IOWA STATE UNIVERSITY College of Engineering

Operating and planning electric networks with variable generation

Author: Armando L. Figueroa-Acevedo, MSEE

Date: 10/25/2013

My Background

Education

- 2013: MS Electrical Engineering, UPRM
- 2011: Graduate-level courses in Spain, UPNA
- 2010: Graduate-level courses in Denmark, AAU
- 2009: BS Electrical Engineering, PUPR

Professional Certifications

- Professional Engineer (PE), In progress; Passed PE exam
- Engineer in Training (EIT), Lic. 24009
- Certified Volleyball Referee

Industry Internships

- 2008: Lockheed Martin
- 2007: Pfizer Pharmaceuticals
- 2005 & 2003: Puerto Rico Electric Power Authority

Overview

Hard infrastructures

[1] Ibanez, E., McCalley, J., "Multiobjective evolutionary algorithm for long-term planning of the national energy and transportation systems," *Energy Systems Journal*, 2011

Planning process

- * Criteria
- * Time horizon
 - -Financing
 - -Multiple org.
 - -Land
 - -Environmental
 - -Cost of energy
 - -Reliability

Variable generation

- The existing electric infrastructure was not design for VG
- IF we do nothing about it, high penetration of VG...
 - Increases variability and uncertainty
 - Increases reserves requirements, transmission congestion and chances of curtailment
 - Degrades the performance of existing control performance standards
 - Reduces the total system's inertia

Uncertainty & Variability

- Uncertainty: Related to the accuracy of forecasting
 - A recent investigation covered this topic
 - D. Mejia, "Robust and flexible planning of power system generation capacity", 2013
- Variability: Related to the nature of the resources
 - Studies have mainly focused on statistical methods
 - The trend is toward probabilistic approaches
 - Main focus of my work

Key question

Will there be enough capacity on the electric network to <u>manage</u> the increased **variability**, OR whether new sources, such as fast-response conventional generation, significant levels of demand response, and storage technologies must be coordinated with VG controls to manage that **variability**?

Typical integration study

Figure C.1 Sequence of a Typical Variable Generation Integration Study

- Data recompilation/ modelling
- Develop net load time series
- 1-Yr production cost model
- Impact on reserves (regulation, load following, imbalance)

[2] M. Madrigal, K. Porter, "Operating and Planning Electricity Grids with Variable Renewable Generation", The World Bank, 2013

Source: Enernex Corporation 2010.

Note: ELCC = electricity load carrying capability; LOLE = loss of load expectation; NREL = National Renewable Energy Laboratory.

Strategies & solutions

- Improve forecasting
- Shorter scheduling intervals
- Consolidating balancing areas (BA)
- Bulk storage (e.g., PHS, CAES)
- Demand-side (DS) management
- Include operational effects on long-term planning

Compare cost and effectivenes (control performance) from a PORTFOLIO of options to mitigate variability

Storage

 T. Das dissertation suggested that bulk-CAES make sense at very high penetration of wind energy

Cross-arbitrage

CROSS-ARBITRAGE: Charges from the regulation market and discharges into the energy market or charges from the energy market and discharges into the regulation market

> The amount of down-regulation is more than up-regulation, charging up the reservoir for energy dispatch during high LMP periods

2013

VG controls

- Inertial emulation (limited, but effective); Secondary effects must be evaluated
- Primary governing (Cycling issues; blades degradation)
- Coordination between WT's in a wind power plant is key
 - Moreover, coordination between VG, storage, conventional generation, and demand-side management is crucial

$$J\frac{d^2\theta}{dt^2} = T_m - T_e = T_a$$

Variable-Generation Expansion Planning

Relevant publications

- Wang, C., McCalley, J., "Impact of wind power on control performance standards", International journal of electrical power and energy systems, 2013
- Das, T., "Performance and economic evaluation of storage technologies", PhD dissertation at ISU, 2013
- Mejia, D., "Robust and flexible planning of power system generation capacity", PhD dissertation at ISU, 2013
- Ibanez, E., McCalley, J., "Multiobjective evolutionary algorithm for long-term planning of the national energy and transportation systems," *Energy Systems Journal*, 2011

Research hypothesis

Coordination of conventional generation, VG-controls, bulk-storage, and demand side-management in the regulation and day-ahead market together with long-term investment *strategies* will provide the qualitative assessment required to evolve from 20-30% to >50% VG penetration scenarios.

Research plan

- Develop a method to include >50% VG into the existing generation expansion planning (GEP) model
- Include operational impact (e.g., control performance) into long-term planning models
- A method to compare system economics between increased production costs from curtailed wind, and increased production and investment costs from using storage and conventional generation.
- Tools: Production cost programs, AGC, Stochastic SCUC

Main assumptions

- Next Class of WTG
 - Different materials/topologies (e.g., permanent magnet, superconducting) 5-10 MW Inland, ~10 MW Offshore
- Wind turbines have inertial emulation, primary governing and ramp-rate control capabilities
- Solar PV inverters have reserve capabilities (by operating at a lower MPP)
- Significant demand-side management participation
- Storage technologies with arbitrage and cross-arbitrage potential

Potential constraints

- Simulation: Very extensive computational time
- Practical: Modern technologies lack of data due to low maturity level

Summary

- Variability can be managed with existing technologies.
 But what is the optimal portfolio?
- A coordinated control in the intra-hour time frame is required for higher penetration levels (e.g. >50%)

Operational effects should be included into long-term planning models

Questions?