PIE Project, Report 6. Integrating resilience (for extreme events) into an expansion planning framework: Formulation and Next Steps

Task G6-3: Enhance resilience modeling

Charlie Phillips, Colin Christy, James McCalley

IOWA STATE UNIVERSITY

Contents

- Description of cooptimized expansion planning (CEP) tool: concept & implementation
- Resilience-based CEP model (R-CEP):
 - Formulation
 - Types of years
 - Resilience modeling
 - Resilience investments
- R-CEP Optimization problem
- Next steps

Co-optimized Expansion Planning (CEP): Concept

subject to assumed future conditions

Cooptimized Expansion planning (CEP): Implementation

Resilience-based CEP model (R-CEP): formulation

- 1. There is a cost to enhancing resilience.
- 2. Resilience is about extreme event severity/intensity and associated degraded system performance.
- 3. We reflect degraded system performance by de-rating component capability in the geo-region impacted by the event.
- 4. Central concept: Some "normal" investments enhance resilience; optimize on both normal & resilience investments.

Resilience-based CEP model (R-CEP): Types of years

What model features are in each type of CEP year?

Model Feature	Investment EMY	Investment TMY	Operational TMY
Capacity Investments		х	
Resilience Investments	Х		
Retirements	Х	х	
Operational costs	х	х	Х
			6

Observe:

- capacity investments only allowed in investment TMY
- resilience investments only allowed in investment EMY
- retirements allowed in any investment year (EMY or TMY)
- operational costs are incurred in all three types of years

Resilience-based CEP model (R-CEP): Types of years TMY TMY 2025 2027 2037 2039 2020 2021 2023 2024 2029 2031 2033 2034 2035 2038 EMY #1 EMY #2 EMY #3 Typical meteorological years: \rightarrow Models normal conditions \rightarrow Uses normal ratings on components \rightarrow Investments driven by component rating & need to satisfy power demand

Extreme meteorological years:

\rightarrow Models extreme event scenarios:

- Hurricanes
- Tsunami/flooding
- Earthquakes
- Other: winter storms, wildfires, geomagnetic storms, etc.
- → Uses de-rated components based on event intensity and component resilience level to identify optimal resilience investments
- ightarrow Investments driven by component derating & need to satisfy power demand

Resilience-based CEP model (R-CEP): Types of years

Typical meteorological years:

Extreme meteorological years:

<u>Block</u> <u>#</u>	<u>Season</u>	<u>Period of Day</u>	<u>Time (#</u> <u>hours)</u>
1	Rainy	11PM-6AM	1712
2	Rainy	7AM-1PM	1498
3	Rainy	2PM - 6PM	1070
4	Rainy	7PM - 10 PM	816
5	Dry	11PM-6AM	1208
6	Dry	7AM-1PM	1057
7	Dry	2PM - 6PM	755
8	Dry	7PM - 10 PM	604
9	PEAK	Top 40 hours in block 7	40

<u>EMY</u> <u>Period</u>	<u>Time Duration</u> (hours within year)	Corresponding Event
1	0-23	Extreme event occurring
2	24-192	Week after extreme event
3	193-912	Month after extreme event
4	913-4512	5 months after extreme event
5	4513-8760	Remaining 6 months of year

9 total operating blocks per <u>TMY</u>

EMY Block	Time of Day		
1	11pm-6am		
2	7am-1pm		
3	2pm-6pm		
4	7pm-10pm		

20 total operating blocks per <u>EMY</u>

Resilience modeling in the R-CEP model

flow and TL_l is the thermal limit of line l

Fragility curves

Resilience modeling in the R-CEP model

Meteorological regions

- Generation (solar & wind) is de-rated via <u>bus</u>
 <u>multipliers</u> that range from (0 to 1)
- Bus multipliers are a function of geographic location and resilience level
- Use bus multipliers (Ω_b) to de-rate the system component's performance

$$\boldsymbol{P}_{g,b} = (\boldsymbol{\Omega}_b) \ast \boldsymbol{C}_g$$

- Where P_{g,b} is the generator's derated capacity and
 C_g is the installed capacity of generator g
- For certain events (such as earthquakes and flooding) resilience investments at the bus level are introduced by outaging all generation at affected buses

Resilience modeling in the R-CEP model

Extreme Event & Resilience Modeling

 Resilience levels (*Standard, Semi, & Full*) introduced for wind,
 This is a solar, transmission lines, and distribution segments

MILP!!!

Standard \rightarrow No cost

Semi \rightarrow 1.5 * Expansion cost Full \rightarrow 2.0 * Expansion cost

- Fragility curves shifted for lines; bus multipliers are increased by resilience level
- **<u>Central concept</u>**: Resilience levels are used to locate specific components where grid hardening investments should occur via upgrading from one resilience level to another.
- Resilience levels have temporal components

EMY Period	<u>Period</u>	<u>Standard</u>	<u>Semi</u>	<u>Full</u>
1	Hurricane occurring	De-rated	De-rated	De-rated
2	Week after hurricane	De-rated	De-rated	Normal
3	Month after hurricane	De-rated	De-rated	Normal
4	5 months after hurricane	De-rated	Normal	Normal
5	Remaining 6 months of year	Normal	Normal	Normal

Failure Probability 0.6 0.4 0.2 150 50 200 100Wind Speed (mph) Standard Resilience --- Semi-Resilience --- Full-Resilience

11

Resilience Investments

	Standard		Semi		SFull
Transmission & Distribution Lines	 Basic repairs made Susceptible to future failures Basic repairs made 		 Annual vegetation management Replacing wood poles with steel Pre-event preparation (crews, pre- stage materials) 		 Semi-annual vegetation management Replacing wood poles with steel/concrete Pre-event preparation (crews, pre- stage materials) Underground lines where feasible
Wind & Solar Technologies	 Basic repairs made Susceptible to future failures Basic repairs made 		 Annual maintenance schedules Enhanced foundation design Enhanced site-selections Strengthening support towers 		 Semi-annual maintenance schedules Enhanced foundation design (larger and deeper foundation designs) Enhanced site-selections Underground connections where feasible
Substations	 Basic repairs made Susceptible to future failures Basic repairs made 		 Specialized site-selection studies Annual maintenance of structures Elevated platforms when appropriate Construction of water/wind barriers 		 Enhanced studies for site selection Semi-annual maintenance of structures Elevated platforms when appropriate - Construction of barriers/control room protected
Expected Recovery Time	6 months		1 month		24 hours

R-CEP Optimization problem

 $\underline{Minimize}: \quad Objective = Fuel_Costs + FOM_Costs + VOM_Costs + Gen_Inv_Costs + \\$

Retirement_Costs + Line_Cap_Costs + LS_Costs + Loss_Costs + Reserve_Costs

Subject to:

- Cumulative generation capacity
- Retirement criteria
- Max load shed
- Max gen dispatch for peak load blocks
- Max gen dispatch for non-peak load blocks•
- Gen min stable level
- Ramping constraints
- System wide planning reserve margin
- Energy efficiency modeling

Note: The analytic problem expression is given in,

+Line_Resiliency_Costs + Bus_Resiliency_Costs

- Energy storage modeling
- Cumulative line capacity
- Line flow modeling constraints
- Line loss modeling constraint
 - Power balance constraint
- DC power flow constraint
- Derated line flows in EMY
- Resince line invstmnt constraints
- Resince bus invstmnt constraints

C. Newlun, "Co-optimized expansion planning for power system resilience and adaptation", Ph. D. Dissertation, Iowa State University, 2022.

Next steps

- We have already developed basic code to perform R-CEP. Initial testing using non-MISO data indicates it performs reasonably.
- 1. Identify an Iowa-centric extreme event (2020 Derecho?)
- 2. Replace initial testing data with MISO data.
- 3. Obtain results with MISO data. Assess/evaluate.
- 4. Complete report.