Renewable-Motivated Co-optimized Expansion Planning of Generation, Transmission, Distribution and

Natural Gas Systems

WESEP 594

Tuesday, September 6, 2016

James McCalley
Anson Marston Distinguished Professor

London Professor of Power Systems Engineering
Department of Electrical and Computer Engineering
Iowa State University

Overview

- 1. Introduction (G&T)
 - Motivating concepts
 - Approach
 - Mental picture
 - Modeling
- 2. Applications (G&T)
 - Iowa
 - BPA
 - EI/WI Seam
- 3. Other infrastructure:
 - natural gas pipelines
 - distributed resources
 - hybrid energy systems
- 4. Handling uncertainty
- 5. Conclusions

Billion \$ 25 Transmission 20.7 20.2 10.2 11.9 10.2 11.9 20.7 20.7 20.2 20.2 Actual Projected Projected

Motivating concepts

Motivating concepts

Wind & transmission

...it gets more interesting when considering natural gas generation, rooftop and utility solar PV, and pipelines.

Approach

Co-optimization: the simultaneous identification of 2 or more classes of related infrastructure decisions within 1 optimization problem.

Approach

It is useful when decisions for two infrastructure classes are interdependent.

G-Amount

G-Technology

Expansion

plan

T-Amount

T-Timing

G-Timing

Mental picture

For each combination of investment choices, it computes O&M (including production costs) over entire period. The plan that minimizes total investment+O&M is selected.

Mental picture

- Not predictive
- Rather, exploratory!

- Enables identification of most economic designs subject to imposed constraints & how designs perform over specified conditions.
- Comparative interpretation is useful, e.g., compare cost of meeting a clean-energy goal with or without transmission investment.

Modeling...

NETWORK

OPERATING (LOAD) BLOCKS

RESOURCES

TRANSMISSION

Modeling - Network

1. Reduced network is represented using DC power flow, with "normal condition" flow limits. N-1 analysis not done (yet).

The problem is mixed integer linear program, modeled over 20 yrs; computational tractability prohibits large networks. 10

Modeling – operating blocks

- 5. Load is modeled for each of 4 seasons using 3-4 load blocks per season.
- 6. Similar operating conditions, in terms of load levels and wind/solar levels, are assumed to be identical.

Based on load levels & wind, solar levels.

→ Identifies similar network flow patterns.

Each operating block is treated without temporal interdependence of other blocks.

Modeling – resources

12. 1 min, 10min, 30min reserve modeled as function of variability; variability a function of load & wind/solar penetration.

REGULATING RESERVES (1 MIN)

LOAD FOLLOWING (10-MIN)

CpbltyRegUpRsrvs >
CpbltyRegDownRsrvs >
CpbltyLF,UpRsrvs >
CpbltyLF,DownRsrvs >

These are provided by gen and/or demand that can be controlled. They are procured in the market (they cost money!).

k₁ 1min netload standard deviation]
 k₂ 1min netload standard deviation]
 k₃ 10min netload standard deviation]
 k₄ [10min netload standard deviation]

These reflect netload variability. They change with amount & geo-diversity of wind/solar. They prevent underinvestment in flexible resources.

Modeling – transmission

18. Existing/candidate transm modeled w/ impedances. Candidate transm modeled disjunctively (integer variables).

Disjunctive: equivalent linear model

Line is in
$$z_{ij}=1$$

$$-z_{ij}P_{ij\max} \leq P_{ij} \leq z_{ij}P_{ij\max}$$

$$-z_{ij}P_{ij\max} \leq P_{ij} \leq z_{ij}P_{ij\max}$$

$$0 \leq P_{ij} - B_{ij}(\theta_i - \theta_j) \leq 0$$

$$-1000 \leq P_{ij} - B_{ij}(\theta_i - \theta_j) \leq 1000$$

$$-P_{ij\max} \leq P_{ij} \leq P_{ij\max}$$

$$-0 \leq P_{ij} \leq 0$$

Application - lowa

J. McCalley, C. Harding, "Leveraging a Geographic Information System in Co-optimized Generation and Transmission Expansion Planning for High Wind Penetration in Iowa," funded by the Iowa State University Electric Power Research Center, 8/14-8/16.

Grow wind from 6.2GW to 20 GW in 20 yrs.

Abhinav Venkatraman, Year 2 MS Student

Ali Jahanbahni,
Post-doctoral
researcher

Chris Harding,
Associate Professor
Geological & Atmospheric Sciences

Application - BPA

Patrick Maloney, Year 2 Ph.D. Student

Ping Liu,
Post-doctoral researcher

Work done in collaboration with Ben Hobbs, Schad Professor in Env Mngmnt, Director of Env, Energy, Sustanability & Health Institute, Johns Hopkins University

PROJECT TEAM

- National Renewable Energy Laboratory, Aaron Bloom (LEAD)
- Pacific Northwest National Laboratory, Yuri Makarov
- Oak Ridge National Laboratory, Fran Li
- Argonne National Laboratory, Jianhui Wang
- Iowa State University, Jim McCalley
- Southwest Power Pool, Jay Caspary
- Midcontinent Independent System Operator, Dale Osborn
- Western Area Power Administration, Rebecca Johnson

Abhinav Venkatraman, Year 2 MS Student

Ali Jahanbahni, Post-doctoral

Armando Figueroa, Year 3 Ph.D. Student

Hussam Nosair, Post-doctoral researcher

Objective: identify least-cost way to achieve 40% CO₂ reduction rel to 2005 by 2038.

Observations:

- Existing B2B very low capacity
- Best wind resource mainly in EI; best solar resource mainly in WI;
 - → transmission enables use of both everywhere.
- Diurnal load diversity (time zones)
 - → CAL can compete 5MW in NY during NY peak;
 - NY can compete 7MW in CAL during CAL peak. Reduces cost during each regions hi-cost hour for energy and/or for contingency reserves. Reduces cost during other hrs if markets allow.
- Annual load diversity (geo-differences)
 - → CAL's 5MW (or more) can reduce NY capacity;
 - → NY's 7MW (or more) can reduce CAL capacity.

Objective: identify least-cost way to achieve 40% CO₂ reduction rel to 2005 by 2038.

Heavy AC network reinforcement to move power from each interconnection's resources its load centers

Design 1: No HVDC upgrades, i.e., no additional cross-seam capacity.

Objective: identify least-cost way to achieve 40% CO₂ reduction rel to 2005 by 2038.

Heavy AC network reinforcement to move power to coasts.

Design 1: No upgrades, i.e., no additional cross-seam capacity.

Design 2-A: Reconfigured seam - additional B2B capacity only.

Reach National RPS of 25% Renewable Energy by 2035 (\$B)

	Case 1 (Baseline)			Case 2A (Upgrade existing B2B)	Difference	
Objective Function Term	Case 1 (EI)	Case 1 (WI)	Total	Total	(ΔNPV/NPVCa se1)	Comments
					(%)	
Total NPV	2,334	365	2,699	2,612	3.23%	< Savings
Generation Investment NPV	311	61	372	347	0.92%	< Lower generation investment
Production Cost NPV	1,523	221	1,744	1,693	1.91%	< Lower production cost
Transmission Investment NPV	12	2	15	20	(0.18%)	< Additional transmission
FixedO&M NPV	373	73	447	439	0.30%	< Lower FixedO&M cost

Objective: identify least-cost way to achieve 40% CO₂ reduction rel to 2005 by 2038.

Pay more for HVDC line but reduce AC transmission reinforcement in each interconnection.

Design 1: No upgrades, i.e., no additional cross-seam capacity.

Design 2-A: Reconfigured seam - additional B2B capacity only.

Design 2-B: Reconfigured seam - additional capacity via B2B/HVDC lines

Objective: identify least-cost way to achieve 40% CO₂ reduction rel to 2005 by 2038.

Save money by avoiding most AC reinforcement but pay high cost for macrogrid overlay.

Design 1: No upgrades, i.e., no additional cross-seam capacity.

Design 2-A: Reconfigured seam - additional B2B capacity only.

Design 2-B: Reconfigured seam - additional capacity via B2B/HVDC lines

Design 3: Macrogrid overlay.

Other infrastructure — natural gas pipelines R. Johnson, E. Spyrou, S. Lemos-Cano, J. Ho, A. Figueroa, B. Hobbs, J. McCalley, "EISPC – Co-optimization of transmission and

R. Johnson, E. Spyrou, S. Lemos-Cano, J. Ho, A. Figueroa, B. Hobbs, J. McCalley, "EISPC – Co-optimization of transmission and other resources," NARUC Project 3316T4, 9/14-4/15, funded by the Eastern Interconnection States Planning Council (EISPC).

 $\theta_i - \theta_i = X_{i,i} P_{i,i}$

$$c_i \rho_i - c_i \rho_i = K'_{i,j}G_{i,j}$$

Important difference: Linearized power flow equations are good for MW flows. However, in linearized gas flow equations, constants c_i and c_j are sensitive to pressures, so a piecewise linear gas pipeline model is necessary.

High Carbon Price; w/RPS, 20 years

Type, location, timing, & capacity of gen additions change when gas pipelines are considered. 23

Other infrastructure – distributed resources

- <u>DG benefits</u>: less transmission, loss reduction.
- <u>Investment cost</u>: LCOE \$242 PV-rooftop; \$64 PV-utility, \$55 wind; \$65 NGCC.
- Reliability: It is unclear whether reliability improves (w/, w/o microgrid), and if it does, whether improvement justifies the cost. Check SAIDI & SAIFI.
- <u>O&M</u>: Low for solar, hi for wind. Low for utility scale, high for DG.
- Green people: Can be satisfied with community solar.
- Analysis: Need co-optimization to answer these questions.

Other infrastructure – hybrid energy systems

- Integrates heat/cooling, and electricity; renewable because it utilizes biomass.
- Provides partial hedge for high risks of shale gas.
- A new concept of DG, mid-size (1-100MW), located at T/D substation.
- MIMO+cheap storage enables provision of flexibility, resilience, adaptability.
- Requires a new way of thinking: Energy Systems Integration (<u>www.iiesi.org</u>)

Handling Uncertainty

Global (not parametric) uncertainties expressed as: Yes, No; or H, M, L

Ali Jahanbahni, Post-doctoral researcher

Patrick Maloney, Year 2 Ph.D. Student

Ping Liu,
Post-doctoral researcher

Work done in collaboration with Ben Hobbs, Schad Professor in Env Mngmnt, Director of Env, Energy, Sustanability & Health Institute, Johns Hopkins University

Minimize:

NPW{CoreCosts(x)

+ $\Sigma_k \Pr_k \times \{OpCost(\Delta \underline{x}_k)\} + AdaptationCost(\Delta \underline{x}_k)\}$ Subject to:

Operational constraints
Flexibility constraints
Reliability constraints
Resiliency constraints

for futures k=1,...N

 \underline{x} : Core investments, to be used by all futures k $\underline{\Delta x}_k$: Additional investments needed to adapt to future k

TRANSMISSION CAPACITY

Take-aways

- 1. Wind energy has been/will continue to be a go-to energy resource.
- 2. New transmission is essential for reaching clean-energy goals at lowest cost.
- 3. DG is good but community solar is better.
- 4. Hybrid energy systems provide clean flexibility.
- 5. We cannot predict the future but computational tools should be

used to explore it.