IOWA STATE UNIVERSITY College of Engineering

Overview of LES for Use in Wind Farm Applications

Aaron Rosenberg

Motivation

- Wind Plant Efficiency
- Turbulent Loading
 - Fatigue Issues
- Acoustics
- Influence of Wind Farm on Atmosphere?

IOWA STATE UNIVERSITY

Wind Plant Efficiency

From: Assessment of Lillgrund (2008)

IOWA STATE UNIVERSITY

Fatigue Life

- Fatigue: weakening of material due to variable loading, eventually leading to failure
 - Cyclical loading due to rotation of blades
 - Chaotic loading from turbulence
- Rainflow-Counting
 - Used to predict fatigue life
 - Used in conjunction with empirical turbulence models
 - Replace empirical models with CFD?

IOWA STATE UNIVERSITY

What is CFD?

IOWA STATE UNIVERSITY

CFD

Advantages

- Cheaper than wind tunnel or full-scale testing
 - Time & Money
- Easy to change parameters
- Can be used to validate test measurements
- Can extract a lot of data

Disadvantages

- Only as accurate as the physics model used
- Numerical errors
- Can be computationally expensive
- Boundary Conditions

IOWA STATE UNIVERSITY

CFD Models

- Numerical methods for solving partial differential equations (Matt F. talked about this)
- Turbulence modeled with varying degrees of fidelity
 - RANS Low Cost, Low Fidelity
 - Time Averaged Solutions
 - LES Higher Cost, Higher Fidelity
 - Time Accurate Solutions
 - DNS Absurdly Expensive, Resolves Tiny Scales
 - Simulates even tiny scales

IOWA STATE UNIVERSITY

Navier-Stokes Equations

Navier-Stokes Equation (Newton's 2nd Law):

$$\underbrace{\rho\left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}\right)}_{\text{Inertia} (m*a)} = \underbrace{-\vec{\nabla}p + \mu \vec{\nabla^2} \vec{v} + \vec{f}}_{Forces}$$

• Incompressible (Mass Conservation): $\vec{\nabla} \cdot \vec{v} = 0$

IOWA STATE UNIVERSITY

Large Eddy Simulation (LES)

$$u_i = \bar{u}_i + u'_i$$

- Low-pass filtering of Navier-Stokes (N-S) Equations
 - Filters small scales of motion (u'_i) from solution (SFS/SGS)
 - Resolves large scale motion (\bar{u}_i) depending on available computational resource
- Models sub-filter (SFS) and sub-grid scales (SGS)

IOWA STATE UNIVERSITY

Wind Turbine Models (Porte - Agel 2010)

Actuator Disk

- Momentum Theory
- Used by Calaf (2010)
- Infinite number of blades
 - Divides swept area into many elements
 - Uses airfoil lookup tables to compute force on disk element
 - Force projected back on flow scaled with solidity

Actuator Line

- Sorensen and Shen (2002)
- Models each blade
 - Divides blade into elements
 - Uses airfoil lookup tables to compute force on blade element
 - Projects force back onto flow using Gaussian projection

IOWA STATE UNIVERSITY

Wind Turbine Models (Martinez 2012)

IOWA STATE UNIVERSITY

Simulator for Offshore Wind Farm Applications **SOWFA**

IOWA STATE UNIVERSITY

Background

- Developed at NREL by Churchfield and Lee
- "High-fidelity analysis of fluid physics and structural response using Large-Eddy Simulations and FAST"

From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

Structure

IOWA STATE UNIVERSITY

Atmospheric Simulation: Numerical Scheme

- ABLPisoSolver (Finite Volume)
 - Runs the atmospheric simulation on a large grid
 - Save planes of data at every time interval
 - Impose these planes as periodic boundary conditions on a smaller grid representing the wind farm
- Top boundary is a rigid lid
 - Prevents Convection

IOWA STATE UNIVERSITY

Atmospheric Simulation

Momentum transport

- I. time rate of change
- II. convection
- III. Coriolis force due to planetary rotation
- IV. density-normalized pressure gradient (deviation from hydrostatic and horizontal-mean gradient)
- V. horizontal-mean driving pressure gradient
- VI. SFS momentum fluxes (stresses)
- VII. buoyancy
- VIII. other density-normalized forces (from turbine actuator line model)

From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

Atmospheric Simulation: Input

From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

Atmospheric Simulation: Input

From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

Atmospheric Simulation: Output

From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

Wind Turbine Model

- Full high-Re LES of turbine blade is too expensive
 - Requires fine grid
- Actuator line model (Sørensen and Shen)
 - Uses airfoil look-up tables
 - Creates wake, tip, root, and bound vortices
 - Does not create blade boundary layer turbulence
 - Projects a normalized force on the flow
 - Finer Grid used near turbine
- Ignores tower and nacelle
- Can be coupled with NREL's FAST

IOWA STATE UNIVERSITY

Actuator Line Method

• Remember:

$$\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\overline{u}_{j} \overline{u}_{i} \right) = -2\varepsilon_{i3k} \Omega_{3} \overline{u}_{k} - \frac{\partial \widetilde{p}}{\partial x_{i}} - \frac{1}{\rho_{0}} \frac{\partial}{\partial x_{i}} \overline{p}_{0}(x, y) - \frac{\partial}{\partial x_{j}} \left(\tau_{ij}^{D} \right) - g \left(\frac{\overline{\theta} - \theta_{0}}{\theta_{0}} \right) \delta_{i3} + \frac{1}{\rho_{0}} f_{i}^{T}$$

- What is f_i^T ?
 - Gaussian projection of actuator element force
 - Airfoil lookup table to find force on blade
 - Force on flow is equal and opposite of force on blade

IOWA STATE UNIVERSITY

Actuator Line Method

• Gaussian Projection (Martinez et al, AIAA)

$$f_i^T(r) = \frac{F_i^A}{\varepsilon^3 \pi^{3/2}} \exp\left[-\left(\frac{r}{\varepsilon}\right)^2\right]$$

- F_i^A : Actuator Force (Lift + Drag)
- r: Distance between cell center and actuator point
- ε: Controls width of projection
 - $\varepsilon = 2\Delta x$ is recommended (Troldborg)

IOWA STATE UNIVERSITY

Output

- Global Turbine Quantities
 - Rotor Speed
 - Thrust
 - Torque
 - Etc...
- Blade Local Quantities
 - Angle of Attack
 - Fluid Velocity
 - Force Components
 - Etc...

From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

U=8 m/s From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

U=8 m/s From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

T=300 s

IOWA STATE UNIVERSITY

Sample Runs: Wind Farm Simulation

Normalized Wind Speeds at Lilligrund Offshore Wind Farm (L: Instantaneous R: 10-Min Time Averaged) From: Overview of SOWFA (webinar)

IOWA STATE UNIVERSITY

References (partial list)

- M. Churchfield, S. Lee, J.Michalakes, P. Moriarty, "A Numerical Study of the Effects of Atmospheric andWake Turbulence on Wind Turbine Dynamics", invited paper: Journal of Turbulence, Vol. 13, No. 14,1-32, 2012.
- Martinez, L. A., Leonardi, S., Churchfield, M. J., Moriarty, P. J., "A Comparison of Actuator Diskand Actuator Line Wind Turbine Models and Best Practices for Their Use," AIAA Paper AIAA-2012-900, 2012.
- Sorensen, J. N., and Shen, W.Z., "Numerical Modeling of Wind Turbine Wakes," *Journal of Fluids Engineering*, Vol. 124, 2002, pp. 393-399.

Acknowledgments

- Mentors: Dr. Anupam Sharma and Dr. Partha Sarkar
- Suganthi Selvaraj
- Bharat Agrawal

IOWA STATE UNIVERSITY