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PRESENTATION OUTLINE

- Component Specific Reliability Research
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- Proposed Model/Approach

- Dynamic Covariates

- Cumulative Damage Model
- Needs for Research

- Concluding remarks
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RESEARCH PURPOSE

- Aiming to improve turbine reliability and availability
- Discover failure mode relationships

- Evaluate and predict the state of a wind turbine during
its service life
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STEPS

- Obtain reliability data

- Data should include failures and non-failures

- Build a model to link environment with failure events
- Validate model

- Make predictions
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BENEFITS OF RESEARCH

- Mitigate the risks and consequences of failure
- Learn about failure modes
- Obtain accurate predictions of future failures

Swedish Offshore Wind Farm Maintenance: Picture from Siemens
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EXAMPLE TO FULFILL RESEARCH PURPOSEK...

- Allow for use of advanced reliability analysis
- Ageing evidence
- Data expected to contain:

e Module ID

e Date of turbine installation

e Location

e Failure date or end-of-observation

e Failure mode information

e (Covariate history
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FAILLURES OF PITCH-CONTROLIED VARIABLE SPEED TURBINES
NORMALIZED FAILURE RATES :IMAGE FROM “RELIAWIND PROJECT” (2011)
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COMMON FAILURE MODES OF POWER CONVERTERS
(NOT NECESSARILY IN WIND TURBINES)

Chip-Related Failure Modes Package-Related Failures
Electrical Overstress Bond-wire lift-off

Latch-up and triggering of parasitic structures Solder fatigue

Charge effects, ionic contamination or hot carrier

injection Degradation of thermal grease

Fretting corrosion at pressure
Electro-migration, contact- and stress-induced migration | contacts

Thermal Activation Tin whiskers

Failure modes of Power Converters
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Survey results of weak points in power electronic systems and environmental variables that cause stress inside power
electronic converters taken from Yang (2011)
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POWER CONVERTER ISSUES IN WIND TURBINES
FISCHER (2014)

Condensation Electrical Flashover
eCauses Overstress Canses
«Humidity «Causes eInsescts In
«Lightning Cabinet
«Effects «Effects
«Small Interal *Reduce Insulation
Cracks Relevant Air Gaps
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CONDENSATION
(DYNAMIC COVARIATE EXAMPLE)
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Evidence of condensation during failure event from Fischer (2014)

IOWA STATE UNIVERSITY

Wind Energy Science Engineering & policy



MODEL AND APPROACH:
DYNAMIC COVARIATE DEFINITION

- Example within the realm of power converters AT, N

- AT: temperature change with respect to time in the Insulated Bipolar Gate Transistor
(IGBT) module at each cycle.

- N: number of cycles over time

- Manufacturers will often provide information on the power-cycling capability of the

IG BT mOd u Ies ' Power cycling lifetime as a function of AT; and T,
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MODEIL: AND APPROACH:
USING DYNAMIC COVARIATES

- T:Time to failure
- 6:censoring indicator
- 6 =1if a power converter fails
- 6 =0if the power converter survives to the time of data analysis.

- Xij (t) :recorded value of covariate i for unit j at time t

- Our proposed model allows for a vector covariate process
- Data being collected on individual power converter j will include {t,5,x(t;)}.

* A the difference between the minimum and maximum temperatures during
thermal cycling over a specified time period

* N, :the number of cycles over the same specified time period for each power
converter.
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MODEIL: AND APPROACH:
CUMULATIVE DAMAGE MODEL

- Describe the effect that one or more dynamic covariates has on the failure time

distribution.
- The latent (unobservable) cumulative damage u; (t) for an individual power converter

is modeled by:
u (t) = Uy [t ,8]; l](t )] eXp :BX(S)]
- Relationship between cumulative damage and random failure time T

U=u(T) = fOT exp[Bx(s)] ds

The cumulative distribution function (cdf) of failure time T given the entire covariate
history is:

F(t;3,0,) =Pr(T <t) =Pr{U < ult; B, x(t)]}.
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MODEL AND APPROACH:
CUMULATIVE DAMAGE MODEL CONT’'D

Fofult; B, x()]; 60} ol

Cumulative Exposure u(t)

- is the cdf of U et et

f(t; B,6,) = explBx(t)] folult; B, x(£)]; 65}

Fo(u; 6y)

- is the pdf of failure time T N

Cumulative Exposure u(t)

- Power converter failure time t will be dependent on the number and range of the
thermal cycles within the IGBT module.
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MODEL AND APPROACH:
PROPORTIONAL HAZARDS MODEL

Proportional Hazards Model
- Biomedical Applications
- Uses no information from covariate history

- Would be appropriate if failures are caused by shocks, independent of unit age
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MODEL AND APPROACH:
COVARIATE MODEL

Covariate Model

- Needed to predict future damage accrual
- Build model and predict covariate process
- Multivariate times series model

- Possibly use a vector autoregressive moving average time series model
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MODEL AND APPROACH:
PARAMETER ESTIMATION

- Establish covariate model (previous slide)
- Parameter estimation becomes two-step process

e Obtain estimates of failure-time distribution parameters conditional on the set of
observed covariate processes.

e Obtain estimates for parameters in the covariate process.

0 = (8}, B)" = Failure-time distribution parameters

0y = Covariate model parameters
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MODEL AND APPROACH:

FAILURE-TIME DISTRIBUTION PARAMETER ESTIMATION

L(6;|FT Data, Covariate History)

o {explBx; (t)] fo(ults; B x;(8)]; 09)3% {1 — Fy(ulty; B, x;(£)]; 0)3°

- Write programs in R or Matlab to find
e Parameter estimates
e Standard errors

- To obtain fitted cumulative damage values
- Plug in the ML estimates of each parameter
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MODEL AND APPROACH:

COVARIATE PROCESS PARAMETER ESTIMATION

L (9X | Covariate History):

n

1_[ J 1_[ fvorlxi(ti;) —n — Zi(t;)wi; 021 ¢ * favn (Wii ZW ) dw,

i=1 wi tijSti

- Statistical software: R
e |me package
e Compute 0 for a given correlation structure
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MODEL AND APPROACH:

PREDICTION PROCEDURE SUMMARY

- Adapt theory and methods used in Hong and Meeker (2013)

- Estimate remaining useful life distributions

- Strong covariate information = Reduce width of prediction intervals
- Predictions for an entire wind farm

e Predictions for individual units
e Cumulative number of failures = Maintainers/Manufactures
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NEEDS FOR RESEARCH:

MODEIL ASSESSMENT

- Good fit to the data does not indicate predictive ability
- Assess predictive ability of cumulative damage models

Cross Validation

- Measure predictive performance

- Easy to overfit by including too many parameters
- “Training set”

FC1 (Without Ripple)

Characterizations (Polarization + EIS) | @ ¢ = 0; 48; 185; 348; 515; 658; 823;991 h
FC1 Learning dataset 1. EIS performed before polarization | @ J = 0.70 A/cm?
2. Polarization curve Ramp: from 0 A/cm? to 1 A/ecm? of 1000 s

\ 3. EIS performed after polarization @J = {0.70; 0.45; 0.20} A/cm?
FC2 ( Testing dataset () ?? Challenge ??
FC2 (With Ripple)
Characterizations (Polarization + EIS) | @ ¢ = 0; 35; 182; 343; 515; 666; 830; 1016 h
1. Polarization curve Ramp: from 0 A/cm? to 1 A/cm? of 1000 s
2. EIS performed after polarization | @ J = {0.70 ; 0.45 ; 0.20} A/cm?

t=0h t=550h t=1155h
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NEEDS FOR RESEARCH:

LEAVE-ONE-OUT CROSS VALIDATION (1.LOOCYV)

;. Assume there are n independent observations y;, ...,J,

» Form a test set from observation i, i.e. leave this observation out and fit the model using the
remaining data

3. Compute the predicted residual (or error) as e/ = y; — 9;

4 Repeat steps 2 and 3 for all i

5 Compute Mean Squared Error (MSE) from eg, e,, e3, ..., e, (in this context, called Cross-
Validation (CV) error)
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CONCLUSIONS
SUMMER 2015 PROJECT/INTERNSHIP

R&D cluster on reliable power electronics for wind turbines

Project focus and objectives: Industry partners:

~-{ Improving reliability and availability of Research partners: EREDO! juwi
frequency converters in wind turbines - @ ssmvenasomens

-\ Root-cause analysis, countermeasures for - Fraunhofrsirs‘ . wooowane
existing and future turbines Daoftt

-{ System behaviour in dynamic operation s g (o] 333 Lone unae ?.UZ'::!!

-{ Condition monitoring for electronics . - .l WTND —

-\ Fault-tolerant generator/converter concepts FO er d \O/ w"n — EWE

itec
Project partners: = Fraunhofg - P’y

-{ Fraunhofer IWES, Fraunhofer ISIT
{4 universities

-\ 22 industry partners
Duration: 2013 - 2016 Budget: 8 M€
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Internship Summary (Work schedule: May 16t, 2015-August 27, 2015)
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QUESTIONS
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