#### WIND TURBINE PROGNOSTIC HEALTH MANAGEMENT A STATISTICAL PREDICTIVE APPROACH

MICHAEL S. CZAHOR



### IOWA STATE UNIVERSITY

Wind Energy Science Engineering & policy

### PRESENTER PROFILE

#### Michael S. Czahor

- PhD Candidate
- IGERT Student on behalf of the NSF 2013-Current
- Wind Energy Science Engineering Policy and Statistics Co-Major
- Rowan University 2013 (Bachelors in Mathematics)
- Comcast Spectacor Intern (2012-2013)
- Major Professor: Dr. William Meeker

### PRESENTATION OUTLINE

- Component Specific Reliability Research
  - Power Converter Reliability
- Proposed Model/Approach
  - Dynamic Covariates
  - Cumulative Damage Model
- Needs for Research
  - Concluding remarks



### RESEARCH PURPOSE

- Aiming to improve turbine reliability and availability
- Discover failure mode relationships
- Evaluate and predict the state of a wind turbine during its service life

### **STEPS**

- Obtain reliability data
- Data should include failures and non-failures
- Build a model to link environment with failure events
- Validate model
- Make predictions

#### BENEFITS OF RESEARCH

- Mitigate the risks and consequences of failure
- Learn about failure modes
- Obtain accurate predictions of future failures



Swedish Offshore Wind Farm Maintenance: Picture from Siemens

#### EXAMPLE TO FULFILL RESEARCH PURPOSE...

- Allow for use of advanced reliability analysis
- Ageing evidence
- Data expected to contain:
  - Module ID
  - Date of turbine installation
  - Location
  - Failure date or end-of-observation
  - Failure mode information
  - Covariate history

#### FAILURES OF PITCH-CONTROLLED VARIABLE SPEED TURBINES

NORMALIZED FAILURE RATES: IMAGE FROM "RELIAWIND PROJECT" (2011)



### **IOWA STATE UNIVERSITY**

#### COMMON FAILURE MODES OF POWER CONVERTERS

(NOT NECESSARILY IN WIND TURBINES)

| Chip-Related Failure Modes                               | Package-Related Failures       |
|----------------------------------------------------------|--------------------------------|
| Electrical Overstress                                    | Bond-wire lift-off             |
| Latch-up and triggering of parasitic structures          | Solder fatigue                 |
| Charge effects, ionic contamination or hot carrier       |                                |
| injection                                                | Degradation of thermal grease  |
|                                                          | Fretting corrosion at pressure |
| Electro-migration, contact- and stress-induced migration | contacts                       |
| Thermal Activation                                       | Tin whiskers                   |

#### Failure modes of Power Converters





Survey results of weak points in power electronic systems and environmental variables that cause stress inside power electronic converters taken from Yang (2011)

## POWER CONVERTER ISSUES IN WIND TURBINES FISCHER (2014)







#### Condensation

- Causes
- Humidity
- Temperature
- Open Nacelle
- Effects
- •High Thermal Inertia

#### Electrical Overstress

- Causes
- Lightning
- Effects
- •Small Interal Cracks

#### Flashover

- Causes
- •Insescts In Cabinet
- Effects
- •Reduce Insulation Relevant Air Gaps

### IOWA STATE UNIVERSITY

## CONDENSATION (DYNAMIC COVARIATE EXAMPLE)



Evidence of condensation during failure event from Fischer (2014)

# MODEL AND APPROACH: DYNAMIC COVARIATE DEFINITION

- Example within the realm of power converters  $\Delta T$ , N
- $\Delta T$ : temperature change with respect to time in the Insulated Bipolar Gate Transistor (IGBT) module at each cycle.
- N: number of cycles over time

- Manufacturers will often provide information on the power-cycling capability of the

IGBT modules.

- Plot from Wintrich (2011)



# MODEL AND APPROACH: USING DYNAMIC COVARIATES

- T: Time to failure
- δ: censoring indicator
  - $\delta$  =1 if a power converter fails
  - $\delta$  =0 if the power converter survives to the time of data analysis.
- $x_{ij}(t)$ :recorded value of covariate i for unit j at time t
- Our proposed model allows for a vector covariate process
- Data being collected on individual power converter j will include  $\{t_{j'}\delta_{j'}x(t_{j})\}$ .
- $\Delta_{Temp}$ : the difference between the minimum and maximum temperatures during thermal cycling over a specified time period
- N<sub>j</sub>: the number of cycles over the same specified time period for each power converter.

# MODEL AND APPROACH: CUMULATIVE DAMAGE MODEL

- Describe the effect that one or more dynamic covariates has on the failure time distribution.
- The latent (unobservable) cumulative damage  $u_j(t)$  for an individual power converter is modeled by:

$$u_j(t) = u_j[t; \beta_j, x_{ij}(t_j)] = \int_0^t \exp[\beta x(s)] ds.$$

Relationship between cumulative damage and random failure time T

$$U = u(T) = \int_0^T \exp[\beta x(s)] ds.$$

- The cumulative distribution function (cdf) of failure time T given the entire covariate history is:

$$F(t; \beta, \theta_0) = \Pr(T \le t) = \Pr\{U \le u[t; \beta, x(t)]\}.$$

# MODEL AND APPROACH: CUMULATIVE DAMAGE MODEL CONT'D

$$F_0\{u[t;\beta,x(t)];\theta_0\}$$

- is the cdf of U

$$f(t; \beta, \theta_0) = \exp[\beta x(t)] f_0\{u[t; \beta, x(t)]; \theta_0\}$$

- is the pdf of failure time T



- Power converter failure time *t* will be dependent on the number and range of the thermal cycles within the IGBT module.

## MODEL AND APPROACH: PROPORTIONAL HAZARDS MODEL

#### **Proportional Hazards Model**

- Biomedical Applications
- Uses no information from covariate history
- Would be appropriate if failures are caused by shocks, independent of unit age

### MODEL AND APPROACH: COVARIATE MODEL

#### **Covariate Model**

- Needed to predict future damage accrual
- Build model and predict covariate process
- Multivariate times series model
- Possibly use a vector autoregressive moving average time series model

# MODEL AND APPROACH: PARAMETER ESTIMATION

- Establish covariate model (previous slide)
- Parameter estimation becomes two-step process
  - Obtain estimates of failure-time distribution parameters conditional on the set of observed covariate processes.
  - Obtain estimates for parameters in the covariate process.

 $\theta_T = (\theta_0', \beta)' \rightarrow$  Failure-time distribution parameters

 $\theta_X \rightarrow$  Covariate model parameters

## MODEL AND APPROACH: FAILURE-TIME DISTRIBUTION PARAMETER ESTIMATION

 $L(\theta_T|FT \ Data, Covariate \ History)$ 

$$\prod_{i=1}^{n} \{ \exp[\beta x_i(t_i)] f_0(u[t_i; \beta, x_i(t_i)]; \theta_0) \}^{\delta_i} * \{ 1 - F_0(u[t_i; \beta, x_i(t_i)]; \theta_0) \}^{1-\delta_i}$$

- Write programs in R or Matlab to find
  - Parameter estimates
  - Standard errors
- To obtain fitted cumulative damage values
- Plug in the ML estimates of each parameter



## MODEL AND APPROACH: COVARIATE PROCESS PARAMETER ESTIMATION

 $L(\theta_X|Covariate\ History)=$ 

$$\prod_{i=1}^{n} \int_{wi} \left\{ \prod_{t_{ij} \leq t_i} f_{NOR}[x_i(t_{ij}) - \eta - Z_i(t_{ij})w_i; \sigma^2] \right\} * f_{BVN}\left(w_i; \sum_{w}\right) dw_i$$

- Statistical software: R
  - Ime package
  - Compute  $\theta$  for a given correlation structure

## MODEL AND APPROACH: PREDICTION PROCEDURE SUMMARY

- Adapt theory and methods used in Hong and Meeker (2013)
- Estimate remaining useful life distributions
- Strong covariate information → Reduce width of prediction intervals
- Predictions for an entire wind farm
  - Predictions for individual units
  - Cumulative number of failures → Maintainers/Manufactures

### NEEDS FOR RESEARCH:

#### MODEL ASSESSMENT

- Good fit to the data does not indicate predictive ability
- Assess predictive ability of cumulative damage models

#### **Cross Validation**

- Measure predictive performance
- Easy to overfit by including too many parameters
- "Training set"



#### FC1 (Without Ripple)

- 1. EIS performed before polarization
- 2. Polarization curve
- 3. EIS performed after polarization

#### © t = 0; 48; 185; 348; 515; 658; 823; 991 h

- $@J = 0.70 \text{ A/cm}^2$
- Ramp: from 0 A/cm<sup>2</sup> to 1 A/cm<sup>2</sup> of 1000 s
- $0 J = \{0.70 ; 0.45 ; 0.20\} \text{ A/cm}^2$

#### FC2 (With Ripple)

Characterizations (Polarization + EIS)

- 1. Polarization curve
- 2. EIS performed after polarization

@ t = 0; 35; 182; 343; 515; 666; 830; 1016 h

Ramp: from 0 A/cm<sup>2</sup> to 1 A/cm<sup>2</sup> of 1000 s

 $@J = \{0.70 : 0.45 : 0.20\} \text{ A/cm}^2$ 

## NEEDS FOR RESEARCH: LEAVE-ONE-OUT CROSS VALIDATION (LOOCY)

- Assume there are *n* independent observations  $y_1, ..., y_n$
- 2. Form a test set from observation *i*, i.e. leave this observation out and fit the model using the remaining data
- 3. Compute the predicted residual (or error) as  $e_j^* = y_j \hat{y}_j$
- 4. Repeat steps 2 and 3 for all i
- Compute Mean Squared Error (MSE) from  $e_1^*, e_2^*, e_3^*, ..., e_n^*$  (in this context, called Cross-Validation (CV) error)





## CONCLUSIONS SUMMER 2015 PROJECT/INTERNSHIP

#### R&D cluster on reliable power electronics for wind turbines

#### Project focus and objectives:

- Improving reliability and availability of frequency converters in wind turbines
- Root-cause analysis, countermeasures for existing and future turbines
- System behaviour in dynamic operation
- Condition monitoring for electronics
- ≺ Fault-tolerant generator/converter concepts

#### Project partners:

- ✓ Fraunhofer IWES, Fraunhofer ISIT
- 4 universities
- ✓ 22 industry partners

Duration: 2013 - 2016 Budget: 8 M€





Internship Summary (Work schedule: May 16th, 2015-August 27th, 2015)

## **QUESTIONS**







### IOWA STATE UNIVERSITY

Wind Energy Science Engineering & policy

#### REFERENCES

- [1] Fischer, Katharina, T. Stalin, H. Ramberg, J. Wenske, G. Wetter, R. Karlsson, and T. Thiringer (2014). "Field-Experience Based Root-Cause Analysis of Power-Converter Failure in Wind Turbines." *IEEE Transactions on Power Electronics* PP.99
- [2] Wilkinson, Michael (2011). Methodology and Results of the Reliawind Field Study. Tech. Garrad Hassan.
- [3] "Liquid Cooled Converter Handles 3 to 8 MVA." Windpower Engineering Development.
- [4] ."Lillgrund Offshore Windfarm." Siemens
- [5] Hong, Yili, and William Q. Meeker (2013).. "Field-Failure Predictions Based on Failure-Time Data With Dynamic Covariate Information." *Technometrics* 55.2, 135-49.
- [6] Escobar, Luis A., and William Q. Meeker (2006), "A Review of Accelerated Test Models." Statistical Science 21.4: 552-77.
- [7] A. Wintrich, U. Nicolai, W. Tursky, T. Reimann (2011), "Application Manual Power Semiconductors", Semikron International GmbH, Nuremberg, Germany.
- [8] James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013).. An Introduction to Statistical Learning: With Applications in R. New York, NY.
- [9] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, P. Tavner (2011), "An industry-based survey of reliability in power electronic converters," IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1441-1451.