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Abstract – Integration of renewable technologies dominates grid 

transformation in the contemporary world. Power system 

planning tools such as Adaptive Co-Optimized Expansion 

Planning (ACEP) have evolved to address this challenge. 

However, methods of evaluating and validating such plans have 

largely remained underdeveloped as ACEP can only account for 

about seven futures before being computationally intractable. 

This paper presents Folding Horizon Simulation (FHS), a 

validation tool to test ACEP outcomes against additional 

uncertainties not accounted for in the initial model. The FHS 

software exposes ACEP baseline plans to 50 scenarios for each of 

the eight identified planning uncertainties, generated using 

Markov chain simulation. It evaluates metrics such as load 

shedding and systemic penalties like CO2 and Renewable 

Portfolio Standard (RPS) and proposes reinvestments in the most 

cost–effective manner. The FHS analysis showed that higher 

values of β lead to notable reductions in load shed, regulation 

costs, and both generation and transmission reinvestment costs. 

Terms – Folding Horizon Simulation, plan validation, future, 

uncertainty, scenario.  

I. INTRODUCTION 

Integration of renewable energy technologies has dominated 

electric grid transformation in the contemporary world. These 

technologies are deemed as potential measures of curbing 

carbon emissions and hence slowing down global warming and 

climate change. For this reason, United States has adopted 

multiple policy options to encourage electric power industry to 

seek clean energy portfolios. Economic incentives such as the 

Inflation Reduction Act (IRA) have fueled investments in wind 

and solar energy [1] 

Power system planning must adapt to the growing reliance 

on renewable energy sources [2]-[4]. However, many Regional 

Transmission Organizations’ (RTOs) planning processes lack 

rigorous systematic, climate–informed methods for projecting 

wind/solar variability and demand over 10–20 years. In the 

past, the planning reserve margin (PRM) accounted for the loss 

of the largest generator in the system [5]-[7], but a wind/solar–

centric grid may require PRMs to consider the largest drops in 

 
1 https://www.ferc.gov/news-events/news/fact-sheet-
building-future-through-electric-regional-transmission-
planning-and 

renewable generation. Therefore, the overall planning process 

must evolve to encompass tools which are both capable of 

adapting power system plans to specific futures as well as those 

that evaluate such plans to function efficiently under realistic 

future conditions. While there are tools capable of adapting 

power system plans to futures such as a highly decarbonized 

grid, evaluating such plans proves difficult without ways to 

integrate weather and climate data. The new planning process 

this paper proposes encompasses futures selection, Adaptive 

Co–Optimized Expansion Planning (ACEP) and Folding 

Horizon Simulation (FHS), the evaluation tool, as presented in 

Figure 1. 

 
Figure 1: High Level Diagram of the planning process with 

evaluation tool 

A. Futures Selection 

Futures refer to possible long–term trajectories a power 

system may undergo based on uncertainties. Cognizant of this, 

Federal Energy Regulatory Commission (FERC), in order 

19201, mandates that long-term transmission expansion 

planning must consider at least three realistic future outcomes. 

For instance, if load growth is treated as a planning uncertainty 

with possible values of Low, Medium, and High, this alone 

would result in three distinct futures. Introducing another 

uncertainty, such as the growth of Distributed Energy 

Resources (DER), which also has three possible levels, 

expands the total number of futures to nine (32). In general, 

futures are a function of both uncertainties and the scenarios 

constructed from them. For example, with eight uncertainties, 

each with three outcomes, this work yields a total of 6,561 

unique futures. This number becomes computationally 

intractable for optimization. To address this, a subset of seven 
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representative futures was selected to balance model fidelity 

and computational feasibility. The selection process gave 

higher selection probabilities to the three MISO 

(Midcontinental Independent System Operator) futures (1A, 

2A, and 3A) due to their regional relevance, while the 

remaining four were selected randomly but with equal 

probability from the remaining pool. This selection process 

was implemented using the SCENRED2 algorithm in GAMS, 

which identifies a set of scenarios that best represent the 

overall uncertainty space. Figure 2 presents the final seven 

futures chosen through this process, each capturing distinct 

combinations of uncertainty. 

 

 
Figure 2: Seven futures chosen by the algorithm 

 

B. Adaptive Co–Optimized Expansion Planning 

Co–Optimized Expansion Planning (CEP) is the 

simultaneous optimization of multiple aspects of grid 

expansion within a single optimization problem [8]. CEP is a 

power system planning tool which seeks to identify the best 

future investments options for both transmission and 

generation while minimizing the overall cost and satisfying all 

constraints. For cases where future scenarios, such as a 

wind/solar–centric grid are highly probable, planners utilize 

Adaptive Co–Optimized Expansion Planning (ACEP), which 

adapts the CEP outputs to specific predicted future conditions. 

Therefore, ACEP is a stochastic formulation of the form in 

equation 1 which evaluates multiple futures in the planning 

horizon [9]. For a set of futures, f ∈ F and investment years, y 

∈ Y, the objective function of ACEP is comprised of core 

investment plus adaptation investment represented as A, 

operational adaptation represented by O and a probability, P, 

of each future happening. There is, β, a robustness factor which 

determines how the plan performs under various uncertainties.  

𝑀𝑖𝑛 ∑(Core Inv +  β ∗ (∑ PA +

𝐹

𝑓

∑ PO))

𝐹

𝑓

          (1) 

𝑌

𝑦

 

subject to: 

• Network flow limits, generator limits 

• Reserve requirements 

• Environmental policy constraints 

• Investment targets 

• Reliability constraints 

ACEP is an optimization model which combines future 

uncertainties, bus data and constraints as inputs to produce an 

 
2https://home.engineering.iastate.edu/~jdm/pie/Project%20
abstract.pdf  

optimal investment plan. This limits its ability to be 

computationally viable for more futures, thus, validating the 

efficacy of its outputs is a challenge [9], [10]. 

To tackle this challenge, Iowa State University (ISU) 

developed FHS as a validation tool. The authors of [9], [10] 

originally developed FHS as a general evaluation tool for 

power system planning. The author of [9] further refined FHS 

to apply to the MISO (Midcontinental Independent System 

Operator) MTEP (MISO Transmission Expansion Planning) 

process. This work further advances the FHS tool by adapting 

it to evaluate plans under heavily decarbonized futures and 

grounding it as an indispensable step the planning process. For 

each combination of future, uncertainty, and investment year, 

as outlined in Section II, FHS evaluates whether ACEP meets 

the planner’s performance thresholds. If the thresholds are not 

satisfied, FHS revises the selection of futures and constraints, 

then triggers a re-execution of the ACEP. Three major 

enhancements to FHS in this work, building on the foundation 

in [9], include: 

• Integration of Energy Storage Systems (ESS) as a 

reinvestment option, 

• The introduction of the Resource Variability Index 

(RVI) to assess the ramping capability of ESS and 

justify Planning Reserve Margins (PRMs), 

• The expansion of FHS to select futures. 

With these enhancements, the FHS framework in this work, 

therefore, emphasizes balancing renewable energy curtailment 

through ESS deployment before adjusting PRMs or pursuing 

additional grid reinforcements. 

While this works uses the Plan Iowa Energy2 project as its 

case study, its outcomes and methodology are applicable to 

similar power system planning efforts. The structure of this 

paper is as follows: Section II provides a detailed description 

of FHS; Section III presents key results; Section IV offers 

discussion of results and Section V provides conclusions. 

 

II. FOLDING HORIZON SIMULATION 

Folding Horizon Simulation (FHS) is an algorithm designed 

to iteratively evaluate ACEP plans across a broad range of 

uncertainties, especially those not originally modeled in ACEP 

[9]. Since ACEP outcomes depend on stochastic future 

conditions, testing them in a realistic context poses challenges 

[10]. Given that ACEP models can only account for a limited 

number of scenarios and uncertainties due to lack 

computational tractability, FHS acts as an evaluation tool to 

expose the investment plan to additional uncertainties. This 

broadens the uncertainty space, offering planners crucial 

insights into the robustness and performance of the ACEP–

modeled plan [10]. FHS addresses these challenges by testing 

ACEP outputs against a wider variety of scenarios to assess 

performance. Unlike optimization tools, FHS is solely 

evaluative, which makes it more time efficient. It can evaluate 

ACEP plans across 50 uncertainties faster than ACEP can 

compute seven. This efficiency has made FHS a desirable tool 

https://home.engineering.iastate.edu/~jdm/pie/Project%20abstract.pdf
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for ACEP plan evaluation [10]. Figure 3 shows the high–level 

overview of the FHS process which is performed in 5 steps 

explained as follows. 

 
Figure 3: Folding Horizon Simulation Process 

A. STEP 1 – Initial Inputs 

ACEP model is set up using GAMS programming and 

solved with the optimization solver, CPLEX. Its initial output 

is an ACEP plan which only satisfies initial constraints such as 

basic Kirchoff’s laws, initial PRM parameters, and non-

negative variables. The plan at this stage is a baseline estimate 

which needs to be further tested. It is combined with 

uncertainties not initially modeled while generating ACEP to 

be the input of the plan evaluation and validation software–the 

Folding Horizon Simulation (FHS). FHS performs evaluation 

over time–steps, Y and uncertainties, U until the plan meets all 

the constraints. Construction of uncertainties, U, is done using 

Markov chain simulation [9], [10]. Eight uncertainties 

including Renewable Standard Portfolio (RPS), CO2 emission 

reduction, load growth, natural gas prices, fossil fuel 

retirement, PV investment, land wind investment and Energy 

Storage System (ESS) costs were simulated in Markov chain; 

each predicted to take any of the 3 values: HIGH, LOW or 

MEDIUM. The planner can have as many scenarios as desired 

for each uncertainty. However, generating an infinitely large 

number of scenarios makes computation intractable. Thus, we 

limited simulation to 50 scenarios to balance computational 

efficiency. 

B.  Step II – Production Cost Simulation 

This is the step where FHS exposes the baseline plan to 

uncertainties. It evaluates the plan to determine if it meets load 

conditions under each uncertainty throughout the planning 

horizon. This production cost simulation involves minimizing 

the generation operational costs, along with any associated 

penalty costs. Therefore, the production cost simulation is a 

deterministic approach that does not permit generation and 

transmission expansion. It only seeks to make the core ACEP 

plan meet realistic conditions of the grid. 

Penalties are applied to assess the overall performance of 

the investment plan under simulated uncertainties. These 

penalty costs are incorporated into the objective function to 

highlight potential shortfalls in the plan under evaluation. The 

penalties cover areas such as load shedding, Renewable 

Portfolio Standard (RPS) requirement shortfalls, carbon 

dioxide (CO2) emission reduction shortfalls, and capacity 

reserve shortfalls. Additionally, penalties are heavily 

weighted, making their violation the least economical option 

within the optimization framework of the FHS [9]. The 

information obtained from evaluating the ACEP against 

stipulated shortfalls is used in the reinvestment decisions.  

C. Step 3 – Reinvestment Options 

If the evaluation does not meet the planner’s threshold, FHS 

seeks reinvestment options to strengthen the grid. Such 

reinvestment options focus on enhancing generation and 

transmission capacity to decrease load sheds and reduce 

overall systemic penalties such as failure to meet carbon 

dioxide (CO2) obligations.  

D. Step 4 – Updating the Core Plan 

This step consists of updating the plan with the additionally 

obtained investment portfolios. The FHS repeats for the next 

year, y, in the planning horizon and then the next uncertainty, 

u. Therefore, the FHS ensures that the planner’s thresholds are 

met for each uncertainty every single year of the planning 

horizon. 

E. Step 5 – Calculation of Average Cost 

This step includes determining the average costs of load 

shedding and reinvestment for each plan assessed in the FHS. 

This allows the planner to compute the performance metrics of 

the core plans against the uncertainties, U. It facilitates a 

crucial comparison between the total investment costs and 

reinvestment costs. 

III. RESULTS 

As illustrated in Figure 3, the FHS algorithm uses ACEP 

base case and Markov Chain simulation results as its primary 

inputs. In this study, ACEP results were first evaluated using 

the General Electric’s Multi–Area Reliability Simulation (GE–

MARS). This step was taken to ensure the base ACEP meets 

reliability criterion of Loss of Load Expectation (LOLE) not 

exceeding one day in ten years (0.1/year). Whenever GE–

MARS produced a LOLE above this threshold, the ACEP 

investment parameters were reconfigured, and the simulation 

was iterated until the required reliability standard was 

achieved. 

For robustness parameters (β) of 0.1 and 1, the GE–MARS 

evaluations converged after 16 and 11 iterations respectively. 

Consequently, for FHS evaluation, the 1st and 16th iteration 

were selected for the β = 0.1 case, while the 1st and 11th 

iteration were used for the β = 1 cases. 

As shown in Figure 4, generation, and transmissions core 

costs, along with their corresponding adaptations investment 

costs, were obtained from the ACEP cases. On the other hand, 

fixed operations and maintenance (FOM), variable operations 

and maintenance (VOM), generation and transmission 

reinvestment costs, fuel costs, load shed cost and regulation 

cost were obtained from the FHS evaluation tool. Regulation 

costs include penalties from both CO2 and RPS. In the plot, 

costs from ACEP are represented by dotted colors in the 

legend, while FHS–derived costs are shown using 

corresponding colors with sliding bars. All costs are 

cumulative across the seven ACEP futures.  

From Figure 4, when β = 0.1, both transmission and 

generation core costs are initially low, as the system prioritizes 

satisfying DC power flow constraints over LOLE  
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Figure 4:  Total costs from the FHS and ACEP simulations 

for various β values under different GE–MARS Iterations 

requirements. However, as GE–MARS iterations progress to 

enforce LOLE constraints, adaptation investments rise 

significantly, as seen in the second bar. When exposed to FHS, 

additional reinvestments in generation and transmission are 

introduced, which help reduce both load shed and regulation 

costs. While core investment costs for generation and 

transmission increase from the 1st to the 16th iteration, the 

change is relatively modest. Since β remains constant, the 

model focuses on meeting reliability and operational 

constraints through increased adaptations and reinvestments 

rather than increasing core investments. This explains the 

closeness in the values of core investment costs across early 

iterations and the growing trend in adaptation costs across 

higher GE–MARS runs with the same β value. 

When β is increased to 1, generation and transmission core 

investments also increased with a significant reduction in 

adaptation costs. When the 1st and 11th iteration cases are 

exposed to uncertainties through FHS, there is a significant 

decrease in regulation and load shed costs, respectively. 

Additionally, both adaptation and reinvestment costs decline 

with higher β values and also across GE–MARS iterations. 

Figure 5 and Figure 6 are the graphical representation of 

FHS reinvestments across different values of β and GE–MARS 

iterations within the MISO footprint. The algorithm also 

identifies investments in select seam tie lines between MISO 

and PJM. Each legend entry specifies the type of investment 

and whether its cost exceeds $1 billion. Thick colored lines 

represent transmission reinvestments above $1 billion, while 

thinner lines indicate those below this threshold. Generation 

reinvestments, categorized by type, are also shown, and 

labeled in the legend.  

Figures 5 and 6 display generation and transmission 

reinvestments for β = 0.1 and β =1 at the 1st and 11th GE–

MARS iterations, respectively. The maps are densely marked 

with numerous transmission lines. 

To ensure the final plan is highly decarbonized, the 

generation technologies considered for reinvestment include 

Wind, Storage (STO), Natural Gas Turbine (Gas_GT), Solar, 

Natural Gas Combined Cycle (CC), Natural Gas Combined 

Cycle with Carbon Capture (CC_CCS) and Distributed Solar 

(DPV). 

 

 
Figure 5: FHS Reinvestment MAP for ß=0.1, GE–MARS    

iteration=1 

 
Figure 6: FHS Reinvestment MAP for ß=1, GE–MARS 

iteration=11 

Both generation and transmission reinvestments decreased 

with higher β values and, more importantly, with higher GE– 

MARS iterations. In Figure 3, to meet the CO2, load shed and 

regulation constraints, the FHS algorithm prioritized 

generation reinvestments in DPV, Gas_GT and natural gas 

technologies. The cost of transmissions reinvestment reduced 

significantly, with the number of lines having investment costs 

above $1B decreasing from 13 in Figure 5 to 3 in Figure 6. To 

minimize transmission reinvestments and meet CO2 

constraints, FHS reinvestment for the 11th iteration was 

exclusively DPV generation. 

 

IV. DISCUSSION 

The FHS software has proven effective as an evaluation 

tool, exposing plans to uncertainties not modeled in ACEP [9], 
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[10]. As explained by [9], this tool can be integrated into 

MISO’s MTEP process, allowing planners to evaluate and 

select the optimal plan. The PIE project is anchored on five 

visions each aligning with futures identified in the report 3. 

According to [9], the FHS algorithm is ideal for selecting the 

value of β, representing the system’s robustness at its initial 

investment. This work has shown that FHS can also help 

planners choose the future and vision with the most desirable 

investment characteristics. Whether investors prioritize costs, 

reliability, or robustness, FHS provides detailed results that 

simplify decision–making.  

Figure 7 is the representation of ACEP performance when 

exposed to FHS at GE–MARS 11th iteration of β =1. The FHS–

calculated investment costs for each future indicate that Future 

6 is the most economical of the seven. 

 

While the most economical future has the lowest overall 

costs, the best performing future is defined by the least load 

shed and regulation costs. This feature of FHS enables 

planners to choose a vision based on both economic viability 

and engineering performance. Tradeoffs may occur depending 

on RPS, CO2 and load shed regulations. For this work, load 

shed and RPS are heavily weighted, which prevents the 

optimizer from choosing them over reinvestment. However, in 

jurisdictions with relaxed decarbonization regulations, 

planners may prioritize economic efficiency and reinvest only 

if the uncertainties arise. In such cases, reinvestment decisions 

shall only be made based on real–time grid conditions. 

Contrarily in regions like United States, that impose stringent 

penalties, planners may be forced to prioritize reliability over 

costs. In general, FHS remains an excellent tool for evaluating 

and making investment decisions. 

Without using GE–MARS for reliability evaluation, FHS 

could stand in its place. While GE–MARS assesses ACEP base 

investments against LOLE standards, FHS evaluates the same 

against broader criteria including, load shed, RPS, and CO2 

 
3 Project Report #3 Visions, Uncertainties, and 
Futureshttps://home.engineering.iastate.edu/~jdm/pie/Rep
ort3_01_19_2024FinalSubmitted.pdf 

penalties. This allows FHS to offer a more comprehensive 

evaluation, providing robust outputs for investment decisions 

without necessarily requiring the GE–MARS step. 

 

V. CONCLUSION  

Folding Horizon Simulation (FHS) is an evaluation tool 

designed to test the efficiency of Adaptive Co–optimized 

Expansion Planning (ACEP) outcomes by exposing them to 

expected uncertainties in a realistic environment. To achieve 

this, Markov chain simulation was used to generate 50 

scenarios for each of the eight planning uncertainties that form 

the basis of ACEP plan evaluation. While a higher number of 

scenarios certainly improves the accuracy of FHS outcomes, 

computational tractability makes 50 scenarios an efficient 

choice. 

The FHS analysis showed that higher values of β and more 

GE–MARS iterations lead to notable reductions in load shed, 

regulation costs (combination of RPS and CO₂ penalties), and 

both generation and transmission reinvestment costs. These 

results signify FHS as a good evaluation tool that enables 

planners to choose robustness of the systems as well as the 

future and visions that well fit their planning needs. Depending 

on their priorities, planners can choose to build a more resilient 

system from the outset or opt for a less robust one which 

commands reinvestment when uncertainties arise, each of 

which would represent a future and/or a vision. As this work 

demonstrated, FHS functions well in an integrated planning 

model where it both works as a reliability evaluation as well as 

an adaptational validation tool. With this, its application in the 

planning process to develop plans for highly decarbonized 

futures is more critical in planning the future grids. 
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