EPFL Summer Experience

Aaron Rosenberg 1/25/16

Summer Experience

- EPFL in Lausanne, Switzerland
 - Dr. Fernando Porté-Agel
- July 17th September 1st
- Surface Flow Convergence

How?

- Emailed Dr. Porté-Agel
 - Followed up on Skype
 - Offered to host me (easy part)
- Visa process (nightmare)
 - Work Visa
 - 3 month process
 - Traveled to Chicago and DC
 - Received visa 5 days before I left

Switzerland

Lausanne

- Population: 146,372 (4th in Switzerland)
- Northernmost shore on Lake Geneva
- Smallest city in world w/ rapid transit system
- Olympic Capital

Lausanne

L)

Travels

Surface Flow Convergence

- **Observed**: Flow *veers* as it travels through a wind farm
- Near-ground measurements show surface flow convergence

Surface Flow Convergence: How?

- Pressure drops across turbine
 Recovers *far* downstream
- Complete pressure recovery may not be possible with closely spaced turbines

Increasing pressure deficit in deep arrays

Surface Flow Convergence: Data

Surface flow veering observations (courtesy Prof. Eugene Takle; ISU)

Computational Analysis

- RANS + Actuator Disk
- OpenFOAM
- Validation:
 - 1-D Momentum Theory
 - Risø (Tellus) turbine

• Infinite array

- Angled Inflow
- Uniform & Neutral B.L.
- Story County Wind Farm
 - Crop/Wind-Energy
 Experiment (CWEX)

RANS Results

Semi-infinite wind farm at Hub Height (Uniform):

Compounding pressure drops

Flow Angle Change of $\approx 4^{\circ}$

RANS Results

Semi-infinite wind farm at surface (Neutral ABL):

Compounding pressure drops

Flow Angle Change of ≈ 8°... Much Higher!

Balance between static and dynamic pressure

Large Eddy Simulation

- How do unsteady phenomena affect SFC?
 - Atmospheric Stability and Turbulence
 - Wake Rotation
 - Coriolis Force?
- Implementation: SOWFA
 - OpenFOAM
 - Actuator Line Model

Domain

- Turbine: NREL 5MW Ref x10
 - D = 126 m
- Boundary Conditions (Uniform):
 - N-S: Periodic (Semi-infinite wind farm)
 - W-E: Inflow/Outflow
 - Top-Bottom: Slip

Uniform Results: Pressure

Uniform Results: Flow Angle

Uniform Results: Normalize Power

QUESTIONS?

