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- Operations and Maintenance Overview

- Big Data Overview

- Industry challenges in an evolving market

- Owner perspectives on policy and market positioning

- Owners and operators use of data

- My research

- A brief look into one of my research projects.

- Small-scale wind turbine recurrence modeling
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Netflix Example
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•When you pause, rewind, or fast forward

•What day you watch content (Netflix has found people watch TV shows during the week 

and movies during the weekend.)

•The date you watch

•What time you watch content

•Where you watch (zip code)

•What device you use to watch (Do you like to use your tablet for TV shows and your Roku 

for movies? Do people access the Just for Kids feature more on their iPads, etc.?)

•When you pause and leave content (and if you ever come back)

•The ratings given (about 4 million per day)

•Searches (about 3 million per day)

•Browsing and scrolling behavior

•Netflix also looks at data within movies. They take various “screen shots” to look at “in the 

moment” characteristics. Netflix has confirmed they know when the credits start rolling; but 

there’s far more to it than just that.

•These characteristics may be the volume, colors, and scenery that help Netflix find out what 

users like.
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- Enhancing the reliability of wind turbines

- Collaborative effort between industry 

and academia for 20+ years

- DOE’s vision 

Limited work from 2010 – 2015 in applying reliability-based 

statistical methodologies

- Fischer, Besnard, and Bertlin (2011)

- Reliability centered maintenance study that utilizes 

failure data and industry expert opinions to improve 

the reliability, availability, and profitability of wind 

turbines

- Reliawind: Wilkinson (2012)

- Identifies critical failure modes and summarizes 

SCADA system potential

- Arifujjaman and Chang (2012)

- Component-specific reliability anlysis on grid-

connected permenant magnet generator-based wind 

turbines.
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- Tjernberg and Wennerhag (2012)

- Compilation of reports that survey the 

development and research needs for wind 

turbine O&M

- Hussain and Gabbar (2013)

- Focus on predicting gearbox health using a 

nonlinear autoregressive model with 

exogenous inputs

- Godwin and Matthews (2013)

- Develop classification methods to detect 

wind turbine pitch faults using SCADA data

- Al-Tubi, Long, Tavner, Shaw, and Zang (2015)

- Investigate the probabilistic risk of gear 

flank micropitting risk with the use of 

SCADA data.

During 2014 – 2015 we started to see an advancement in 

the reliability-based methods being using in the wind 

energy industry.

Examples 

Wu and Mueller (2014): Reliability analysis for small 

wind turbine using bayesian network

Wu, Butler, and Mueller (2016): Reliability analysis for 

small wind turbines using bayesian hierarchical 

modelling: the effect from the repair mechanism and 

environmental factors

Wu (2017): combining fatigue analysis information into 

reliability analysis using bayesian hierarchical modeling 
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Improving Reliability
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- Assist in preventing catastrophic events

- Uptower repair instead of replacement

- Uptower repair instead of downtower repair

- Effective spare parts management (JIT)

- Resource mitigation (personnel and equipment)



Big Data in the Wind Energy Industry
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- Wind turbines commonly outfitted with many 

sensors

- Environmental and operational conditions

- 125 – 400 sensors

- 2000 observations per minute

- Single turbine: 1 terabyte of data per 

week

- Time series

- Example literature that has utilized big 

data

- Ciang (2008) and Faulkner (2012)

- Describe the use of sensor data 

for system health monitoring

- Tautz – Weinert and Watson (2016)

- Provide a review on using 

SCADA data for wind turbine 

condition monitoring

- Can yield great benefits

- Forecasting power

- Develop cost analysis strategies 

(short/long term)

- Wind Power Monthly’s Expert 

Report (2014)

- Explains the growing 

sophistication of SCADA 

data.

- Information on turbine state

- Programmable logical 

controllers (PLCs)

- Predefined tolerances

- State change

- Alarms: Precursor to failure

- Minimize  financial burdens 

from unplanned 

maintenance



Key Feature of Wind Energy Field Data
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- Large vectors of time series data are periodically recorded

- Study differences between wind turbines at the individual/fleet levels

- System operating/environmental (SOE) data

- Potential to increase the reliability and availability of wind turbines 

with a minimal cost.



SCADA Data Analysis vs. Condition Monitoring
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Industry is using SCADA to

- Turbine production efficiency 

- Drivetrain bearing temperature outliers

- Gearbox oil pressure and temperature

- Turbine fault and hard stop counts

- Torque reversal events – grid faults

- Correlate to vibration data

- Yaw misalignment

Condition Monitoring

- Vibration based

- Accelerometer sensors

- Gears, bearings, shafts

- Condition Monitoring

SCADA Data Analysis

- Operating parameters

- 200 – 400 sensors per turbine

- Temperature, power, RPM, …



A Data-led, cost driven, and repowering surge
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- Increasing investments in data analytics 

- Moving from reactive maintenance to predictive 

maintenance

- Reduce energy losses and labor costs

- Repowering boom

- Term comes from fossil fuel sector 

- Complete or partial replacement 

of items like boilers

- Done to improve output and 

efficiency and bring down 

- Emissions

- Costs

- In 2015, only 600 MW of US capacity 

installed for 20+ years

- 10 year PTC plan has enhanced 

repowering interest

- 10 GW of US capacity between 10 –

20 years old

We are going to have big years. For all the OEMs 

our job is to develop a turbine for the 2020/2021 

timeframe that moves into $.03/kWh and that moves 

into unsubsidized spaces. - Andy Holt



The Power of Data in the Wind Industry
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The last two or three years have been 

the most disruptive of the last 50 years 

in power generation when it comes to 

services and new equipment.

Mark Albenze

Siemens CEO

The transformed power market will 

require our industry to deliver more 

than LCOE, we must deliver market 

value proposition of affordable capacity 

and energy but be flexible to match 

market conditions.

Mark Albenze

Siemens CEO

We can offer higher availability, condition-

based maintenance, proactively executing 

work to align with mark conditions, offer 

module surfaces, and shift to intelligent 

services that automatically respond to 

conditions, optimize production and 

manage wear and tear.

Mark Albenze

Siemens CEO



Operational Challenges in an Evolving Market
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- Over 400 sensors with over 200 GB of data each day. 

- E.ON Energy is evaluating over 21 trillion observations 

and turning big data into valuable insights.

- Shift from reactive to proactive maintenance. 

- E.ON has 60,000 years of insight 

- Detected 19,000 systems avoiding failure

- Industry challenges in an evolving market

- Owner perspectives on policy and market positioning

- Owners and operators use of data

- Hermes Blade Inspection Program

- Use high imagery from drone and ground based cameras

- Self-learning turbines are an attractive option, allowing 

expert knowledge to be incorporated into the model



Iowa State University

Statistics Department

Wind Energy Science, Engineering, and Policy Program 16

Time to failure

C
o

m
p

o
n

en
t 

h
ea

lt
h

Failure

Failure Onset

Lubrication Analysis

Vibration

Oil Debris

Inspection
SCADA

Maintenance

Root Cause Analysis

Cost to repair

Early detection with
data management

Benefits of Using Data and Condition Monitoring

Subsystem Failure

CORRECTIVE ZONEPREVENTIVE ZONE



Prepared for: 

WESEP 594 and

2017 REU Students

Date Updated: June 06, 2017

Iowa State University

Statistics Department

Wind Energy Science, Engineering, and Policy Program 17

Michael S. Czahor and William Q. Meeker

Wind Energy Science, Engineering, and Policy Program

Department of Statistics

Iowa State University

Small-Scale Turbine Recurrence and Cost Modeling as a Function of 

Operational Covariates from Supervisory Control and Data Acquisition Systems



Why Small Wind?
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Small Wind Benefits

Personal

Increased property 
values.

Reliable Electricity

Relief from high and 
volatile prices of other 

forms of electricity

Personal energy 
independence

Public

Economy

Diversified state energy 
supply portfolio

Increased in-state 
electricity generation

Increased market 
competition from more 

consumer choice

Local jobs for turbine 
sales, installation, and 

maintenance

Security

Emergency back-up 
power to police  

stations, hospitals, etc.

Increased local energy 
independence

Enhanced reliability 
and power quality of 

the electricity grid

Utility peak-power 
relief

Environment

1 residential-scale 
turbine = displaced 

emissions of 1.5 cars

No emissions, water 
use, or hazardous 

waste

Community

"PR": Visible indicator 
of community support 

for clean energy

Most projects are 
easily connected to the 
grid and do not require 

transmission lines

Summary of AWEA’s Policies to Promote Small Wind Turbines
Flowchart by: Michael S. Czahor



What are Small Wind Turbines?
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Small Wind Certification Council (SWCC) Small/Micro wind display

Background Information

- Over 200 different models exist

- Approximate tower heights range from 30 – 150 feet

- Tower types: monopole, lattice, and guyed monopole

- Horizontal and vertical axes are being used



Small Wind in the 21st Century
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Background Information
- SWTs saw less engineering advances that that of 

LWTs due to minimal funding for research.

- “Reliability has historically been the Achilles heel for 

small wind turbine technology”. (Bergey, 2002)

- Clausen and Wood (2000) describe the early 

advances of SWT technologies.

- Increased popularity due to versatile makeup, 

allowing SWTs to be installed near households, 

schools, farms, remote locations, etc.

- Orrell and Foster (2015) reported that the average 

cost of SWT installation has decreased by $1,200/kW 

from 2013 to 2015.

- Not as great as it sounds

- Since 2005 increases in labor costs, warranty 

contracts, price of material, etc.

Relevant Market Reports
- Wind Technologies Market Report (Wiser and Bolinger, 2015)

- Distributed Wind Market Report (Orrell and Foster, 2015)



Availability
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Background Information
- Helps compare turbine-to-turbine performance

- “The fraction of a given operating period in which a 

wind turbine generating system is performing its 

intended services within the design specification.” -

International Electrotechnical Commission (IEC)

- Method used determined by owner and operator

- According to Willams (2014), “a large majority 

of owners and operators do not have the 

capability to process terabytes of SCADA data 

to determine the true availability.”

The most common method used in industry
- Based on time

- Easy to compute

- Deficiencies

- Does not assist in poor planning of preventive 

maintenance

- Does not detect the impacts of wind speed during 

corrective maintenance

- Does not detect performance issues when a wind turbine 

is running.  



Project Overview
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Data Source

N = 21 NPS 100-21 wind turbines

Rotor size: 21 meters

Possible tower sizes: 23, 30, or 37 meters

Operational frequencies: 50 Hz or 60 Hz.

General Configuration
Model 100-21

Design Class IEC WTGS IIA 

Power Regulation Variable Speed; stall control

Orientation Upwind

Yaw Control Active 

Number of Blades 3

Rotor Diameter 20.7 meters (68 feet)

Performance
Rated Electrial Power at standard conditions 100 kW

Rated Shaft Speed (Standard Turbine) 58.6 RPM

Rated Shaft Speed (Arctic Turbine) 56.3 RPM

Cut-in Wind Speed 3.0 m/s (7 mph)

Rated Wind Speed 15.0 m/s (36 mph)

Cut-out Wind Speed 25.0 m/s (56 mph)

Noise 55 dBA at 40 meters from nacelle

Table 1: NPS 100-21 General Information



NPS Wind Turbine Data
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Data Source
N = 21 NPS 100-21 

wind turbines.

21 csv files imported 

to R.

10-minute averages of 

covariates from the 

time of installation 

through October 28th, 

2016.

State Vector 21 CSV files

- Timestamps (every 10 minutes from time of 

installation)

- 12 unique covariates in addition to MAX and 

MIN readings over each interval

1) R_YawVaneAvg_deg

2) R_YawPosition_deg

3) R_Windspeed_mps

4) R_TurbineState

5) R_TempAmb_degC

6) R_TempFrame_degC

7) R_TempGen1_degC

8) R_TempGen2_degC

9) R_TempIGBTinv_degC

10) R_TempIGBTrec_degC

11) Rotorspeed_rpm

12) InvPwr_kW



A Brief Look at the Data
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- Data collected over four year period

- Common data freeze data (DFD)

- State code of 9 = service event

- Preventive maintenance

- False alarm

- Corrective maintenance

- Downtime

- Each service event results in a cost 

(downtime)

• 𝑱 = 𝟐𝟏𝐖𝐢𝐧𝐝 𝐭𝐮𝐫𝐛𝐢𝐧𝐞𝐬 𝒋 ∈ 𝟎,… , 𝟐𝟏.
• Event information with timestamps.

• Cost associated with each event.

• Individual use rate information.

• Data freeze date (October 2016).



A Brief Look at the Recurrence Data
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A Brief Look at Dynamic Covariate Data
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Service Event Model
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𝜐 𝑡; 𝜙, 𝜂 =
𝜙

𝜂

𝑡

𝜂

𝜙−1

, 𝜙, 𝜂 > 0
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Nonhomogeneous Poisson Process
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ML Estimates: ෠𝜙 =
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𝑟 log 𝑡𝑎/𝑡ℎ

, Ƹ𝜂 =
𝑡𝑎
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Single Wind Turbine Model

𝜆 = 𝜆𝑗 = 𝜆(𝑡𝑐𝑗) =
𝜂

𝑐

−𝜙

→ 𝜂 = 𝑐𝜆−1/𝜙

Hierarchal approach to make inference on θ = 𝜆, 𝜙

𝐿 𝐷𝐴𝑇𝐴 θ π(θ) with diffuse Jeffery’s priors where

π(𝜆, 𝜙) ∝
1

𝜆𝜙

• 𝜆|𝑡1, … , 𝑡𝑛, 𝑡𝑐 ∼ Gamma(𝑛, 1)

• 𝜙|𝑡1, … , 𝑡𝑛, 𝑡𝑐 ∼ Gamma 𝑛, σ𝑖=1
𝑛 ln(𝑡𝑎/𝑡𝑖 )



Service Event Model
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Multiple Wind Turbine Model 

Hierarchical Modeling 

𝜆𝑗 ∼ Gamma 𝛼𝜆, 𝛽𝜆
𝜙𝑗 ∼ Gamma 𝛼𝜙, 𝛽𝜙
𝛼𝜆 ∼ Gamma 𝑎1, 𝑏1
𝛽𝜆 ∼ Gamma 𝑎2, 𝑏2
𝛼𝜙 ∼ Gamma 𝑎3, 𝑏3
𝛽𝜙 ∼ Gamma 𝑎4, 𝑏4

Diffuse priors let our analysis on the 

𝐽 = 21 wind turbines be data driven.



Service Posteriors
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• Results were obtained using 
RJAGS.

• Parameters vary from turbine-to-
turbine.

• Hierarchical model allows for a 
tradeoff between completely 
pooled analysis and an individual 
turbine analysis (Draper et al., 
1992).

• Methods adapted from Ryan et 
al. (2011).



Cost/Use Rate Model
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Log(cost) vs. Use Rate Relationship
• 121 observed service events 
• Linear relationship between

Log 𝑐𝑜𝑠𝑡 vs. Use rate (rpm)

• Use rate = two week turbine-specific rpm 
averages before service event.

𝑍𝑖 = 𝛽0 + 𝛽1 × 𝑈𝑖+𝜀𝑖

where 𝑍𝑖 = Log 𝑐𝑜𝑠𝑡

ෝ𝑧𝑖 = −2.31 + 0.11 × 𝑢𝑖
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Autoregressive Use Rate Model

Autoregressive Use Rate Model
• AR(2) model based on exploratory 

analysis of observed use rate time series.

𝑈𝑡= 𝛾1 𝑈𝑡−1+ 𝛾2 𝑈𝑡−2+ 𝜀𝑡, 𝜀𝑡~𝑁(0, 𝜏
2)

Autoregressive Model in JAGS
π 𝜏2, 𝛾1, 𝛾2| 𝑈1, … , 𝑈𝑡

= 𝑓( 𝑈1, … , 𝑈𝑡 |𝜏
2, 𝛾1, 𝛾2) π(𝜏

2) π(𝛾1, 𝛾2)

• Metropolis Hastings (MH) is an 
appropriate approach since full 
conditional distributions become non-
standard densities.

• MH is lengthy, so we use JAGS.
• Diffuse uniform priors for 𝛾1, 𝛾2.
• Gamma prior for 𝜏2.
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Use Rate Posteriors
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Predicting Behaviors of a New Wind Turbine

Simulating from Posterior Predictive Distributions

We consider a conditional approach and an unconditional approach. For the 

conditional approach we specify 𝑡𝑐22 and

a) Draw 𝜆22 and 𝜙22 from the joint posterior distribution.

b) Draw a realization from an AR(2) process.

c) Simulate NHPP events until 𝑡𝑐22 resulting in 𝑛22 events.

d) For each event generate downtimes 𝑑1 , … 𝑑 𝑛22 using the equation in part 5.

e) Compute the MCF and accumulate

f) Repeat b) – e) B2 times and average the results.

g) Obtain the 0.025, 0.5, and 0.975 quantiles of the predictive distribution, 

giving a point prediction and 95% prediction intervals for each point in time.

The unconditional approach is similar, but we would generate a new 𝜆 and 𝜙
each time.

Assumptions

1. The relationship between use 

rates and costs in part 5 holds 

for Turbine 22.

2. Recurrence rates are 

independent of cost 

parameters.

3. Turbine 22 comes from the 

same population of the 

originally observed wind 

turbines.



Iowa State University

Statistics Department

Wind Energy Science, Engineering, and Policy Program 34

MCF Cost Results

Conditional predicted cost MCF with 95% 

prediction intervals.

Unconditional predicted cost MCF with 95% 

prediction intervals.
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Conclusions

A Compromise between Conditional and Unconditional Approaches

Assumptions for cumulative cost prediction are

• Before we know anything about Turbine 22, deal with the cost MCF 

prediction unconditionally.

• Once operation begins, take data and update the prior.

• Prediction bounds decrease with increased prior information, as the 

prediction process becomes conditional on the prior information.
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