# PLAN IOWA ENERGY (PIE)

**Evaluating & Strengthening Iowa's Power Grid for High Wind/Solar Penetration Levels** 

A 3-Year Project



#### **Project Advisory Board Meeting**

Wednesday, September 13, 2023, 8-9amCT



James McCalley, Colin Christy, Investigators Gustavo Cuello-Polo, Ph. D. Student Dut Ajang, M.S. Student

Contact info: jdm@iastate.edu; 515-460-5244





#### **Meeting Agenda**

- 1. Introduction
- 2. Project essentials
  - Project motivation, objectives and tasks
  - Key power system design tool:
    - Adaptive Coordinated Expansion Planning (ACEP)
  - Visions (& uncertainties, futures, plans)
- 3. Highlights of recent work
  - Extreme conditions
  - Extreme events
- 4. Next steps
- 5. PAB feedback (last 20 minutes)

#### Introduction

• Website:

https://home.engineering.iastate.edu/~jdm/pie/index.htm

- ISU personnel
  - James McCalley, Colin Christy, Investigators
  - Gustavo Cuello-Polo, Ph. D. Student
  - Dut Ajang, M.S. Student
- PAB members
- What we request from you:
  - Attend meetings/review reports;
  - Represent your org & the state of lowa;
  - Help identify "visions";
  - Give opinions, suggestions, corrections;
  - Respond in meetings, by email, phone.
- Goals of this meeting
  - Provide project essentials;
  - Motivate your thought and input.

| Organization                            | Person                    | Title                              |  |
|-----------------------------------------|---------------------------|------------------------------------|--|
| STATE AGENCIES                          |                           |                                    |  |
| Iowa Economic Development Authority     | Stephanie<br>Weisenbach   | Program Manager                    |  |
| Iowa Utilities Board                    | Sarah Martz               | Board Member                       |  |
| Iowa Utilities Board                    | Edgard Verdugo            | Utilities Regulatory Engineer      |  |
| Iowa Office of the Consumer Advocate    | Tim Tessier               | Utility Specialist                 |  |
| Iowa Department of Transportation       | Sam Sturtz                | Chair, Iowa DOT Resiliency WG      |  |
| OTHER AGENCIES                          |                           |                                    |  |
| Iowa Association of Municipal Utilities | Troy DeJoode              | Executive Director                 |  |
| Iowa Association of Elect. Cooperatives | Ethan Hohenadel           | Regulatory Affairs Director        |  |
| Iowa Utility Association                | Chaz Allen                | Executive Director                 |  |
| Iowa Environmental Council              | Steve Guyer               | Energy Policy Manager              |  |
| Iowa Industrial Energy Group            | Amanda James              | Executive Director                 |  |
| Iowa State Institute for Transportation | Shauna Hallmark           | Director                           |  |
| REGIONAL TRANSM. ORGANIZATIONS          |                           |                                    |  |
| Midcontinent Independent Sys Operator   | Armando                   | Sr. Engr., Strategic Assessments   |  |
|                                         | Figueroa-Acevedo          |                                    |  |
| Southwest Power Pool                    | <mark>Sunny Raheem</mark> | Manager, Planning Policy&Rsrch     |  |
|                                         | Clint Savoy               | Manager, Interregional Strategy    |  |
| INVESTOR-OWNED UTILITIES                |                           |                                    |  |
| Alliant Energy                          | Mike Graves               | Lead Engineer                      |  |
| MidAmerican Energy                      | <mark>Dehn Stevens</mark> | VP, Transm Planning & Dvlpmnt      |  |
| ITC Transmission Midwest                | Rob Wells                 | Supervisor, Planning               |  |
| MUNICIPAL UTILITIES                     |                           |                                    |  |
| City of Ames Electric                   | <mark>Don Kom</mark>      | Director                           |  |
| Cedar Falls Utilities                   | Ken Kagy                  | Principle Transmission Engineer    |  |
| Muscatine Power and Water               | Ryan Streck               | Director, Utility Service Delivery |  |
| COOPERATIVE UTILITIES                   |                           |                                    |  |
| Central Iowa Power Cooperative          | Ethan Tellier             | Planning engineer                  |  |
| Corn Belt Power Cooperative             | Tyler Baxter              | Engineer III                       |  |
| Dairyland Power Cooperative             | Ben Porath                | Chief Operating Officer            |  |
| Maquoketa Valley Electrical Cooperative | Nik Schulte               | Distribution system manager        |  |

#### **Project Motivation, Objectives, & Tasks**

- Motivation
  - Energy planning is done for regions, for utility areas, but not for lowa
  - Establish *visions*:
    - emphasizing cost minimization;
    - emphasizing CO<sub>2</sub> reduction;
    - emphasizing energy export;
    - emphasizing resilience.
  - Develop benchmark plans on what, <sup>2.</sup> when, where, how much GTD to develop<sub>3.</sub>
  - Compare/contrast to RTO/utility plans
- Objective:

Identify several 25-year plans to position Iowa's low carbon electric infrastructure to perform well under normal and climate-influenced extreme events & conditions.

#### Tasks G2-G3, RTO processes: Describe MISO/SPP planning processes; monitor.

- ✓ MISO Planning Subcommittee (PSC) -
- Long Range Transmission Planning (LRTP) Workshops
- ✓ SPP Transmission Working Group
- ✓ SPP Future Grid Strategy Advisory Group

<u>**Task G4, Resilience</u>**: Assume IA/MISO are producing very high % of energy from non-CO2 sources by 2050 - what will be conditions & extreme events that cause high risk, and how to mitigate those risks?</u>

Task G5, G6, G7, Tools: Apply/illustrate the following tools for this project.

- 1. <u>Model Reduction</u>: Develop a high-fidelity reduced expansion planning model, with high detail in Iowa, from a 90,000 bus EI power flow.
- 2. <u>Adaptive Coordinated Expansion Planning (ACEP)</u>: Provides the best 25-yr G,T,D plan given a number of possible futures.
  - . <u>Resilience-based Coordinated Expansion Planning (R-CEP)</u>: Identifies leastcost investments for normal and extreme events & conditions.
- 4. <u>Folding Horizon Simulation (FHS)</u>: Assesses a 25-yr plan for cost & reliability.

<u>**Task G8-G9, 5 plans</u>**: Use tools to develop/evaluate 5 electric infrastructure build plans for Iowa, accounting for different technologies (e.g., new nuclear, carbon-capture, load control, storage, HVDC) according to different visions:</u>

- <u>Minimum cost</u>: Maintain avg annual R/C/I cost of 12, 10, 6 ¢/kwh (EIA).
- <u>*Minimum CO*</u>: Cut 2025  $CO_2$  levels from electric/transportation by 90%.
- <u>Maximum energy export</u>: Produce 1.5× in-state electric energy requirements
- *Maximum resilience*: Reduce extreme event cost of electric outages by 60%.
- <u>Balanced</u>: Seek a balanced portfolio of above 4 features.

## Key Power System Design Tool: Adaptive Co-optimized Expansion Planning

A computer model we have developed:

→Identifies a *plan* (where/when/what/how-much

G, T, D to build) over ~25yrs to minimize NPW

investment costs plus

operational costs
subject to multiple futures
and system constraints.



TODAY

#### Exploratory, not predictive:

We "point it" in the direction of a particular vision.

We identify several "futures".

-2030

It gives least-cost G,T,D plan for that vision subject to specified futures & sys constraints. 5

2035

FUTURE1

2040

2050

FUTURE 2



### Highlights of recent work (see website for report): Task G2, Project Report #1: MISO & SPP Planning Processes



| 1. | Intro | oduction                                                                         | 6  |
|----|-------|----------------------------------------------------------------------------------|----|
| 2. | Ove   | rview of the MISO and SPP Planning Processes                                     | 7  |
|    | 2.1.  | Introduction to bulk power system planning                                       | 7  |
|    | 2.2.  | Overview of the MISO planning process                                            | 8  |
|    | 2.3.  | Overview of the SPP planning process                                             | 9  |
|    | 2.4.  | Comparison of SPP and MISO analysis procedures and models for planning           | 11 |
| 3. | Inte  | gration of planning functions                                                    | 14 |
|    | 3.1.  | Integration of processes within the MISO long-term planning                      | 14 |
|    | 3.2.  | Integration of processes within the SPP long-term planning                       | 14 |
| 4. | Inte  | rregional Collaboration: MISO-SPP Joint Operating Agreement                      | 16 |
| 5. | Inco  | prporation of Public Policy and Stakeholder Collaboration                        | 19 |
|    | 5.1.  | Public policy within the MISO planning process                                   | 19 |
|    | 5.2.  | Public policy within the SPP planning process                                    | 19 |
|    | 5.3.  | Comparison of MISO and SPP stakeholder collaboration within the planning process | 20 |
| 6. | Cost  | t allocation                                                                     | 21 |
|    | 6.1.  | Cost allocation considerations within the MISO planning process                  | 21 |
|    | 6.2.  | Cost allocation considerations within the SPP planning process                   | 22 |
| 7. | Resi  | lience evaluation strategies                                                     | 23 |
|    | 7.1.  | Resilience evaluation strategies implemented by MISO                             | 23 |
|    | 7.2.  | Resilience evaluation strategies implemented by SPP                              | 23 |
| 8. | Find  | lings and Conclusions                                                            | 25 |



#### Highlights of recent work (see website for report): Task G4, Project Report #2: High-risk conditions & events



wind/solar, expressed as a function of % solar.

#### Highlights of recent work (see website for report): Task G4, Project Report #2: High-risk conditions & events

| 1 Int                    | roduction                                                             |  |
|--------------------------|-----------------------------------------------------------------------|--|
| 2 Extreme conditions     |                                                                       |  |
| 2.1                      | Overview of datasets                                                  |  |
| 2.2                      | Calculation of hourly wind and solar output7                          |  |
| 2.3                      | Analysis of results: times of low renewable generation                |  |
| 2.4                      | Analysis of results: low renewable generation at high temperatures 10 |  |
| 2.5                      | Future work                                                           |  |
| 3 Extreme weather events |                                                                       |  |
| 3.1                      | Extreme weather event categories                                      |  |
| 3.2                      | Extreme weather event data                                            |  |
| 4 Cc                     | nclusions and next steps                                              |  |

#### See www.ncei.noaa.gov/access/billions/events/US/1980-2023?disasters[]=all-disasters



Iowa Billion-Dollar Disaster Events 1980-2023 (CPI-Adjusted)





Updated: July 11, 2023

#### **Next Steps**

- 1. Extend work on high-risk conditions and events:
  - Enhance modeling on future load and resource projections;
  - Compare to similar analysis using other datasets;
  - Develop R-CEP to balance investments between normal & extreme events.
- 2. Continue monitoring MISO and SPP processes;
- 3. Refine visions, uncertainties, and futures;
- 4. Develop network model: consider using model to be used in MISO LRTP Tranche 2 studies, with review/updates from SPP.
- 5. Next PAB meeting: January, 2024.

#### PAB Feedback

- Provide feedback now or else by e-mail to jdm@iastate.edu or phone at 515-294-4844 (v) or 515-460-5244 (cell) at any time after the meeting, but within next 2-3 days. Other questions in which we are interested:
- 1. Do you see ways to modify motivation, objectives, and/or tasks to make this project more valuable to you and/or to lowa?
- Do you believe the 5 visions we intend to plan for are an appropriate capture of different directions lowa may choose to go? (energy cost, CO<sub>2</sub> reduction, energy export, resilience, balanced)
- 3. Are there significant uncertainties beyond those listed on slide 6? (policy change, demand growth/electrification, retirements, fuel price, technology costs);
- 4. Do you find our reports 1 and 2 useful/informative? Do you have questions related to them?
- 5. Any other questions, comments, suggestions, opinions you have? 11

## Modeling – DER Representation

