Evaluating and Strengthening Iowa's Power Grid for High Wind/Solar Penetration Levels

James McCalley¹, Colin Christy², Gustavo Cuello-Polo³, and Dut M. Ajang⁴

The electric grid infrastructure within the state of lowa is on its way to becoming one of the most decarbonized electric systems in the U.S., with wind turbines producing almost 60% of its electric energy, while a variety of technologies are becoming of high interest, e.g., utility-scale solar, distributed generation, small modular nuclear reactors, hydrogen storage, high-voltage DC transmission, underground distribution, enhanced structural strength overhead transmission, charging control of pluggable vehicles, and demand response. Iowa utilities are investigating options related to these various technologies. The Midcontinent Independent System Operator (MISO) and the Southwest Power Pool (SPP) coordinate planning activities at the regional level; MISO's region includes portions of 15 states and most of Iowa; SPP includes portions of 14 states and a small part of Iowa. Therefore, Iowa's need for longterm expansion planning of electric infrastructure is performed at the individual company level and at the regional level. The rationale underlying this proposal is that the state of lowa would benefit from applying expansion planning analysis at the state level as well, i.e., performing a look-ahead analysis of how the various technology options would influence a 25-year development of the state's electric infrastructure. This work, consistent with the Iowa Utilities Board's (IUB's) objectives in Docket No. INU-2021-0001, will be done with careful monitoring of the RTO planning processes performed by MISO and SPP. The tool used for this work, called Adaptive Coordinated Expansion Planning, will identify least-cost approaches to providing energy while maintaining high levels of reliability and resilience. A summary and schedule of deliverables is provided on the next page.

¹ Dr. James D. McCalley is a Distinguished Professor at Iowa State University (ISU), London Chaired Professor of Power Systems Engineering, and a faculty within the ISU Department of Electrical and Computer Engineering. He was a planning engineer from 1985-1990 at Pacific Gas and Electric Co., San Francisco, before transitioning to a position as an ISU professor.

² Dr. Colin Christy is a Research Assistant Professor at Iowa State University, with several years of experience in the electric power industry and in academic R&D.

³ Gustavo Cuello Polo is a Ph. D. student in electrical engineering at Iowa State University focusing on power system expansion planning.

⁴ Dut M. Ajang is an MS student in electrical engineering at lowa State University focusing on power system resilience.

Summary and schedule of deliverables

D : 44 1	•	- ·	B.11. /
Project task	Year	Target	Deliverables/comments
		completion	
Chart anning	2022	date	
Start project	2023	6/1/23	
Task G1: Develop project board.	2023	7/1/23	Iowa electric G&T orgs represented.
Task G2: Describe/characterize	2023	8/30/23	Report describing MISO and SPP
MISO/SPP planning processes.			planning processes.
Task G3: Monitor 2023 MISO/SPP	2023-	8/30/24	Report developed in collaboration
planning processes	2024		with Project Board.
Task G4-1: Identification of	2023	8/31/23	Report of five (or more) types of high-
events/conditions imposing high			risk events/conditions identified.
risk to IA's electric G/T/D systems.		0/04/00	- 117
Task G4-2: Determine probabilities	2023	8/31/23	Report on probability estimation of the
of high-risk events and conditions.			five (or more) types of
			events/conditions identified.
Task G5-1: Identify uncertainties &	2023	10/30/23	Report identifying at least 8
futures.			uncertainties and at least 5 futures.
Task G5-2: Develop visions.	2023	11/30/23	Report describing at least 4 visions.
Task G6-1: Extend ACEP/FHS to	2024	3/28/24	Report describing approach used for
account for inertial/freq stability.			including inertial/frequency stability.
Task G6-2: Extend ACEP/FHS to	2024	5/30/24	Report describing approach used for
account for resource/energy			resource/energy adequacy, including
adequacy.			test results validating this modeling.
Task G6-3: Enhance resilience	2024	9/30/24	Report describing enhanced resilience
modeling.			modeling, including test results
			validating this modeling.
Task 7: Develop reduced network	2024	10/30/24	Report describing reduced network
model.			model with validation results.
Task G8-1: Develop ACEP dataset.	2024	11/31/24	Report describing ACEP dataset.
Task G8-2: Use ACEP to identify 4	2025	7/30/25	Report describing the 4 strategic plans
strategic plans, 1 per vision.			developed from ACEP.
Task G9-1: Adapt ACEP model for	2025	11/31/25	Report describing FHS model and test
use in FHS.			results validating this model.
Task G9-2: Use FHS to evaluate 4	2026	4/31/26	Report describing FHS evaluation for
strategic plans using 50-100			the 4 strategic plans.
scenarios not used in G6.			
Task G10: Distribute final project	2026	6/1/26	Solicit comments on reports.
report to various Iowa stakeholders			
with all previous reports available			
via website.			