to the engine-status variables, other operational information such as ambient

temperature, air pressure, and GPS location can also be captured and downloaded.

Aircraft engines

Aircraft engines, similar to locomotive engines, have sensors to obtain information (such

as temperature in different parts of the engine) that is used in the normal operation of

the system. Other sensors provide information about such variables as oil temperature,

debris in oil, and vibration that could be used to indicate unsafe engineering operating

conditions. For a detailed description of aircraft engine health monitoring systems, see

Volponi and Wood (2011).
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Automobiles

Today’s automobiles can be outfitted with sophisticated data acquisition and commu-

nications capabilities. For example GM’s OnStar system is marketed for its safety

and operational features, but the system is also capable of collecting and uploading

important operational and environmental variables similar to those described above

for locomotives.

Power distribution transformers

A catastrophic failure of a power distribution transformer can cause serious damage

and lengthy power outages for a large number of electricity consumers. Traditionally

such transformers would be inspected periodically (e.g., once every six months) to

provide some degree of assurance and protection. One important diagnostic check is

an assessment of the chemical compounds in the transformer’s cooling oil. These tests

are known as dissolved gas analysis or DGA tests. Different amounts of combinations

of gases in the oil provide a signature of possible transformer faults (e.g., arcing that

could lead to catastrophic failure). Spurgeon et al. (2005) provide information on such

analyses. Now, however, it is possible to have transformers that are not only outfitted

with sensors to provide environmental and operation information in real time, but also

with a device that will do periodic DGA (e.g., once each day or even every hour).

CT scanners and other large medical systems

In addition to various operational parameters that indicate the current state of the

system and suitability for continued use, large medical systems also record variables

like the number of uses and the amount of power at each use. This covariate informa-

tion could be utilized in conjunction with a lifetime model to predict the remaining

useful life of critical components in the system. Such information can be used to detect

system problems, optimize maintenance schedules, and minimize unplanned mainte-

nance actions. The information could also be used to accurately predict longer-term

life characteristics of life-limiting components.

Wind turbines

The amount of electricity generated by wind has grown at approximately 30% per year

in the past ten years. Giant wind farms have grown up across the US and in many

other countries around the world. Texas, California, and Iowa lead the US in wind en-

ergy production. High reliability of the wind-turbine system components is extremely

important because of the high cost of making repairs. Wind turbine systems gener-

ally contain numerous sensors (or arrays of sensors) in both the supporting structure

(especially at the top), on the blades, and inside the turbine nacelle itself, to provide
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information on such physical characteristics as stresses affecting critical components

including relative movement in the system over time, the sway of the structure (due

to force of winds), and vibration in the turbine’s moving parts. As with other systems

outfitted with such sensors, data can be sent to a centralized location or locations (e.g.,

the owner of the systems and the manufacturer/maintainer of the systems). Ciang,

Lee, and Bang (2008), Antoniadou et al. (2012), and Faulkner, Cutter, and Owens

(2012) describe the use of such sensors for system health monitoring.

Solar energy power inverters

Power inverters are electronic devices that are used, for example, to convert direct cur-

rent voltage from solar cell arrays to alternating current that can be attached directly

to electrical distribution systems connected to the power grid. In times of high power

usage, less power has to be purchased from the grid supply. In times of low power

usage (e.g., weekends), power can be sold back to the grid. Advanced power inverter

models provide various data streams that can be used to monitor power output over

time as well as other operational and environmental variables.

Other systems and products providing SOE data

Other systems collecting similar operational and environmental information include gas

turbines, farm implements and large construction equipment, high-end printers/copiers,

high-end computers, high-end batteries (e.g., those used in some uninterruptible power

supplies), some home entertainment systems, and even smart phones.

1.3 Distinguishing feature of modern field reliability (SOE) data

The common feature among these systems is that they can deliver periodically a potentially

large vector of dynamic covariate values (i.e., a vector time series). As we describe and

illustrate in the rest of this paper and some related technical papers, there is great potential

for using this additional information to achieve higher reliability and availability of systems

at lower cost.

1.4 Overview

The rest of this paper is organized as follows. Section 2 describes and contrasts traditional

field reliability data with the modern field reliability provided by many of today’s systems

and products. Section 3 briefly describes current uses of modern reliability (or SOE) data

and the many opportunities for further cost-effective uses of such data. Section 4 reviews

different kinds of response variables that determine or define system health. Section 5 outlines
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the general goals and approaches that we suggest for taking advantage of SOE data. In

Sections 6, 7, and 8 we provide a summary of the particular models and statistical methods

that we have implemented in three different case studies involving the use of SOE data to

describe failure processes and to predict future failures across an entire fleet of systems and

for individual systems within a larger fleet. Section 9 outlines some practical concerns and

challenges and Section 10 makes some concluding remarks and outlines some areas for further

research.

2 Warranty, Maintenance, and Field-tracking Data

2.1 Traditional field data and its limitations

Although laboratory reliability testing is often used to make product design decisions, the

“real” reliability data come from the field, often in the form of warranty returns or, specially-

designed field-tracking studies.

Warranty data are the most common type of field data. Warranty databases were initially

created for financial-reporting purposes, but more and more companies are finding that their

warranty database is a rich source of reliability information. Perhaps six to eight months after

a product has been introduced into the market (sooner if warranty costs have already been

higher than expected), managers begin to ask about warranty costs over the life-cycle of the

product. Two common problems with warranty data are that good failure mode information

is often not available (there is usually some kind of code in the database, but it is usually of

limited use to determine the actual cause of failure) and warranty data are generally heavily

censored, because information obtained after a product is out of warranty is limited. Thus,

even though companies should be concerned about reliability of their products far beyond

the end of a warranty period, operationally, little data is available.

Maintenance data provide the second major source of field reliability data. Companies

and organizations keep detailed records of costs of maintenance for their fleets of assets (e.g.,

information about the reliability for a fleet of automobiles or locomotives or transformers).

Like warranty data, maintenance data may lack important engineering information because

the reporting rules and databases were designed for financial reporting rather than for an-

swering engineering questions. For example, if a valve seat is replaced in a locomotive that

has 16 valve seats, the data may not record which valve seat was replaced. This makes it

difficult to infer whether valve seats in the same position are being replaced repeatedly or

not.

For some products, careful field tracking provides good reliability data. For example,

manufacturers are required to keep accurate records about installation and causes of failures
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of medical devices such as pacemakers and defibrillators.

2.2 Modern field data and its complexity

In contrast to traditional field data where typically the only information on a unit would be

failure times (for units that had failures) and perhaps some information about date of man-

ufacturing and cost of failure, modern systems will often be providing huge amounts of data

on current system operating parameters, environmental parameters, and indicators of system

health. Generally these data come in the form of a vector of data, sampled periodically (e.g.,

every ten minutes) or on demand. In some cases there is a default vector of information, but

the system can be instructed (perhaps less frequently or when troubleshooting) to provide

information on additional variables that might be of interest.

To solve a problem using data that are available, it is often necessary to integrate data

from “data islands” from different sources both within and external to a company or or-

ganization. For example to predict warranty costs one would need information from the

warranty-returns database, the production database, engineering design information (e.g.

about changes in part numbers over time) and perhaps customer data on product utiliza-

tion.

3 Applications and Potential Applications of Big Re-

liability Data to System Reliability Prediction and

Maintenance

The most important applications for owners and operators of systems and fleets of systems

would be to prevent in-service failures, unplanned maintenance, and especially system failures

that could cause serious loss of property or lives. There are also needs to plan for system

retirement and predictions of future financial needs and obligations (e.g., warranty costs).

This section describes some of the particular applications of field data and explains how and

why modern SOE data will be able to do a much better job.

3.1 Systems health management, condition-based maintenance,

prognostics and short-term prediction of system failure

Today, the most common use of SOE data is in system-health monitoring (SHM) (also known

as systems health management). There is an enormous amount of literature in this particular

area including several journals and annual conferences devoted to the subject, focusing on

6



the use of sensor technology and strategies for using the sensor data to detect unusual and

undesirable system states. For example, process monitoring and signal-detection algorithms

can detect unsafe operating conditions or precursors to system failure that can be used to

protect a system by shutting it down or by reducing load to safe levels. In some appli-

cations (e.g., aircraft engines, wind turbines, and power distribution transformers), system

health/use rate/environmental data from a fleet of systems in the field can be returned in

real time to a central location for real-time process monitoring and especially for prognostic

purposes. An appropriate signal in these data might provoke rapid action to avoid a serious

system failure (e.g., by reducing the load on an unhealthy transformer or running a locomo-

tive at a lower load until a repair can be made). Also, should some issues relating to system

health arise at a later date, it would be possible to sort through historical data that have

been collected to see if there might have been a detectable signal that could be used in the

future to provide an early warning of the problem.

With additional modeling capabilities, SOE data can also be used for prognostic purposes

to provide short-term predictions about the remaining life of a system. For example vibration

sensors can indicate the beginning of abnormal wear and thus a change in degradation rate.

A prediction of remaining life of the wearing component would be needed to schedule timely

maintenance and protect the overall system from a costly in-service failure.

Relatedly, system owners/maintainers can use SOE data to plan maintenance actions

based on need instead of less efficient time-based schedules. Such maintenance programs are

known as condition-based maintenance (CBM). When properly implemented, CBM can lead

to both higher reliability and lower costs. In some applications, however, relying on CBM

will require that certain redundancies or fault-tolerances be build into a system.

Carden and Fanning (2004), and Jarrell, Sisk, and Bond (2003) describe SHM methods

and prognostics for mechanical systems. Pecht (2008) gives a detailed overview of such

methods for electronic systems.

3.2 Early warning of emerging reliability issues

There are sometimes large gaps between predictions made from product-design reliability

prediction models (supplemented by limited reliability testing) and reality. These differences

are often caused by unanticipated failure modes. Algorithms for early detection of emerging

reliability issues (e.g., Wu and Meeker 2002) are being implemented in software and have

the potential to save companies large amounts of money. More recent work in this area

includes Yashchin (2010) and Lawless, Crowder, and Lee (2012). The availability of SOE

data on individual units in the field has the potential to tremendously strengthen the ability

to discover and even diagnose the cause(s). For example, knowing that several early failures
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were due to overuse of products in a harsh environment could prevent what might otherwise

have been a false alarm that there was a serious emerging reliability problem. Conversely, if

failures were known to have come from systems operating in an ordinary environment, such

early failures could provide a strong warning of an emerging issue.

3.3 Prediction of remaining life of individual systems

Even when a system is in a state of normal operation, there is often a need or desire to predict

the remaining longer-term life of the system (or the remaining life of its most important life-

limiting components). Technically, the distribution of remaining life of a system is defined

as the conditional probability of failing at a future time, given survival until the present time

tc. If F (t) is the cumulative distribution function (cdf) of the failure time for a new unit,

the cdf of remaining life for a unit that has survived until time tc is,

G(t) =
F (tc + t)− F (tc)

1− F (tc)
, t > 0.

Estimates of the α/2 and 1−α/2 quantiles of G(t) would provide an approximate prediction

interval for remaining life. Better approximate prediction intervals can be obtained by using

Monte Carlo simulation to calibrate (i.e., to adjust the approximate prediction procedure so

that it has a coverage probability that is closer to the desired nominal value). In a study

of distribution transformer life (Hong, Meeker, and McCalley 2009), the only differentiation

is with respect to system age, and weak covariates (i.e., covariates that do not explain a

large proportion of the lifetime variability) like manufacturer and date of manufacturing. As

shown in Hong, Meeker, and McCalley (2009), when there is not strong covariate information

to differentiate among different systems in the fleet that are at risk to fail, then generally

prediction intervals for individual units will be extremely wide, but still potentially useful

for some purposes. If SOE data providing information on such variables as system load,

temperature, and shock histories had been available (as it will in the future), then more

precise prediction intervals would have been possible.

3.4 Prediction of retirements/replacements in a fleet of systems

Building on earlier work in Chapter 12 of Meeker and Escobar (1998) and Escobar and

Meeker (1999), Hong, Meeker, and McCalley (2009) develop more general methods for using

traditional field reliability data to generate predictions on the retirements or replacements of

the members of a fleet of systems. They illustrate the methods on a fleet of distribution power

transformers, predicting the number failing in each year out to a horizon of twenty years.

They also show how to obtain statistically correct prediction intervals even when dealing with
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messy field data [i.e., data with a combination of censoring and truncation (see page 41 of

Meeker and Escobar 1998) ]. With the prediction of the remaining life of individual systems,

covariate information in SOE data would provide both improved precision and accuracy for

population predictions, although the improvements will be less dramatic than predictions

for individual systems.

3.5 Prediction of warranty returns

Companies are required by law to maintain cash reserves to pay expected warranty costs

for their products. Doing so requires the use of warranty cost prediction methods. There

are financial implications for inaccurate predictions. Many companies find it satisfactory to

use either basic time series prediction methods or to simply assume that warranty costs will

be a certain percentage of sales, based on previous experience. Especially, however, when a

new emerging reliability issue has been identified, statistical methods based on field-failure

data (e.g., Escobar and Meeker 1999, Lawless and Fredette 2005, Hong and Meeker 2010)

can be used to produce predictions for the additional warranty costs. Field data also provide

important feedback that can be used to assess the adequacy of reliability prediction methods

and to give engineers information on how to design future products. Traditionally, most

warranty predictions have been based on modeling failures relative to time in service. Hong

and Meeker (2010), however, had access, for a large fraction of the product population, to

amount-of-use data for individual units that had failed under warranty and those that had

not. They demonstrated the important advantages of basing warranty predictions on amount

of use in applications (like theirs) where the failure mechanisms are driven by the amount

of use.

Use rates and environmental conditions are important sources of variability affecting

product lifetimes. The most important differences between carefully controlled laboratory

accelerated test experiments and field reliability results are due to uncontrolled field variation

(unit-to-unit and temporal) in variables like use rate, load, vibration, temperature, humidity,

UV intensity, and UV spectrum. Historically, use rate/environmental data have, in most

applications, not been available to reliability analysts. Incorporating use rate/environmental

data into statistical analyses will provide more accurate predictions.

3.6 Prediction of maintenance costs

Manufacturers in some industries offer to sell to their customers maintenance agreements

to provide maintenance that is necessary to keep the products operating. Indeed, in some

markets (e.g., aircraft engines) manufactures make more profit on their maintenance agree-
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ments than on the product itself. The ability to accurately predict maintenance costs is

essential to assure profitability of such agreements. Companies that have a combination

of good product reliability and that can accurately predict maintenance costs will have an

important competitive advantage.

4 Different Responses in Reliability Field Data

4.1 Failure time field reliability data

The vast majority of field reliability datasets have the response as the failure time of units

that failed and the running times of units that have not failed. Ideally, time would be

defined using a scale appropriate to the failure mechanism(s), but operationally, in most

applications, all that is available is time in service or time since manufacture with some kind

of adjustment for the gap between manufacturing and installation. In a rough sense, the

amount of information in the data is proportional to the number of failures.

4.2 Degradation field reliability data

In modern high-reliability applications, often we see few or no hard failures (where a product

suddenly stops operating) in reliability testing. Suppose that 100 units had been put on test

and run for 2000 hours of operation for a product that is expected to last through 20,000

hours. If there are no failures at the end of the test, there would be little or no information

for quantifying reliability (depending on assumptions that one might be willing to make).

If, however, we could monitor, over time, a degradation (or a performance) variable that is

closely related to failure (e.g., length of a fatigue crack or light output from a laser) on all of

the units, there would be a large amount of reliability information, especially if physics-of-

failure knowledge provides additional information about the degradation mechanism (e.g., to

allow a degradation path to be extrapolated in time). Also, in some reliability applications

hard failures are rare. In such applications, the product’s performance degrades over time

and degradation is the natural response. Examples include the gloss and color of automobile

coatings and the light output of solid-state lighting (i.e., LEDs).

Over the past 30 years, the use of degradation data in reliability testing has received much

attention. It is also possible, in some applications, to use degradation as the response for

units in the field. There are a number of other advantages for using such repeated-measures

degradation data for reliability assessment. In addition to providing additional information

about reliability and the opportunity to make reliability inferences with few or even no

failures, degradation data provide information that is much richer for building and assessing
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the adequacy of physical/chemical models used for test acceleration.

Some engineers (e.g., Murray 1993) had been using informal “simple” methods of anal-

ysis that fit models to the sample path for individual units and extrapolated these until

some failure level, providing “pseudo failure” data that could be analyzed by common life

data analysis methods. A more appropriate method, used for example in Lu and Meeker

(1993) and Meeker, Escobar, and Lu (1998), uses a random effects model to describe unit-

to-unit variability. Such a model along with a soft-failure definition, will induce a failure

time distribution that can be estimated directly from the degradation data. In some areas

of application (and more commonly in field data), it is necessary to model the stochastic

behavior in the sample paths over time. Lawless and Crowder (2004), for example, use such

a model.

If an appropriate degradation variable can be measured, degradation data, when properly

analyzed, can provide much more information because there are quantitative measurements

on all units (not just those that failed). Indeed, it is possible to make powerful reliability

inferences from degradation data even when there are no failures. It is, of course, not always

possible to find a degradation variable that corresponds to a failure mode of concern.

4.3 Recurrence field reliability data

In some reliability applications involving repairable systems, the available maintenance data

are recurrence data, providing information on a sequence of events on individual systems

from a fleet of systems. Nelson (2003) describes many examples and provides statistical

methods for such data when covariate information is not available. The presentation in

Cook and Lawless (2007) is at a higher technical level and does include models for covariates

and time-varying (i.e., dynamic) covariates, along with many examples from biological and

medical statistics.

5 Extending Existing Models for Reliability to Take

Advantage of System Operating/Environmental

Traditional reliability field datasets are almost always of manageable size. Even if the number

of product units is large, the number of failures is typically relatively small, and both the

failure times and the censoring time, when there are no covariates, can be binned into

intervals as long as the interval lengths are small with respect to the overall spread in the

data.

The biggest challenge that we face in using SOE data is to develop appropriate models
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that will effectively use the information in SOE data for the various applications described

in Section 3. Generally this will involve two modeling efforts. First, there is need to build

a regression like model that will relate the response to dynamic covariates. Second, when

predictions or other inferences about the future are desired, it will be necessary to develop

a model for the dynamic covariates themselves. In the following three sections we briefly

outline such efforts, motivated by particular examples for lifetime data, degradation data,

and recurrence data, respectively.

6 Example 1: Modeling and Field Failure Prediction

Using Failure Time Data with Dynamic Covariate

Information

The work in Hong and Meeker (2013) was motivated by an application involved with a

product called Product D2, a product with electronic and mechanical components that is

used in homes and offices. For this product, dynamic information is available on the product

use rate for those units that are connected to a network. The dataset contains n = 1,800

units with 69 failures and the maximum length of the observation period is 70 weeks. Figure 1

shows plots of the failure-time data and the corresponding use-rate trajectories (i.e., number

of uses per week as a function of system age). These plots are similar to those in Figure 1 of

Hong and Meeker (2013) but for a different subset of the data. The major goal of Hong and

Meeker (2013) is to provide a general method that utilizes the failure-time data and dynamic

covariate information to generate better field-failure predictions. This goal was realized, as

described in Hong and Meeker (2013).

To briefly describe the models and methods, some notation is needed. Let T be the

time to failure random variable and let X(t) = {X(s) : 0 ≤ s ≤ t} be the covariate process

history. The corresponding data are denoted by { ti, δi,xi(ti) } where ti is the failure time

and the event indicator δi = 1 if the unit failed and 0 otherwise. The observed individual

covariate history is xi(ti) = {xi(s) : 0 ≤ s ≤ ti}.

Models for time-to-event data with dynamic covariate information and for covariate pro-

cess are needed. The cumulative exposure (CE) model was used to describe the effect of a

dynamic covariate on the failure-time distribution. For the CE model, each unit accumu-

lates an unobservable amount of CE u(t) =
∫ t

0 exp[βx(s)]ds, which depends on the random

covariate path X(∞) = x(∞). Here, β is an acceleration coefficient. When the amount of

CE reaches a random threshold U at time T , the unit fails and T is the failure time for the

unit. The CE threshold U has the baseline cdf F0(u). The Weibull distribution was used
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Figure 1: Plots of the failure-time data and the corresponding use-rate trajectories for a

subset of the data.

for baseline cdf in the Product D2 application. The maximum likelihood (ML) approach is

used to estimate the unknown model parameters. The ML estimates imply that the effective

amount of extrapolation for predicting future failures is much less with the dynamic use-rate

model. A linear mixed effects model is used to describe the covariate process X(t), which is

needed for the purpose of prediction. The random effect in the mixed model can account for

unit to unit and temporal variability in units’ covariate processes. The parameters in the

mixed model are also estimated by ML approach.

The parametric cumulative exposure model used in Hong and Meeker (2013) is the same

as the model that is commonly used in step-stress accelerated testing, described in Nelson

(1990, Chapter 10). The basic idea behind this model had been expressed also in, for

example, in Sedyakin (1966) and Cox and Oakes (1984). Robins and Tsiatis (1992) uses the

same cumulative exposure model with a semiparametric estimation method that does not

require specification of the underlying distribution for U .

Both individual and population predictions are considered in Hong and Meeker (2013).

The distributions of remaining life (DRL) for the surviving units are the key elements for

such predictions. In particular, the DRL for unit i is the distribution of Ti, given the current

time in service ti and X i(ti) = xi(ti) and it is calculated by

ρi(s; θ) = EXi(ti,ti+s)|Xi(ti)=xi(ti) {Pr[ti < Ti ≤ ti + s|Ti > ti,X i(ti),X i(ti, ti + s)]} .

Here θ is the collection of parameters, s is the number of time units after the data freeze date
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(DFD), and X i(t1, t2) = {Xi(s) : t1 < s ≤ t2} is the covariate history for unit i from time

t1 to time t2. Simulation-based approaches were developed to evaluate ρi(s; θ̂) and compute

pointwise confidence intervals (CIs) for ρi(s; θ̂). The numerical results in Hong and Meeker

(2013) show that heavily used units tend to have much higher risk for failures, based on the

estimated DRL. The population prediction is based on N(s) =
∑

i∈RS Ii(s), which gives the

number of field failures at s time units after the DFD. Here RS is the risk set and Ii(s) ∼

Bernoulli[ρi(s; θ)]. The point prediction forN(s) can be obtained by ρ(s; θ̂) =
∑

i∈RS ρi(s; θ̂),

which is also based on the estimated DRL. To quantify multiple sources of uncertainties,

such as distributional uncertainty and statistical uncertainty, prediction procedures were

developed for both individual and population predictions in Hong and Meeker (2013).

Extensive simulations were done in Hong and Meeker (2013) to demonstrate the ad-

vantages of incorporating dynamic data into statistical modeling and predictions. In gen-

eral, when there are temporal trends in dynamic covariates (i.e., monotone and/or seasonal

trends), the dynamic use-rate model often has advantage in field prediction, for both indi-

vidual and population predictions. The advantage is especially pronounced for individual

unit predictions.

7 Example 2: Modeling and Field Failure Prediction

Using Degradation Data with Dynamic Covariate In-

formation

The major goal of Hong et al. (2012) is to develop general models for analyzing degradation

data with dynamic covariate information. Their modeling of degradation data allows for

unit-to-unit and temporal variability in covariates. The motivating application is from the

National Institute of Standards and Technology (NIST) outdoor weathering data. In a

study of the service life of organic coatings under outdoor environments, 36 specimens were

placed in outdoor environmental chambers, each starting at a different time of the year. Due

to different starting times, the dynamic covariate profiles vary from unit to unit and thus

different units have different rates of degradation. Figure 2 shows the plots of the observed

degradation path for a sample exposed outdoors, the time series of temperature and relative

humidity (RH), and the Ultraviolet (UV) exposure as a function of time and wavelength.

The outdoor temperature, RH, and UV exposure were recorded automatically by sensors.

For modeling convenience, the UV exposure was summarized by the scientifically-motivated

UV dosage, which is proportional to the number of photons absorbed into the coating.

Let yi(tij) be the degradation measurements at time tij for unit i. The covariate informa-
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Figure 2: Plots of the observed degradation path for a sample exposed outdoors, the time

series of temperature and RH, and the UV exposure as a function of time and wavelength.
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tion at time t is denoted by X(t) = [X1(t), . . . , Xp(t)]′ where p is the number of covariates.

We denote the history by X(t) = {X(s) : 0 ≤ s ≤ t}. The observed history for unit i is

xi(tini
) = {xi(s) : 0 ≤ s ≤ tini

}. A general additive model for the observed degradation path

is proposed in Hong et al. (2012). In particular,

yi(tij) = D[tij ;xi(tij)] +R(tij ;wi) + εi(tij). (1)

The first term in model (1) D[tij;xi(tij)] = β0 +
∑p

l=1

∫ tij
0 fl[xil(τ); βl]dτ incorporates the

dynamic covariates into the degradation path through a covariate effect transformation func-

tion f(·). For example, fl[xil(τ); βl] represents the effect of covariate xil(τ) at time τ on the

degradation path. Thus, the cumulative effect of xl is given by
∫ t

0 fl[xl(τ); βl]dτ . Shape-

restricted splines are proposed to construct the functional form of f(·). The second term

R(t;wi) is the random component for unit-to-unit variability and the third term is the error

term. The estimation of parameters in (1) is not trivial because both shape-restricted splines

and random effects are involved. An iterative algorithm was proposed by using the mixed

primal-dual bases algorithm to solve the generalized least squares problem under constraints.

The numerical results show that the UV dosage causes relatively large amounts of damage

relative to temperature and RH. A model for the covariate process is needed for reliability

prediction. The covariate process can be modeled by X(t) = m(t;η) + a(t) where m(t;η) is

the mean structure with parameter η. The covariate process in the NIST data was modeled

by sine waves for the mean structure and by a second order vector autoregressive time series

model for the error term.

The cdf of the degradation-induced time to failure is important for reliability inference.

Based on the model, the actual path is D[t;X(∞)] + R(t;w) and the first crossing time is

tD = min{t : D[t;x(∞)] +R(t;w) = Df}. The cdf of T = T [Df ,X(∞), w] is

F (t; θ) = EX(∞)EwPr {T [Df ,X(∞), w] ≤ t} , t > 0, (2)

where θ denotes all unknown parameters. A simulation based procedure was developed to

evaluate F (t; θ). The conditional cdf is also useful in applications, especially for CBM and

SHM. The conditional distribution for individual with covariate history X i(tini
) = xi(tini

)

is

ρi(s; θ) = EXi(∞)|Xi(tini
)=xi(tini

)EwPr {T [Df ,X(∞), w] ≤ tini
+ s|T > tini

} , s > 0,

which gives the failure probability at a future time, conditional on X i(tini
) = xi(tini

). A

simulation based procedure was developed to evaluate ρi(s; θ). To illustrate the use of these

methods, Hong et al. (2012) applied these models and procedures to the NIST outdoor

weathering data.

16



8 Example 3: Field Failure Prediction Based on Multi-

Level Repair and System Usage Information

In this section, we introduce a model that can be used for field failure prediction based

on multi-level repair and system usage information. Repairable systems in the field often

receive repair actions at different levels. For example, a truck may have an engine replaced

or have a component of the engine replaced. Thus we may consider three levels: system

(truck), sub-system (engine), and component level. At the system level, the system usage

and environmental information can be available. At sub-system and component levels, the

repair information can also be available through maintenance records.

We start with the introduction of a repairable system model for one level. A useful

reference for this topic is Cook and Lawless (2007). Let 0 < T1 · · · < Ti < · · · be the event

times from a repairable system. Let N(t) be the counting process and Ft be the event history

up to time t. The event intensity for the counting process is defined as

λ(t|Ft−) = lim
∆t→0

Pr{N(t +∆t)−N(t) = 1|Ft−}

∆t
.

The cumulative event intensity function is defined as Λ(t) =
∫ t

0 λ(u|Fu−)du. The nonhomo-

geneous Poisson process (NHPP) and the renewal process (RP) are the two most commonly

used models for repairable systems. The NHPP corresponds to a minimal repair, in which

the repair is as bad as old. The RP corresponds to a perfect repair, in which the unit

is as good as new after the repair. The trend renewal process (TRP) model provides an

alternative that not only includes both NHPP and RP as special cases but also captures

situations that are in-between NHPP and RP (Lindqvist, Elvebakk, and Heggland 2003).

The TRP is characterized by a trend function Λ(t) =
∫ t

0 λ(u)du and a renewal distribution

F . It has the property that Λ(Ti+1)−Λ(Ti)
iid
∼ F, i = 1, 2, · · · . The event intensity function

of a TRP is λ(t|Ft−) = h{Λ(t) − Λ[TN(t−)]}λ(t). The event intensity function of the TRP

process has two factors. The factor λ(t) reflects the overall system deterioration. The factor

h{Λ(t)− Λ[TN(t−)]} reflects the effect of each repair. After each repair, there is a change in

the intensity function. The behavior of the change is determined by the hazard function of

the renewal distribution F .

To model the event intensity for the component replacement that uses information from

different levels, a multi-level TRP model is proposed. We consider a fleet of n systems.

Let Ni1(t) be the number of component replacements, up to time t for unit i and excluding

sub-system replacements. Let Ni2(t) be the number of sub-system replacements, up to time

t for unit i. Let Ni(t) =
∑2

j=1Nij(t) be the total number of replacements up to time

t for unit i. The last follow up time for each unit is denoted by τi. The event times
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of event type j for unit i are denoted by 0 < tij1 < · · · < tijk < · · · < tij,Nij(τi) < τi.

For notational convenience, the event times regardless of the types for unit i are denoted

by 0 < ti1 < · · · < tik < · · · < ti,Ni(τi) < τi. Let Xi(t) = [Xi1(t), . . . , Xip(t)]′ be the

covariate process. The event history up to time t for the dataset is Ft = {Nij(s), Xi(s) : i =

1, · · · , n, j = 1, 2, and 0 ≤ s ≤ t}. The event history for sub-system replacements up to time

t is F s
t = {Ni2(s), Xi(s) : i = 1, · · · , n, and 0 ≤ s ≤ t}. The event intensity for component

replacements is modeled as

λi(t|Ft−) = h
{
Λi(t|F

s
t−)− Λi

[
TNi(t−) | F

s
t−

]}
λi(t|F

s
t−),

λi(t|F
s
t−) = hs{Λi(t)− Λi[TNi(t−)]}λi(t),

λi(t) = λb(t) exp[β
′Xi(t)],

where Λi(t|F s
t−) =

∫ t

0 λi(u|F s
u−
)du and Λi(t) =

∫ t

0 λi(u)du. Here λi(t) describe the general

system trend that consists of a baseline trend described by λb(t), and the trend can be de-

scribed by covariate process Xi(t). The event intensity for component replacement will be

adjusted by the factor hs{Λi(t) − Λi[TNi(t−)]} if there is sub-system replacement. That is

a replacement in subsystem will reduce the risk of component replacement. The event in-

tensity will be further adjusted by h
{
Λi(t|F s

t−)− Λi

[
TNi(t−) | F

s
t−

]}
if there is a component

replacement. Figure 3 illustrates the intensity function of the multi-level TRP model for

a simulated event history [the vertical solid (dot-dashed) lines show the sub-system (com-

ponent) repair times]. The ML approach can be used to do the parameter estimation and

statistical predication procedure can also be developed. The estimated intensity function

can be used as the basis for the field failure prediction and other decision making.

9 Practical Concerns and Challenges

Periodically downloading and saving SOE data for units in a product population will produce

massively large datasets. For example, suppose there are 500 thousand units providing 100

single precision (4-byte) numerical values every half hour for a period of five years. The total

size of the dataset would be on the order of 2 terabytes! Of course such large datasets would

overwhelm modern desktop computers and software. With traditional field reliability data

lacking covariate information, extremely large populations can be represented in small data

files by proper binning of observations. For example, the bearing cage dataset, representing

1,703 aircraft engines given in Table C.5 of Meeker and Escobar (1998) has only 25 records

and contains fewer than 500 bytes. With dynamic covariate information, such binning will

be less effective in reducing the size of a dataset. Strategies will need to be developed to

make analyses manageable (both in terms of storage and computational time). Examples of

such strategies include the following:
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Figure 3: Illustration of the intensity function of the multi-level TRP model for a simulated

event history [the vertical solid (dot-dashed) lines show the sub-system (component) repair

times].

• The original environmental data (weather and solar) used in Hong et al. (2012) had

been collected at 12 minute intervals. Compressing the data down to daily averages

was more than adequate for their modeling purposes.

• In some cases, especially when there is a huge number of observations, it might be

possible to use a subset of the entire dataset. Predictions made based on the subset

could then be checked on the remainder of the data, in the spirit of cross validation.

One problem with this approach is that there is often a huge number of units in the

field that are at risk to fail, but only a limited number of failures. A general alternative

approach is described in Guha et al. (2012) where a dataset is divided into manageable

parts, analyzed separately, and then the results are combined to produce a composite

analysis.

• Large product populations can be stratified in logical subgroups that are not only

more manageable, but more homogeneous, allowing for better modeling. For example

in a warranty prediction problem, a population with many hundreds of thousands of

fielded units was stratified into what were called “part-number genealogy groups,”

according to part number changes in critical components that had been made over the

manufacturing time of the product. The more homogeneous datasets allowed for the
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generation of more accurate overall predictions.

• Hong and Meeker (2013) show that predictions can be seriously biased when covariate

for individual units change over time and just a simple average of the covariate time

series is used in a simpler model. Handling individual covariate histories for all units

in the field, for a large product population, may be intractable. One alternative we are

pursuing is to use cluster analysis to divide the product population into groups and to

use a simple static description of the covariate behavior for each group. If the purpose

of the analysis is prediction for each individual, one could augment this procedure by

having a scalar or low-dimensional per-unit adjustment to the covariate description.

10 Concluding Remarks and Areas for Further Re-

search

The future possibilities for using use rate/environmental data in reliability applications are

unbounded. Lifetime models that use rate/environmental data have the potential to explain

much more variability in field data than has been possible before. The information can also

be used to predict the future environment lifetimes of individual units. This knowledge can,

in turn provide more precise estimates of the life time of individual products. As the cost of

technology drops, cost–benefit ratios will decrease, and the number of potential applications

will grow. We can expect that the potential will be realized after an appropriate set of

general statistical methods have been developed and implemented in easy-to-use software.

There is a large number of open areas for further research in this area. These include the

following.

• Our discussion and thinking has focused on hardware failures. Software will continue

to be an increasingly important role in modern systems. Correspondingly, system re-

liability and availability will be increasingly dependent on the reliability of software.

SOE data certainly will also provide benefits to better modeling, diagnosis, and im-

provements of software reliability and thus overall system reliability.

• Our examples have used a single reliability characteristic (failure time or degradation)

or failure criteria. Often systems will have more than one failure mode, and it is

often useful, if not necessary, to consider these modes separately. For example, Hong

and Meeker (2010) showed how to make warranty predictions with multiple failure

modes. Corresponding methods could be developed for products that have multiple

degradation performance characteristics (e.g., color and gloss degradation of its coating
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as well as smoothness-of-ride degradation resulting from wearing shock absorbers). See

Wang and Coit (2004) for an example.

• We have described field reliability data with both time and degradation responses.

In some applications the output of the degradation assessment test will be an image

or even a sequence of images. For example, Li, Holland, and Meeker (2010) develop

a crack-detection algorithm for sequence-of-image vibrothermography nondestructive

evaluation method. The same sequence-of-image data can be used to estimate the size

of a crack.

• Our discussion has focused on what might be called “data-driven” or empirical meth-

ods of analysis, detection, and prediction. For many purposes such an approach can

be perfectly satisfactory. For other purposes they may be woefully inadequate. In par-

ticular predictive reliability inferences often require extreme amounts of extrapolation.

For example,

– Predicting the fraction failing within a three-year warranty period based on six

months of field-failure reports.

– Estimating the fraction failing after five years at a used temperature of 25 de-

grees C, based on accelerated tests at 50, 60, and 70 degrees C that last only

three months.

– Predicting the reliability of production units in the field based on laboratory tests

on a few prototype units.

Similar kinds of extrapolation arise in the prediction of remaining useful life of individ-

ual fielded units. As mentioned in Section 3.3, without strong covariate information,

such predictions will not be precise (e.g., Hong, Meeker, and McCalley 2009). Having

SOE data and good models about how SOE data affect life may, however, provide

much better predictions for individuals, as demonstrated in Hong and Meeker (2013).

Extrapolation will be more reliable if predictions are based on a combination of science-

based models of reliability (e.g., knowledge of the physics of well-understood failure

modes) and data are used to develop predictive models for a failure-time distribution.

Because of its importance in aerospace applications, fatigue failure due to cyclic loading

is probably the most widely studied and best understood failure mechanism. Models

based on a combination of theory and empirical experimentation provide engineers

with powerful tools to predict the growth of fatigue cracks. For example, Haldar and

Mahadevan (2000) describe the use of such models in structural reliability applica-

tions. Yu and Harris (2001) provide a model based on first principles that predicts the
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lifetime of roller bearings. Much work remains to be done to obtain a similar level of

understanding of many other failure modes.

• Big data, by itself, will not solve all reliability problems. Especially in those cases listed

above, where extrapolation is required, detailed knowledge of the physics of failure

is exceedingly important to justify the extrapolation and to provide some degree of

assurance for resulting predictions.

• An extension of using the combination of physics-based models and dynamic covariate

information to predict remaining life is to add in-situ monitoring of the actual physical

state of system components (e.g., the amount of wear, creep, or other deformation)

to provide what some call “material state awareness” but the same ideas have been

discussed using the terms “integrated structural health monitoring” and “integrated

vehicle health monitoring,” depending on the organization and particular application.

A summary of ideas from this area is given in National Research Council (2008), a

proceeding from a workshop on this topic.

• Many of the applications described in this paper and particularly in this concluding

section will require combining information from different sources (e.g., data, in exact

physics-based knowledge and certain kinds of expert opinion). Additionally, statistical

models being used will often contain multiple sources of variability. Bayesian statistical

methods provide a natural approach for combining such information. Tremendous

advances have been made over the past 20 years and there has been much written

about the use of Bayesian methods in statistics in general and there is some work that

has focused on reliability applications. Some particular examples include the following.

Singpurwalla (2006) provides the theoretical framework for the use of Bayesian methods

to quantify reliability and risk. Hamada et al. (2008) provides operational methods

for applying Bayesian methods to a wide range of reliability application areas. Yan

(2012) shows how to use a Bayesian approach to solve a complicated inverse problem

to identify crack properties. Li and Meeker (2013) provide an introduction to the

basic ideas of using Bayesian methods for reliability data analysis and illustrate the

methods with four basic kinds of reliability data (single distribution analysis of field

failure data, accelerated life testing, accelerated destructive degradation data analysis,

and accelerated repeated measures degradation data analysis).
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