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a b s t r a c t

In prediction of self-excited forces and flutter instability of flexible structures, time domain method has
distinct advantages. Rational Functions that are used to formulate self-excited aerodynamic forces in
time domain were indirectly extracted from experimentally obtained flutter derivatives in the past.
Recently, an algorithm was published to directly extract the Rational Functions from wind tunnel section
model tests in free vibration. To overcome the limitations of free vibration technique, a new algorithm
that is developed for direct extraction of the Rational Functions from section model tests using a forced
vibration technique is presented here. The new algorithm can be used to extract all the Rational Functions
associated with one, two or three degree-of-freedom motion (vertical, lateral and torsional) of a section
model. To validate the new algorithm, forced vibration wind tunnel tests in two degrees of freedom (ver-
tical and torsional) were performed on a streamlined bridge deck section model with width-to-depth
ratio B/D = 15:1 and also a bluff rectangular section model with B/D = 5:1. This is a significant improve-
ment from other forced vibration methods that require separate one-degree-of-freedom model tests
which are dependent on phase angle difference between aerodynamic loads and displacements.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In design of long-span bridges, it is important to identify
whether there is aeroelastic instability (flutter) at wind speeds be-
low the design wind speed. Scanlan and Tomko [1] developed a
technique to carry out flutter analysis in frequency domain using
experimentally obtained flutter derivatives. This laid the founda-
tion for the development of various efficient methods to extract
flutter derivatives from wind tunnel experiments, such as Scanlan
[2] and Sarkar et al.’s [3] Modified Ibrahim Time Domain (MITD)
method, Brownjohn and Jakobsen’s [4] Covariance Block Hankel
Matrix (CBHM) method, and Gan Chowdhury and Sarkar’s [5] Iter-
ative Least Squares (ILS) method, and many other methods. In re-
cent years, time domain analysis (e.g., [6–10]) has been gaining
popularity. In time domain analysis, the equations of motion are
frequency independent so structural and aerodynamic nonlineari-
ties can be incorporated. For time domain analysis, the self-excited
forces acting on a flexible structure can be approximately repre-
sented by Rational Functions in Laplace domain. Roger [11] formu-
lated the least squares Rational Function Approximation (LS-RFA)
formulation, and Karpel [12] developed the minimum state Ra-
tional Function Approximation (MS-RFA) formulation. Using these
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RFA formulations, one can obtain Rational Function Coefficients
from flutter derivatives by approximation techniques. RFA formu-
lation has been applied to bridge aerodynamics by several
researchers including Xie [13], Xiang et al. [14], Wilde et al. [15]
and Chen et al. [16]. However, this is an indirect way to obtain Ra-
tional Function Coefficients since flutter derivatives need to be ob-
tained first from experiments that need to be repeated for several
wind speeds. Thus, to make the process of extracting the Rational
Function Coefficients more efficient, Gan Chowdhury and Sarkar
[17] developed a new method based on free vibration of section
models where both displacements and surface pressures of the
model were simultaneously recorded and used. It is known that
the free vibration method has some limitations compared to the
forced vibration method because it is particularly unsuitable for
higher wind speeds, large amplitudes of motion, turbulent flow,
aerodynamically unstable cross-sections and flow regimes where
vortex-shedding dominates the excitation. This provided the moti-
vation to develop a forced vibration experimental method to ex-
tract the Rational Functions. However, the current forced
vibration techniques for extraction of flutter derivatives [18,19]
or Rational Function Coefficients [20] have some limitations.
Firstly, these techniques are based on the phase difference between
simultaneously obtained displacement and aerodynamic load time
histories. In a recently concluded comparative and sensitivity
study [21], it was shown that in a phase-difference-dependent
forced vibration technique to extract the four flutter derivatives
based on a pure torsional motion system, the errors in A�2 and H�2
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Nomenclature

bLseðtÞ aerodynamic self-excited lift in Laplace domainbMseðtÞ aerodynamic self-excited moment in Laplace domain
q air density
U mean wind speed, m/s
B width of the bridge deck
D height of bridge deck
B/D aspect ratio of bridge deck model
K (=Bx/U), reduced frequency of the vibration
p (=iK), nondimensional Laplace domain variable
ĥ vertical displacement in Laplace domain
â torsional displacement in Laplace domain
Q matrix of Rational Functions
q̂ displacement vector in Laplace domain
A0, A1, F, k Rational Function Coefficients
Lse(t) aerodynamic self-excited lift in time domain

Mse(t) aerodynamic self-excited moment in time domain
w1, . . ., w6 vectors that include all the Rational Function

Coefficients
A�1; . . . ;A�4 flutter derivatives per unit length, aerodynamic

moment
H�1; . . . ;H�4 flutter derivatives per unit length, lift force
h(t) vertical displacement in time domain
a(t) torsional displacement in time domain
s dummy time variable in the integration
qxy cross-correlation coefficient
errpeak percentage peak error
x experimentally obtained time history
y simulated time history
x̂i peak values of time history x
ŷi peak values of time history y
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could be significant, since slight errors in the phase difference ob-
tained from the experiment gets amplified in the formulation that
defines and H�2. Similar observation was made in the phase-differ-
ence-dependent technique to extract Rational Function Coeffi-
cients [20]. Secondly, earlier forced vibration techniques were all
based on one degree-of-freedom (DOF) motion (vertical or tor-
sional), and aeroelastic coefficients (flutter derivatives or Rational
Function Coefficients) associated with two degrees of freedom
were obtained by combining results from two separate one DOF
tests. Considering there is a physical difference between the aero-
dynamics of one DOF and two DOF motions, there might be errors
introduced in the aeroelastic coefficients obtained by one DOF sys-
tem because the actual aerodynamic interaction of a two DOF sys-
tem may not be captured well. Thus, in this paper, a forced
vibration method that does not use the phase difference is described
to extract all the Rational Function Coefficients simultaneously
from a two-DOF dynamic system for the first time. Moreover, the
method developed in this paper is more efficient than earlier ones,
since it requires data obtained at two wind speeds only to solve for
the full set of Rational Function Coefficients.
2. Formulation and algorithm

Using Minimum State Rational Function Approximation (MS-
RFA) formulation, Karpel [12] derived the following Laplace do-
main formulation of aerodynamic self-excited forces:

bLsebMse

� �
¼Vf Qq̂

¼
1
2qU2B 0

0 1
2qU2B2

" #
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â

� �
ð1Þ

where B = width of the bridge deck, U = mean wind velocity, p = iK is
nondimensional Laplace domain variable, K = Bx/U = reduced fre-
quency of the vibration, where x = 2pf = circular frequency of the
vibration, ‘^’ denotes the Laplace transformation of the correspond-
ing time domain function, Lse and Mse are self-excited lift and mo-
ment, respectively, h is vertical displacement and a is torsional
displacement. Q is Rational Function matrix consisting of four Ra-
tional Functions and A0, A1, Fand k are Rational Function
Coefficients. A0, A1 are stiffness matrix and damping matrix, respec-
tively, and F is a lag matrix, all of order 2 � 2, k is a lag coefficient,
and q̂ ¼ ½ĥ=B â�T is the displacement vector. Multiplying both sides
with p + k, and applying inverse Laplace transformation on both
sides of Eq. (1), two time-domain equations for lift and moment
can be obtained respectively as:
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where

w1 ¼ kLðA0Þ11 kLðA0Þ12

� �
;

w2 ¼ ðA0Þ11 þ kLðA1Þ11 þ ðFÞ11 ðA0Þ12 þ kLðA1Þ12 þ ðFÞ12

� �
;

w3 ¼ ðA1Þ11 ðA1Þ12

� �
; w4 ¼ kMðA0Þ21 kMðA0Þ22

� �
;

w5 ¼ ðA0Þ21 þ kMðA1Þ21 þ ðFÞ21 ðA0Þ22 þ kMðA1Þ22 þ ðFÞ22

� �
;

w6 ¼ ðA1Þ21 ðA1Þ22

� �
:

Eqs. (1)–(3) are slightly modified forms of those mentioned in
[17]. Eqs. (2) and (3) can be rewritten in matrix form as:
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Let
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Fig. 2. Model and suspension system.
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AM ¼ w4 w5 w6 �kM
� �

; XM ¼

1
2 qU2B2ðUBÞq
1
2 qU2B2 _q
1
2 qU2B2ðBUÞ€q
U
B Mse

2666664

3777775; bM ¼ _Mse:

Thus,

ALXL ¼ _Lse; AMXM ¼ _Mse ð6Þ

It can be seen that all the Rational Function Coefficients that
need to be identified are included in AL and AM. Therefore, the prob-
lem reduces to extracting AL and AM from a two-DOF test. In a
forced vibration experiment, displacement and aeroelastic force
time histories are recorded, and their derivatives can be obtained
by finite difference method applied to original time histories. Thus,
vectors XL, XM, bL and bM in the above equations can be formulated.
Finally, vectors AL and AM can be solved by Least Squares method
as:

AL ¼ ðbLXT
L ÞðXLXT

L Þ
�1
; AM ¼ ðbMXT

MÞðXMXT
MÞ
�1 ð7Þ
Fig. 3. Driving mechanism.
3. Experimental set-up

3.1. Description of wind tunnel used

The experiments were performed in the Bill James Open-Return
Wind Tunnel, which is located in the Wind Simulation and Testing
Laboratory (WiST Lab) in the Department of Aerospace Engineering
at Iowa State University. This wind tunnel has a test section of
0.915 m (3.0 ft) width by 0.762 m (2.5 ft) height and its maximum
wind velocity is 75 m/s (246 ft/s).

3.2. Model, suspension system and forced vibration mechanism

To validate the method stated in this paper, experiments were
carried out on both a streamlined model and a bluff model. The
streamlined bridge deck section model was used in both one-
DOF experiment and two-DOF experiment as shown in Figs. 1
and 2 (see also [22]). The streamlined model is composed of a shal-
low box girder section and two semi-circular fairings at the edges.
The length, chord length and thickness of the model are about
0.533 m, 0.3 m, and 0.02 m, respectively. The bluff section model
is rectangular with a width-to-depth ratio (B/D) of 5:1, and the
length, chord length and thickness of the model are about
0.533 m, 0.16 m, and 0.032 m, respectively (see also [21]). To re-
duce the edge effects, two plexiglass end plates were used on both
models as seen in Fig. 2.

The three-DOF model suspension system used in this experi-
ment is shown in Fig. 2. This system, developed by Sarkar et al.
Fig. 1. Cross-section of models used in the ex
[23], enables vertical, horizontal and torsional motions of the
model. To realize forced sinusoidal motions of the section model
with constant amplitude and frequency in the experiments, a
driving mechanism (Fig. 3) was used. The driving mechanism is
placed above the test section. It consists of two motors, which
are used to drive vertical and torsional motions of the model,
respectively. The section model is driven by four aluminum rods
which are connected with the driving mechanism, as seen in
Fig. 2. Thus, vertical, torsional, or combined vertical-torsional
two-DOF sinusoidal motion of the section model can be generated
using this driving mechanism. Moreover, by changing the rotating
speed of two motors using two separate controllers, the two fre-
quencies of model vibration in two degrees of freedom can be
changed independently.
periments: (a) streamlined and (b) bluff.
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3.3. Displacement measurement

The vertical displacement of the model was measured by mea-
suring the elastic force in each of two springs which is connected to
the model at one end and a strain gage force transducer at the
other end. The torsional displacement was measured by measuring
the torque at one end of the model shaft using a torque transducer
which is mounted on the suspension system. LabVIEW was used
for data acquisition, where the sampling rate was set at 625 Hz.

3.4. Aeroelastic force measurement

The algorithm stated in this paper requires time histories of
aeroelastic forces acting on the model while it vibrates, in addition
to the displacement time histories of the model. Therefore, surface
pressures were measured on the model through a row of pressure
taps located on the upper and lower surfaces of the model along
the mid-plane for both streamlined and bluff models. In total, 42
pressure taps for streamlined model and 32 pressure taps for bluff
model were used in the test. The pressure taps are equally distrib-
uted on the top and bottom surfaces and they are denser on the up-
stream side than the downstream side of the models. Two 64-
channel pressure modules (Scanivalve ZOC33/64 Px) were used to
measure the pressure. The sampling rate for pressure measurement
was 312.5 Hz (half of displacement sampling rate) in the experi-
ment. To synchronize the pressure data with the displacement data,
the pressure transducers were set to work in external-trigger mode.
LabVIEW (National Instrument) was used for displacement data
acquisition and a separate program RAD (Scanivalve) was used to
collect the pressure data. LabVIEW was programmed to output a
digital signal when the displacement data acquisition started so
that the pressure data acquisition system would get externally trig-
gered to synchronously start the pressure data acquisition. The total
sampling time was set as 10 seconds for all the tests.

4. Numerical tests

4.1. Numerical simulation and noise test

Before conducting the wind tunnel tests, numerical tests were
carried out first to confirm that the algorithm developed here
works well in extracting Rational Function Coefficients of bridge
decks with both streamlined and bluff cross-sections. In the
numerical tests, flutter derivatives of a bluff rectangular (B/
D = 5:1) section model as extracted in [19] were used to generate
lift and moment time histories at two wind speeds with given ver-
tical and torsional displacement time histories as sinusoidal func-
tions. The generated lift and moment were substituted in the
algorithm to extract Rational Function Coefficients for the model,
and the Rational Function matrix which contains four Rational
Functions was computed using following formulation:

Q ¼
ðA0Þ11 þ ðA1Þ11pþ ðFÞ11p

pþk ðA0Þ12 þ ðA1Þ12pþ ðFÞ12p
pþk

ðA0Þ21 þ ðA1Þ21pþ ðFÞ21p
pþk ðA0Þ22 þ ðA1Þ22pþ ðFÞ22p

pþk
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To assess the accuracy of the extracted Rational Functions, they
were converted to flutter derivatives using following relationships:

H�1 ¼ imagðQ 11Þ=K2; H�4 ¼ realðQ 11Þ=K2;

A�1 ¼ imagðQ 21Þ=K2; A�4 ¼ realðQ 21Þ=K2

H�2 ¼ imagðQ 12Þ=K2; H�3 ¼ realðQ 12Þ=K2;

A�2 ¼ imagðQ 22Þ=K2; A�3 ¼ realðQ 22Þ=K2 ð9Þ

The obtained flutter derivatives (referred RFA) were compared
with the original ones used at the beginning of the simulation as
shown in Fig. 4. As can be seen in the plots, all eight flutter derivatives
compare very well with the original ones, which proves that the Ra-
tional Function formulation with only one lag term as used here is
accurate enough to approximate flutter derivatives of a bluff rectan-
gular cross-section model, even at high reduced velocities where
some flutter derivatives could have complex trends. Moreover, this
comparison shows that the algorithm developed here can work very
well in extracting Rational Function Coefficients from forced vibra-
tion experimental data. To quantitatively assess the error in the ob-
tained Rational Function Coefficients, they were converted to flutter
derivatives at exact reduced velocities where original experimental
data in [19] were obtained and the error function as given by Eq. (10)
was calculated to evaluate the percentage error:

err ¼

P8
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 XðjÞi � X0ðjÞ

i

� �2
r

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 X0ðjÞ

i

� �2
r" #

8
� 100% ð10Þ

where XðjÞi is the jth flutter derivative of the model calculated from
Rational Functions and evaluated at the ith reduced velocity point,
and X(1)–X(8) correspond to H�1–H�4 and A�1–A�4, respectively, and
Xi

0(j) is the corresponding original flutter derivative value given in
[19], and N is the number of the reduced velocity points involved
in the calculation. Using this error function, the percentage error
was calculated as 8.14% which is acceptable considering data at only
two wind velocities were used in the simulation to extract all the Ra-
tional Function Coefficients and the accuracy will certainly be im-
proved by introducing data from more number of wind velocities.

Some noise tests were performed to test the robustness of the
algorithm. White noise with different standard deviations was
added to the numerically generated displacement and correspond-
ing load (lift, moment) time histories obtained by using the original
flutter derivatives given in [19]. The standard deviation of the noise
was chosen as certain percentage (2%, 5% and 10%) of time history
amplitudes of displacements (h,a) and loads. The flutter deriva-
tives from the obtained Rational Functions from the noisy data
were compared with ones extracted from the numerically gener-
ated time histories without any noise, and the errors were com-
puted using Eq. (10), except the Xi

0(j) here is the flutter derivative
obtained from noise-free time histories and the Xi

(j) is obtained
from contaminated ones. The results are listed in Table 1 which
shows a percentage error below 10% even with a 10% noise. Thus,
the algorithm is reasonably robust.

4.2. Effect of time step on accuracy of the algorithm

In the algorithm, the displacement time histories need to be
numerically differentiated twice to get acceleration time histories
and also the first derivatives of the load time histories need to be
evaluated using numerical method. Thus, the time step chosen in
the finite difference method to calculate numerical derivatives could
affect the accuracy of the extracted coefficients, especially when
noise is present in the data. In current research, second order central
difference method was used to evaluate derivatives. To investigate
the consistency of the algorithm with different time steps chosen,
numerical tests were carried out with larger time steps and also with
5% noise added to the displacement and load time histories.

The time step in the original numerical test was set as 0.0032 s
which coincides with the experimental sampling period, and the
ones used in current test were 0.005 s and 0.01 s which are about
twice and three times of the original one. The coefficients extracted
from 5% noise contaminated time histories and with two larger
time steps were compared with ones extracted from clean time
histories and with original time step. The errors were calculated
using Eq. (10) as in the noise tests. It turns out that the percentage
error for time step of 0.005 s is 4.18% and that for time step of
0.01 s is 6.54% which are both acceptable, although time steps
are about two to three times the original time step of 0.0032 s.



Fig. 4. Numerically extracted Ration Function Coefficients from clean time histories and the time histories contaminated by noises and with errors added.

Table 1
Percentage errors shown in noise tests.

2% Noise 5% Noise 10% Noise

Err (%) Eq. (10)
1.74 3.92 9.39
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4.3. Experimental error estimate and resulted error in the coefficients

In addition to electronic noise, errors could also be introduced
into real experimental data either through equipment error or
operational error from experimentalists. In this section, numerical
tests were performed to confirm the algorithm could still work
well when both noise and errors are present in the data.
For current algorithm, the input data are model displacements,
h and a, aerodynamic loads, L and M, and the input parameters are
wind velocity, U, and air density, q. In this numerical test, error was
directly added to the specified parameters and the amplitudes for
time history data.

In the experiment, the model displacements were obtained by
measuring spring forces as mentioned earlier under experimental
set-up and thus errors could be introduced from the error in the
force transducers and the calibration of transducers. Moreover,
considering that angle measurement could have more error than
length measurement, 3% error is given to vertical displacement,
h, while 5% error is given to torsional displacement, a. The errors
in the aerodynamic loads could come from the pressure transduc-
ers, the pressure tubing, and the error from numerical method used



Fig. 5. Comparison of experimentally obtained flutter derivatives [17] and those from Rational Functions for the streamlined section model.
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to integrate surface pressure into loads. Considering that integra-
tion of pressures to calculate moment could have more error than
those from calculating lift, 3% error is assigned to lift, while 5% er-
ror is assigned to moment. The air density depends on the temper-
ature and atmospheric pressure and does not change much, so only
1% error is assigned. Finally, the error in the wind velocity could
come from the measurement of the dynamic pressure using Pitot
tube and the error in the air density, thus 3% error is assigned. In
the test, 5% noise and two combinations of errors, all positive or
all negative, were given to simulate real experimental environ-
ment. The resulting flutter derivatives are plotted in Fig. 4 (referred
RFA_noise and errors (±)) to compare with the results from clean
data and the original flutter derivative data. It can be seen in the
plots that the errors in the extracted aeroelastic parameters in-
crease with reduced velocity, however, this occurs in a very small
range. The errors were also quantified by error Eq. (10), which are
5.90% for the negative error case and 6.88% for the positive error
case. Thus, even with estimated errors and noise added in the data,
the algorithm can still be used to accurately extract all the
coefficients.

5. Experimental results and discussion

For the streamlined bridge deck section model, wind tunnel
tests were performed at five wind speeds: 2.8 m/s, 5.8 m/s,
8.6 m/s, 11.7 m/s, 14.4 m/s. The model was forced to move in



Fig. 6. Comparison of experimentally obtained flutter derivatives [19] and those from Rational Functions for the bluff section model.

B. Cao, P.P. Sarkar / Engineering Structures 43 (2012) 21–30 27
two DOFs (vertical and torsional) at frequencies that were both
around 2.5 Hz. Data obtained at two wind velocities, 2.8 m/s and
14.4 m/s, were used in the algorithm to solve for all the Rational
Function Coefficients. The results are given below:

A0 ¼
0:3273 �6:2384
�0:0970 1:3818

� �
; A1 ¼

�3:7549 �1:4947
0:8510 �0:3819

� �
;

F ¼
�0:9484 1:3397
0:2689 �0:1682

� �
; kL ¼ 0:1843; kM ¼ 0:2239

For the bluff rectangular section model, experiments were
carried out at wind speeds of 2.9 m/s, 5.9 m/s, 8.7 m/s, 11.6 m/s,
14.6 m/s. In these tests, the model was forced to vibrate in the
same way and at same frequencies as what was set in the experi-
ment of streamlined model. Data obtained at wind speeds of 5.9 m/
s and 14.6 m/s were used in the algorithm to extract all the Ra-
tional Function Coefficients for this bluff section model, which
are given below:

A0 ¼
�0:0618 �7:9085
�0:0387 �0:6258

� �
; A1 ¼

�0:7820 7:3997
�1:7649 �1:0621

� �
;

F ¼
�10:4613 �5:7309
�1:5021 2:9637

� �
; kL ¼ 1:2048; kM ¼ 0:7091

To validate the obtained Rational Function Coefficients, they
were converted to flutter derivatives using Eq. (9) as what was
done in the numerical tests. The flutter derivatives computed using
Rational Functions for the streamlined model were compared with



Fig. 8. Moment time histories for the streamlined section model at velocity of
11.7 m/s.

Fig. 9. Lift time histories for the bluff section model at velocity of 11.6 m/s.
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those directly extracted from a free vibration experiment carried
out by Gan Chowdhury and Sarkar [17] on the same model and
plotted in Fig. 5. While the flutter derivatives obtained from Ra-
tional Functions for the bluff rectangular model were compared
with those directly extracted from a forced vibration experiment
by Matsumoto [19] on a model with the same shape and same as-
pect ratio, B/D = 5. The flutter derivatives for the bluff model were
plotted in Fig. 6.

It can be seen from Fig. 5 that, all flutter derivatives for the
streamlined section model that are converted from Rational Func-
tions match with directly extracted ones very well, except for H�2.
In an earlier research by Cao and Sarkar [20] where the same
streamlined model was discussed, similar phenomenon was ob-
served and some numerical tests have been performed there on
the flutter derivatives of this model. The tests showed that, for this
model, H�2 derivative is most sensitive to the error in the input
time histories. Moreover, in that study, the H�2 curve changed from
the original shape to a shape similar to what was obtained here
with just 7% error added to the time histories generated by the ori-
ginal flutter derivatives.

The comparison of flutter derivatives for the bluff section mod-
el, as shown in Fig. 6, is a little worse than that of the streamlined
model, however the comparison of H�1; A�4; H�3 and A�3 is quite good,
while the comparison of H�4; A�1; H�2 and A�2 is good for low reduced
velocity region (less than 10) but slightly off at higher reduced
velocities.

By directly applying inverse Laplace transformation on both
sides of Eq. (1), the following formulations for self-excited lift
and moment (aeroelastic forces) in time domain can be obtained:
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The above formulations can be used to predict self-excited
forces and flutter speed in time domain. Aeroelastic self-excited
forces can be calculated using Eqs. (11) and (12) at all wind speeds
generated in the experiments using the model displacements h and
a as recorded, their first derivatives as calculated by finite differ-
ence method and the Rational Function Coefficients as extracted.
The numerically generated aerodynamic force time histories were
compared with those obtained experimentally at wind speeds
other than those used in the extraction procedure of Rational Func-
tion Coefficients to verify the accuracy of the method. For the
Fig. 7. Lift time histories for the streamlined section model at velocity of 11.7 m/s.
streamlined model, comparisons of lift and moment time histories
at wind speed of 11.7 m/s are shown in Figs. 7 and 8, respectively.
For the bluff model, comparisons of the lift and moment time his-
tories at wind speed of 11.6 m/s are shown in Figs. 9 and 10,
respectively. As can be observed in the plots for the streamlined
model, both lift and moment time histories matched very well,
while the matching is slightly worse for the bluff section model.
In the plots for the bluff section model, the amplitudes of predicted
lift and moment time histories (by Rational Functions) are slightly
Fig. 10. Moment time histories for the bluff section model at velocity of 11.6 m/s.



Table 2
Parameters for time history comparisons.

qxy Errpeak (%)

Lift (streamlined model) 0.85 1.55
Moment (streamlined model) 0.88 0.40
Lift (bluff model) 0.88 6.96
Moment (bluff model) 0.81 38.22

Table 4
Comparison of flutter speeds of the bluff section model obtained
by different set of parameters.

Flutter derivatives
(forced vibration,
1DOF, [19])

Rational Functions
(forced vibration,
2DOF, current)

Flutter speed, Ucr (m/s)
19.5 21.7
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smaller than those of experimentally measured ones, especially for
the lift. To better compare these time histories, cross-correlation
coefficient, qxy, and percentage peak error, errpeak, defined as below
were calculated and listed in Table 2.

qxy ¼
1
n

Pn
i¼1xiyi

rxry
ð13Þ

errpeak ¼
1
n

Pn
i¼1ðx̂i � ŷiÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1x̂2

i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ŷ2

i
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where x is experimentally obtained time history, y is simulated time
history, x̂iði ¼ 1;2; . . .Þ are peak values of time history x, and
ŷiði ¼ 1;2; . . .Þ are peak values of time history y. From Table 2, it is
shown that cross-correlation coefficients for all the time histories
are close to 1 which means the comparisons of the whole time his-
tories are good, while the coefficients for lift time histories are
lower than those for moment time histories, and the coefficients
for the bluff section model are lower than those for the streamlined
section model. The percentage peak errors for streamlined model
time histories are very low, while those for bluff model time histo-
ries are much larger, especially for the moment time history. This
shows the similar trend as shown in the cross-correlation coeffi-
cient results that the comparisons for the streamlined model time
histories are better than those for the bluff model time histories.
Actually, a similar trend can also be found in earlier flutter deriva-
tive studies (e.g., [21]).

For further validation, the flutter speed of the streamlined sec-
tion model was predicted using time domain simulation and Ra-
tional Function Coefficients obtained in this experiment. For
flutter speed prediction, the time domain equations of motion
were solved at each time step after substituting the Rational Func-
tion Coefficients extracted here at a chosen wind speed. This pro-
cess is repeated for incremental wind speeds until a diverging
response is obtained. The flutter speed obtained here was com-
pared with that obtained by Gan Chowdhury and Sarkar [17] on
the same model using Rational Functions (free vibration) and flut-
ter derivatives and shown in Table 3. Moreover, to investigate the
difference between Rational Function Coefficients extracted from
one-DOF and two-DOF forced vibration tests, the flutter speed ob-
tained earlier by Cao and Sarkar [20] from two separate one-DOF
forced vibration tests was also included in Table 3. As seen in this
table, the comparison is good. Similarly, the flutter speed of the
bluff section model was also predicted using Rational Function
Coefficients obtained in this paper, and compared with that pre-
dicted using flutter derivatives obtained by Matsumoto [19], as
Table 3
Comparison of flutter speeds of the streamlined section model obtained by different
set of parameters.

Flutter
derivatives
(free vibration,
[17])

Rational
Functions (free
vibration, [17])

Rational Functions
(forced vibration,
1DOF, [20])

Rational Functions
(forced vibration,
2DOF, current)

Flutter speed,
Ucr (m/s)

32.4 31.8 34.5 32.4
shown in Table 4. It can be seen that the flutter speed comparison
for bluff section model is good, though slightly worse than the
streamlined model case.
6. Conclusion

In this paper, a new algorithm has been developed for direct
extraction of all the Rational Function Coefficients for one, two or
three-DOF forced vibration wind tunnel tests on a section model.
The algorithm does not use phase angle difference between dis-
placement and aeroelastic force time histories in the extraction
procedure like in previous methods available in the literature.
Thus, the error introduced in all the parameters from error in iden-
tification of one parameter, i.e., phase angle difference, is elimi-
nated in this algorithm. Rather this new algorithm uses all the
recorded data points to identify the unknown parameters in a least
square sense that minimizes the error originating from the noisy
signals. The proposed algorithm is more efficient than others since
it requires data collected at two wind speeds only to extract the
full set of Rational Function Coefficients for a two-DOF system.
As part of the validation process, the Rational Functions obtained
in this paper were converted into flutter derivatives and were com-
pared with directly extracted ones obtained in earlier experiments
by other scholars, for both streamlined and bluff section models.
The comparison is well, especially for the streamlined model case.
Moreover, it was shown that the Rational Function Coefficients ob-
tained using this algorithm can be used to accurately predict the
self-excited forces acting on a section model at a given wind speed,
for both a streamlined cross-section and a bluff cross-section. Fur-
ther, the flutter speed of the streamlined cross-section bridge deck
model was predicted using Rational Function Coefficients obtained
here and has been shown to match with earlier results. In the fu-
ture, to validate the application of Rational Functions to predict
the response of a bridge deck in a nonstationary wind environ-
ment, free vibration tests in a gusty wind (ramp down function ap-
plied to mean speed) was performed on a streamlined section
model with the same geometry as the model used in this paper
but with a larger scale. The results of this validation are quite
favorable and will be presented separately.
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